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Antimicrobial peptides (AMPs) have shown cell membrane-directed

mechanisms of action. This specificity can be effective against infectious

agents that have acquired resistance to conventional drugs. The AMPs’

membrane-specificity and their great potential to combat resistant microbes

has brought hope to the medical/therapeutic scene. The high death rate

worldwide due to antimicrobial resistance (AMR) has pushed forward the

search for new molecules and product developments, mainly antibiotics. In

the current scenario, other strategies including the association of two or more

drugs have contributed to the treatment of difficult-to-treat infectious diseases,

above all, those caused by bacteria. In this context, the synergistic action of

AMPs associated with current antibiotic therapy can bring important results for

the production of new and effective drugs to overcome AMR. This review

presents the advances obtained in the last 5 years in medical/antibiotic therapy,

with the use of products based on AMPs, as well as perspectives on the

potentialized effects of current drugs combined with AMPs for the treatment

of bacterial infectious diseases.
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1 Introduction

Over the years, antibiotic therapy has been the main tool for treating infectious

diseases. Discoveries revealed that antibiotics have been used since ancient civilizations,

and it is believed that antibiotics have been in human treatment since 350–550 CE

(Iskandar et al., 2022). Since the first discovered classes, it is possible to affirm that

antibiotics have been responsible for saving thousands of lives annually since the early

20th century (Yin et al., 2021). Even so, the emergence of difficult-to-treat infectious

disease was inevitable, given the co-evolution of pathogens. Selective pressure by

antibiotic use has resulted in infectious diseases that are effectively untreatable with
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conventional antibiotics due to antimicrobial resistance (AMR).

An increasing range of AMR organisms including bacteria,

viruses, parasites and fungi have caused increased mortality

rates around the world (Asokan and Vanitha, 2018). Because

of this, AMR has increased considerably worldwide in the

hospital environment and has alarmed world health

authorities (World Health Organization, 2019). The selective

pressure for antibiotic use can be considered mainly responsible

for the emergence and increase in AMR (Larsson and Flach,

2022). The fight against multidrug-resistant (MDR) agents is a

complex problem in both developed and developing countries

(Majumder et al., 2020; Ting et al., 2020; Murray et al., 2022).

In fact, AMR has primarily been associated with selective

pressure due to the increased use of antibiotics, and to their

indiscriminate use due to self-medication. In addition, AMR can

be related to social problems such as world overpopulation, poor

sanitation, and invasion of preserved biomes. The use of

antibiotics in the agricultural sector and also in the treatment

of animals in veterinary clinics has contributed to AMR, as

reviewed in (Rather et al., 2017; Aslam et al., 2018). Annual

reports associate AMR with high mortality rates, prolonged

hospital admission and, consequently, high costs in the

healthcare sector. The increase in AMR limits treatment

options, as it reduces the possibility of choosing effective

drugs that have been used in clinical practice for years

(Dadgostar, 2019; World Health Organization, 2020). It is

estimated that by 2050 approximately 10 million deaths will

be caused by infections caused by AMR (World Health

Organization, 2017; Ting et al., 2020).

In a recent report (Global Antimicrobial Resistance and Use

Surveillance System (GLASS) Report: Early implementation

2020) (World Health Organization, 2020), the WHO issued

an emergency alert on the need to develop new treatment

alternatives. Among clinical isolates, bacteria stand out in

antimicrobial resistant groups. It is increasingly common to

note the inefficiency of traditional antibiotics due to AMR

bacteria. In a systematic review published in The Lancet

journal, the authors observed that in 2019 alone, among the

reports of deaths, about 1.27 million (95% of analyzed reports)

were caused by bacteria infections (Murray et al., 2022). Besides

stressing the urgency of developing new treatments,

12 representatives of some bacterial families were added to

the priority pathogen list by the WHO (Table 1). According

to the WHO, those families pose a great threat to humanity

(Asokan and Vanitha, 2018).

Despite the need for new therapeutic options, and regardless

of the increase in antimicrobial resistance, it is possible to observe

a decline in the development of new drugs and/or discovery of

new molecules. There has been no discovery of a new antibiotic

class since the “golden era”, the period between the 1950s and

1970s, when the main known classes were discovered (Hutchings

et al., 2019). However, this decline is mainly due to the lack of

interest from governments and large industries in investing in

research. Certainly, evaluating cost-benefit, heavy investments

are needed to prospect, obtain and commercialize new drugs.

This results in low financial returns in the face of rapidly

increasing microbial resistance, even with the high rate of

deaths. In addition to the high costs, long periods are

generally required for the production and marketing of a new

drug. To put this in perspective, it takes 10–15 years for a new

product to be approved and made available to the market, with

costs of approximately 2 billion dollars (Wouters et al., 2020).

TABLE 1 The bacteria (n = 12) considered the greatest threat to human health that were added to the priority pathogen list by the WHO.

Priority Category Pathogens Drug-resistant

1 CRITICAL Acinetobacter baumannii Carbapenem

Pseudomonas aeruginosa Carbapenem

Enterobacteriaceae Carbapenem; ESBL-producing

2 HIGH Enterococcus faecium Vancomycin

Staphylococcus aureus Methicillin, vancomycin-intermediate and resistant

Helicobacter pylori Clarithromycin

Campylobacter spp. Fluoroquinolone

Salmonellae Fluoroquinolone

Neisseria gonorrhoeae Cephalosporin and fluoroquinolone-resist

3 MEDIUM Streptococcus pneumoniae Penicillin-non-susceptible

Haemophilus influenzae Ampicillin

Shigella spp. Fluoroquinolone

Adapted from (World Health Organization, 2017).
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Thus, it is urgent to search for new alternatives that overcome

the therapeutic failures of traditional antibiotics. These

alternatives include combined therapy or efficient molecule

development that is capable of overcoming the increasing

wave of threats from resistant organisms. Following the

urgency of developing new antimicrobial drugs, many studies

have reported proofs-of-concept, indicating the high therapeutic

potential of defense peptides, and some peptides are already in

clinical trials (Ting et al., 2020). Peptides are also able to boost the

effects of other antibiotics, showing an improved action with

these drugs. Among these peptides are known antimicrobial

peptides (AMPs). AMPs could also be considered host defense

peptides (HDR). HDRs have been involved in the living

organisms defense system for millions of years (Mishra et al.,

2017).

These peptides besides modulating the immune system, was

reported that, on in vivomodels, it can also neutralize endotoxins

(Mishra et al., 2017; Boto et al., 2018). HDR also act against

pathogens invasion (e.g., viruses, fungi, bacteria, and parasites),

and can prevent biofilm formation (Mishra et al., 2017; Boto

et al., 2018). In addition, it is possible to find AMPs as anticancer

agents (Franco, 2011; Mishra et al., 2017). Additionally, AMPs

also can be used for medical products development such as, drugs

to be applied in wound healing as well as skin care use, due to

antioxidant peptides action (Golonka et al., 2021; Moretta et al.,

2021). AMPs can also act as inhibitors of ACE1 (angiotensin

converting enzyme 1) and pancreatic lipase, being useful to

control metabolic syndrome (Moretta et al., 2021).

As mentioned, those peptides have broad activity spectrum,

and although it is possible (Maron et al., 2022), AMP resistance is

not prevalent. It is an advantage compared to conventional drugs,

and AMPs can act synergistically with conventional antibiotics

potentializing the effects of them (Duong et al., 2021; Zhu et al.,

2022). In this context, the synergistic action of AMPs associated

with current antibiotic therapy can bring important results for

the production of effective new drugs to overcome AMR. This

review presents the advances obtained over the last 5 years in the

medical/antibiotic therapy scene, with the use of products based

on AMPs, as well as perspectives on the synergic effect of AMPs

in association with current drugs for the treatment of bacterial

infectious diseases.

2 Synergic effect of drug combination
therapy used in clinical practice

For decades, antibiotics have facilitated the treatment of

bacterial infectious diseases. However, over the years, selective

pressure, by antibiotics use, allowed that bacteria to acquire a

random change in their DNA. With those changes, the bacteria

can survive in the antibiotic’s presence. This way, bacteria

developed resistance mechanisms to conventional antibiotics

(Ghosh et al., 2020). Also, those mechanisms can be

horizontally transferred. Basic horizontal gene transfer (HGT)

mechanisms were discovered more than 50 years ago. In general,

HGT is an important form of bacterial survival and evolution

(Ting et al., 2020; Power et al., 2021). In this way, horizontal

transfer can occur with resistance genes. Resistance gene are also

transferred between pathogenic and non-pathogenic bacteria

including antibiotic resistance (ABR) ones. HGT afford

pathogenic bacteria to develop resistance by obtaining ABR

genes by exchange between other pathogenic ones, or

commensal bacteria present in surrounding environments

(Ting et al., 2020). However, antimicrobial misuse can cause

resistance and effect the efficacy of drugs (Boto et al., 2018).

The therapeutic potential of existing antibiotics through

collaborations with other biological or chemical molecules

represents an approach to enhance antibacterial activity and

inhibit the emergence of resistance (Shang et al., 2019).

Combined action between two or more drugs that contribute

to the final result against a multi-resistant microorganism is

known as synergism. Synergistic interaction involves lower doses

of the combination constituents, allowing a therapeutic effect

(Lloyd et al., 2020). The enhanced effect of therapeutical

molecules reflects an efficient means of increasing the

amplitude of cellular responses induced by stimulation levels,

like AMPs, for example (Sechet et al., 2018; Duong et al., 2021).

Drug–drug interactions (DDIs) happen when one drug

modifies another’s pharmaceutical activity, but these require

multiple dose levels in the analysis of each drug, either alone

or in different combination ratios (Niu et al., 2019). Intuitively,

molecule combination may represent higher effectiveness.

However, drugs that could be combined, commonly did not

improved the collateral effects if it not has dosage reduction of

each molecule present in the combination (García-Fuente et al.,

2018). DDIs are significant since metabolic biotransformations

arise at some point between drug absorption into the circulation

and its elimination (Katzung and Trevor, 2012). The

biotransformation process can leave this xenobiotic in

bioactivation through changes in elimination rates. Therefore,

synergistic molecular combinations can overcome toxicity and

the effects associated with high doses of drugs, allowing the

dosage of each compound to be reduced or accessing a specific

target (Roemhild et al., 2022).

Valuable examples of combinatorial effects were described in

tests using colistin associated with 19 antibiotics against

20 colistin-resistant and 15 carbapenem-resistant

Enterobacteriaceae isolates. The method used in this work was

inkjet printer-assisted digital dispensing checkerboard array

(Brennan-Krohn et al., 2018). Eighteen of nineteen

combinations demonstrated synergy against two or more

isolates. In addition, four higher synergic combinations

(colistin combined with linezolid, rifampin, azithromycin, and

fusidic acid) show potentialized effects against ≥90% of strains.

These results suggest that colistin may exert a sub-inhibitory

permeabilizing effects on the Gram-negative bacterial outer
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TABLE 2 Some reports of in vitro studies evaluating the synergistic effect of AMP and commercial antibiotic combination, published in the last 5 years.

Combination Medical target/disease Sponsor/
collaborators

Peptide SPR741 and antibiotics (rifampin, clarithromycin, and azithromycin) E. coli ATCC 25922, K. pneumoniae ATCC
43816, and A. baumannii NCTC 12156

Corbett et al. (2017)

Peptides (r(P)ApoBL and r(P)ApoBS) and antibiotics (ciprofloxacin, colistin, erythromycin,
kanamycin sulfate, and vancomycin)*

E. coli methicillin-resistant S. aureus MRSA and
ATTC 29213, Salmonella enteriditis 706 RIVM,
B. globigii TNO BM013, B. licheniformis ATTC
21424, P. aeruginosa ATCC 27853, and PAO1

Gaglione et al. (2017)

Peptides KR-12-a5 and antibiotics (Chloramphenicol, Ciprofloxacin, Oxacillin) MDR P. aeruginosa strains Kim et al. (2017)

Peptide Nisin Z and Novobiocin S. aureus, S. epidermidis, E. coli Lewies et al. (2017)

Peptides (Melittin, Nisin Z) and Novobiocin S. aureus ATCC 12228 and 12,600 Lewies et al. (2017)

leftPeptide CLP and antibiotics (ampicillin, ceftazidime, erythromycin, levofloxacin) A. baumannii E. coli, P. aeruginosa, S. aureus Li et al. (2017)

Peptide MP-AF and antibiotics (Cephalothin, Chloramphenicol, Gentamicin, Neomycin,
Ciprofloxacin, Trimethoprim/sulfamethoxazole, SXT)

E. coli ATCC 25922, PFL6, PFH13 A. baumannii
clinical isolates

Lin et al. (2017)

Peptide hLF1-11 and antibiotics (Clarithromycin, Clindamycin, Gentamycin, Rifampicin,
Tigecycline)

K. pneumoniae (6 different strains) Morici et al. (2017)

Peptide SET-M33 and antibiotics (meropenem, rifampin, aztreonam, tobramycin,
ciprofloxacin)

MDR Klebsiella pneumoniae, Pseudomonas
aeruginosa, and Acinetobacter baumannii

Pollini et al. (2017)

Peptide (FK-13-a1 and FK-13-a7) and chloramphenicol E. coli, P. aeruginosa, S. typhimurium, B. subtilis,
S. epidermidis, S. aureus

Rajasekaran et al. (2017)

Peptide LL-37 and antibiotics (ceftriaxone, ciprofloxacin)* Salmonella enterica serotype Newport Sakoulas et al. (2017)

DP7 and antibiotics (vancomycin and azithromycin) MDR S. aureus, P. aeruginosa, A. baumannii,
and E. coli

Wu et al. (2017)

Peptide Cecropin A2 and Tetracycline P. aeruginosa PA14, PA103, clinical isolates Zheng et al. (2017)

Peptide SPR741 and rifampin* A. baumannii Zurawski et al. (2017)

Peptide Ocellatin-PT3 and antibiotics (Ceftazidime, Ciprofloxacin)/Peptide P5 and
Meropenem

MDR P. aeruginosa Pa1 anda Pa4-SA2/P.
aeruginosa

Bessa et al. (2018)

Peptides (HHC-10, 1018, DJK-5) and antibiotics (Gentamicin, ampicillin, tetracycline,
chloramphenicol, spectinomycin)*

MDR Gram-positive and Gram-negative Pletzer et al. (2018)

Peptide SPR741 and azithromycin Enterobacteriaceae isolates Stainton et al. (2018)

Peptide PrAMP and colistin K. pneumoniae and A. baumannii Otvos Jr et al. (2018)

Peptide A3-APO and colistin MRD Klebsiella pneumoniae K97/09 Otvos Jr et al. (2018)

Peptide A3-APO and imipenem* MDR K. pneumoniae Acinetobacter baumannii
BAA-1605

Otvos Jr et al. (2018)

Peptide A3-APO and meropenem CRU E. coli Otvos Jr et al. (2018)

Peptide melittin and doripenem, doxycycline, colistin A. baumannii, P. aeruginosa Akbari et al. (2019)

Peptide SPR741 and azithromycin Enterobacteriaceae Akhoundsadegh et al.
(2019)

Peptide colistin and antibiotics
(chloramphenicol, tetracycline, linezolid, vancomycin)

P. aeruginosa, E. coli, A. baumanii, S. marcescens Armengol et al. (2019)

Peptide SPR741 and piperacillin-tazobactam,
ceftazidime, and aztreonam*

Human study NCT03022175/NCT03376529 Eckburg et al. (2019)

Peptide SPR741 and rifampicin E. coli French et al. (2019)

Peptide CAMPs and antibiotics (colistin, imipenem) Methicillin-resistant S. aureus and MDR P.
aeruginosa.

Geitani et al. (2019)

Melimine, Mel4 and protamine, and antibiotics (cefepime and ciprofloxacin) S. aureus P. aeruginosa Kampshoff et al. (2019)

(Continued on following page)
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membrane, even in isolates that are resistant to it (Brennan-

Krohn et al., 2018).

Another in vitro study tested the combination of colistin with

teicoplanin multidrug-resistant Acinetobacter spp (Rady et al.,

2022). This combination was tested against 29 multidrug-

resistant Acinetobacter spp isolates. The researchers used

1 mg l−1 colistin and 10 mg l−1 teicoplanin in combination and

demonstrated in vitro synergism against all tested Acinetobacter

isolates except one (Acinetobacter lowffii). This combination also

demonstrated a bactericidal effect at 6 h against 100% of A.

baumannii isolates with no bacterial regrowth at 24 h. The same

combination was bactericidal against three out of seven non-

baumannii Acinetobacter isolates. Colistin can act on

Acinetobacter spp. Outer membrane and permit teicoplanin to

reach its target in the cell wall (Rady et al., 2022).

As explained, the association of two or more antibiotics

demonstrates therapeutic potential through association against

microorganisms; the production of antibiotics is not fully species-

specific. Antibiotics can be composed of organisms associated with

different species, genera, or even orders. An antibiotic’s mechanism

of actionmust begin when it identifies the targetmacromolecule and

its function. For example, the susceptibility of different bacteria to

antibiotics relies chiefly on the structure of their cell walls, as it

completes the capability of the antibiotic to penetrate the bacterial

cell (Long, 1951; Liu et al., 2021). However, pathogen resistance is a

result of pathogen selective pressure overmany years. Themolecular

modification of the pathogen to cheat the antibiotic mechanism of

action makes the pathogen more efficient, making infections even

more difficult to treat (Uddin et al., 2021). However, synergic effects

of AMPs with other antimicrobials can reduce the risk of developing

bacterial resistance, due to the high lethality level (Duong et al.,

2021).

3 Clinically significant advances in
synergism between AMP/antibiotic
and AMP/AMP

As mentioned, new therapies are urgently needed to tackle

the global problem of AMR. To overcome the therapeutic

TABLE 2 (Continued) Some reports of in vitro studies evaluating the synergistic effect of AMP and commercial antibiotic combination, published in the last
5 years.

Combination Medical target/disease Sponsor/
collaborators

Peptide (DPK-060 and LL-37) and monolaurin lipid nanocapsules S. aureus biofilms Rozenbaum et al. (2019)

Peptides (L11W, L12W, and I4WL5W) and antibiotics (ampicillin, ceftazidime, penicillin,
erythromycin, tetracycline)

MDR S. aureus Shang et al. (2019)

Peptide L12 and antibiotics (ceftazidime, erythromycin, gentamycin, levofloxacin, linezolid,
oxacillin, tetracycline, vancomycin)

MR S. aureus Xiong et al. (2019)

Peptide HNP-1 and hBD-1 and cefotaxime* S. aureus isolates Bolatchiev et al. (2020)

Peptide G3KL and propidium iodide K. pneumoniae, P. aeruginosa Gan et al. (2020)

Peptide tridecaptin M and antibiotics (rifampicin, vancomycin, and ceftazidime) A. baumannii Jangra et al. (2020)

Peptide cLFchimera and antibiotics (gentamicin, cefazolin, ceftazidime) E. coli, P. eruginosa and S. typhi Roshanak et al. (2020)

Peptide Pt5-1c snf oxacillin, vancomycin, streptomycin, and azithromycin MDRs S. aureus USA500, E. coli 577, and K.
pneumoniae 2182

Duan et al. (2021)

Nisin and colistin, P10 and ceftazidime/doripenem Acinetobacter baumannii P. aeruginosa Jahangiri et al. (2021)

Peptide D-11 and antibiotic vancomycin Gram-negative pathogens P. aeruginosa Li et al. (2021)

Peptidomimetic CEP-136 and E. coli, K. pneumoniae, A. baumannii, and P.
aeruginosa

Mood et al. (2021)

LL-37 and colistin E. coli Morroni et al. (2021)

Peptides (S1-Nal and S1-Nal-Nal) and vancomycin P. aeruginosa E. coli Wu et al. (2021)

Peptides (FK20; FdK; dFdK and LK20) and imipenem A. baumannii biofilms Caraway et al. (2022)

Peptides (GVF27, FAM-GVF27, LL-37) and ciprofloxacin Bcc and antibiofilm activity Bosso et al. (2022)

Peptides (CATH-1, CATH-3, PMAP-36) and erythromycin S. aureus, S. enteritidis, E.coli Lu et al. (2022)

*Also in vivo assay; CRU, Carbapenem-resistant uropathogenic; MDR, multidrug-resistant Klebsiella pneumoniae K97/09; Bcc, Burkholderia cepacia Complex.

Bacterial species names are italicized.
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limitations created by bacterial resistance, some strategies have

been considered (Vargas-Casanova et al., 2019). In addition to

antibiotic combinations, which are a common practice in the

hospital environment, antibiotic association with AMPs has been

demonstrated as a potential resource against AMR agents (dos

Santos et al., 2021; Li et al., 2021). Recent reports can

demonstrate the increased activity of the combination (AMP-

antibiotic), revealing a potentialized effect. Table 2 summarizes

some proof-of-concept works that have reported synergistic

AMP-antibiotic combinations in the last 5 years.

AMPs can be biological or chemical molecules working with

antibiotics. Broadly, two physical features are accepted for AMPs:

a cationic charge and a significant measurement of hydrophobic

residues. The first property promotes selectivity for negatively

charged microbial cytoplasmic membranes, and the second

property facilitates interactions with the fatty acyl chains

(Shen et al., 2018; Cantor et al., 2019). AMPs interacting with

bacterial membranes may cause pores leading to an osmotic

imbalance and promoting cell disruption (Hollmann et al., 2018).

In this way, it can facilitate the entry of other molecules such as

conventional antibiotics and further affect different targets

within the cell (Hollmann et al., 2018) such as, cell wall

biosynthesis, mechanism of protein synthesis, interference of

metabolic activity and synthesis and integrity of nucleic acids

(Sarkar et al., 2017; Lin et al., 2018; Stokes et al., 2019; Lade and

Kim, 2021).

Combination therapy consist in a strategy to overcome

bacterial resistance to conventional antibiotics, as well as,

enhance the molecules efficiency (Wang et al., 2022). This is

because some AMPs-antibiotics combination can allow bacterial

pores to open longer preventing pore repair, and further

increasing cellular osmolarity unbalance. In addition, it can

complement bacterial killing by imparting mechanisms other

including the reduction of bacterial resistance and host cell

toxicity (Duong et al., 2021). Bacterial resistance reduction

could be considered in AMP-antibiotic combination, once that

this synergistic combination involves multiple targets. In general,

those targets are in independent bacteria cell pathways.

Therefore, to overcome the mechanism of action to both

molecules, present in the combination, also would be

necessary multiples independents, and simultaneous, set of

mutations, in the bacteria for it to become resistant (Duong

et al., 2021; Zhu et al., 2022). Thus, the AMP-antibiotic

combination can boost antibacterial effects as well as

interrupting biofilm formation, and can act with more

efficiency than individual drugs (Wu et al., 2017).

Given that AMPs have dominant activities against

multidrug-resistant organisms, they can be used to treat the

increasing number of antibiotic-resistant infections (Giuliani

et al., 2007). It is known that membrane disarray is the

principal mechanism of AMPs that can kill or inhibit

microorganisms (Atefyekta, 2020), since the notable targets of

AMPs are the cell membranes of microbes. The mechanism of

action for AMPs has been extensively studied in recent years, and

readers are directed to three reviews that detail this mechanism

(Moravej et al., 2018; Raheem and Straus, 2019; Benfield and

Henriques, 2020).

Other studies demonstrated the action of synergic

combinations between AMPs and antibiotics. The

combination of colistin sulfate-tobramycin was tested to kill

Pseudomonas aeruginosa biofilms. In vivo tests were

conducted by groups of 10 female Lewis rats (age, 7 weeks)

who were challenged intratracheally with 0.1 ml of a suspension

of alginate beads containing 1 x 108 cfu/mL P. aeruginosa

PAO1 in the left lung. After one hour, the rats received 0.1 ml

of the colistimethate or tobramycin or a simultaneous

combination of both drugs or 0.9% saline via intratracheal.

After 7 days, the rats who received the antibiotic combination

therapy significantly reduced the number of P. aeruginosa cells.

In addition, the authors also did a pilot study with 5 patients who

presented cystic fibrosis. They inhaled colistin and then

tobramycin for 4 weeks, and the results demonstrated a

reduction of 2.52 ± 2.5 log10 cfu of P. aeruginosa per milliliter

of sputum (p = 0.027) (Herrmann et al., 2010).

The human neutrophil peptide (HNP)-1 was used in

combination with isoniazid and rifampicin against

Mycobacterium tuberculosis. Results in vitro demonstrated the

reduction of >1-log unit ofM tuberculosis even when HNP-1 and

anti-TB drugs were used at 1/16 MICs. The in vivo analyses

demonstrated that the use of HNP-1 in conjunction with anti-TB

drugs resulted in a significant decrease in bacterial load in the

lungs, liver and spleen of the infected animals, compared with

control animals (Kalita et al., 2004).

Another study evaluated the potentialized effect in cryptdin 2

(a Paneth cell antimicrobial peptide) and ampicillin (Amp)

combination against Salmonella enterica serovar

Typhimurium. For in vivo tests, mice were infected with

107 CFU of S. typhimurium orally. After 7 days the mice were

separated into 11 groups of five mice each and treated with

cryptdin 2 and ampicillin. Cryptdin 2 was injected

subcutaneously (s.c.) at a dose of 5 μg/mouse, while Amp was

administered s. c. at 16, 32, and 64 mg/kg of body weight,

individually and in combination. Results suggest larger log

unit decreases in all target organs of mice treated with the

combination than those for the drugs used alone. According

to these studies, the synergic effect of AMPs with other

antimicrobials are responsible for the efficient control or

killing of bacteria. (Duong et al., 2021).

As cited, some works have reported promising results with

the antibiotic-AMP or AMP-AMP associations, and these have

been proven to be a potent antimicrobial therapy (Grassi et al.,

2017; Sierra and Viñas, 2021). Furthermore, the AMP-AMP

combination also can display stronger effect. The expectation

of potentialized antimicrobial effect in AMPs combination seems

likely to master the problem of resistance to conventional

antibiotics, being the AMPs potential candidates against
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multi-drug resistant bacteria (Pirtskhalava et al., 2021). In the last

5 years some studies have explored the synergistic effects of

combining two or more AMPs in the control of MDR (Table 3).

The combination of two or more AMPs is a strategy that can

act on multiple targets, in different pathogens. Also, it looks like

the peptide mixture might be safe, as demonstrate a work that

evaluated the peptide pool. Peptides mixture can also besides to

being considered to improve antimicrobial and antibiofilm

activity, in vitro bioassay also was demonstrated that the

mixture can be safe to human tissue (Santos et al., 2022).

Random peptide mixture (RPM) has been an alternative to

overcoming to antimicrobial treatment potentialization. Same

RPM can attenuate mouse mortality when submitted to sepsis

infection (Caraway et al., 2022). RPM consist in performed

synthetic peptide by incorporation of a defined proportion of

two or more amino acids, making RPM extreme diversity. So, it

tourn improbably the rapid bacterial resistance (Bauer et al.,

2020; Bennett et al., 2021). In other study was evaluated the RPM

cocktail effect (dFDK, LK20, FK20, and FdK peptides) in vitro,

and demonstrated that four RPM (5 µg ml−1 each of RPM) in a

cocktail (20 µg ml−1) were more effective against all 3 A.

baumannii isolates tested than single RPM (100 µg ml−1), even

the single RPM having been the able to capable to eradicate A.

baumannii biofilms and inhibited mouse models of infection

(Caraway et al., 2022). The results in vitro also However, the

single RPM was capable to eradicated A. baumannii biofilms

(Bennett et al., 2021; Caraway et al., 2022). In addition to

increasing the lethality, this may be more efficient from the

point of view of the variety of pathogens that a single

combination can control (Geitani et al., 2019; Hanson et al.,

2019; Bechinger et al., 2020).

Combination therapy with AMPs can be an alternative to

reduce cytotoxicity by synergism. Those strategies not only

can surpass the bactericide effect of conventional antibiotics

but also can decrease the dose of bactericide necessary, and

decrease toxicity rates and side effects of individual or

combined antibiotics (Duong et al., 2021; Sierra and Viñas,

2021). AMP-antibiotic and AMP-AMP combinations have the

objective of boosting the effects of traditional antibiotics that

are still in use. They can also boost the action of antibiotics

that have lost their efficacy over the years due to selective

pressure from resistant bacteria. The improved effect of the

AMP-antibiotic association can mitigate the potential

mechanism of bacterial resistance. However, clinical trials

involving AMP-antibiotic or AMP-AMP interaction are still

scarce. Synergism studies and clinical trials urgently need to

get the health agencies’ approval and rapidly obtains products

to be marketed. AMP-antibiotic or AMP-AMP combination

strategies may bolster the fight against difficult-to-treat

infections (Zhang Q.-Y. et al., 2021).

TABLE 3 Some reports evaluating the synergistic effect of AMP-AMP combination, published in the last 5 years.

AMP combination Medical target/disease Authors

Coleoptericin and defensin S. aureus Zanchi et al. (2017)

PGLa and magainin 2 E. coli and S. aureus Zerweck et al. (2017)

A3-APO and K97/09 K. pneumoniae Otvos Jr et al. (2018)

LL-37: CAMA: magainin-II: nisina Methicillin-resistant S.aureus and MDR P. aeruginosa Geitani et al. (2019)

Diptericins and attacins Providencia burhodogranariea Hanson et al. (2019)

Lysostaphin and LL-37 S. aureus Sadeghi et al. (2019)

HNP-1 and hBD-1 S. aureus isolates Bolatchiev et al. (2020)

PGLa and Magainin 2 E. coli and S. aureus Bechinger et al. (2020)

VG16KRKP and KYE28 Xanthomonas, Pseudomonas Ilyas et al. (2019)

PGLa and magainin 2 E. coli (Glattard et al., 2016; Zerweck et al., 2017; Ma et al., 2020)

Magainin 2 and tachyplesin 1 E. coli Remington et al. (2020)

Ib-AMP4 and E50-52 MDR Staphylococcus aureus Satei et al. (2021)

zopfiellasins A–D P. syringae pv. actinidiae Zhang et al. (2021a)

ε-PL and nisin S. aureus and E. coli Gao et al. (2022)

Peptide mixture Gram-positive and negative strains Santos et al. (2022)

RPM cocktail (FK20; FdK; dFdK and LK20) A. baumannii biofilms Caraway et al. (2022)

aAlso in vivo assay; RPM, random peptide mixtures.
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4 Concluding remarks

The increase in the number of deaths worldwide, caused by

infections that are difficult to treat, has caused serious concern among

world health authorities. TheWHO has been warning for some time

about the need to develop new drugs. The spread of AMR is not a

new event, but even so, there is still a lack of tools for adequate

treatment (Luong et al., 2022). Since the golden age of antibiotics,

there have been no reports of new molecules, and it is urgently

necessary to discover new classes of antimicrobial agents capable of

combating infections caused by MDR organisms. Antimicrobial

peptides have shown great potential, emerging as a new source of

bioactive compounds, capable of combating MDR agents. AMPs

have been extensively studied, and over the years some have already

been accepted for clinical trials and others have already been used in

some therapies. It is known that AMPs promote low toxicity and, due

to the high specificity of these molecules, the development of

resistance to AMPs is rare, a fact that confirms that AMPs are a

powerful weapon in the fight against AMRs. (Luong et al., 2022).

Even so, co-evolution of the pathogen, as observed with

conventional antibiotics, can also occur with AMPs, so it is

needed to be prepared. The selective pressure that has led many

bacteria to resist conventional antibiotics can also be observed using

AMP therapies. Although resistance to AMPs is rarer, some isolates

have shown such resistance. The combination therapy strategy, with

two or more antibiotics, is common in clinical practice, but the risks

and benefits have to be weighed carefully (Fatsis-Kavalopoulos et al.,

2022). Antibiotic combination has been successful, but there are

already clinical isolates that proved to be multidrug resistant. In

addition to conventional combination therapy (among antibiotics),

positive effects of AMPs-antibiotics combination have been

reported. The main advantages of this combination can reduce

the annual costs caused by infections and can also prevent

emergence of AMR agents (Wang et al., 2022).

This AMP-antibiotic combination has attracted attention due to

the benefits it may have. Several studies have been reported in recent

years with promising results from AMP-antibiotic combinations.

The various proof-of-concept studies with this combination have

standardized methods. They have also facilitated the determination

of the mechanism of action and synergism mechanisms in AMP

combinations. (Pizzolato-Cezar et al., 2019).

However, despite the results demonstrating the positive

action of AMP-antibiotic combinations, some challenges are

still faced, especially in relation to the permeability/stability of

AMPs (Pizzolato-Cezar et al., 2019). Stabilization of AMPs is still

the main challenge in clinical therapy. Although there is no direct

solution, some work involving nanostructures for the delivery of

these molecules has drawn attention in the search to stabilize

AMPs and ensure interaction with the target. Nanostructures can

be a reinforcement in drug delivery, including for AMPs (Mercer

et al., 2020; Yang et al., 2021).

Several AMPs have been discovered with pharmaceutical

potential, showing promise for the development of alternative

antimicrobial drugs. They have provided support for the

management of AMR, including the possibility of AMP-AMP

combinations. Studies involving the combination reveal that

AMPs act synergistically with other AMPs, with conserved

characteristics, due to the high specificity of these molecules.

The higher the specificity, the lower the doses needed to obtain

results. AMPs can be used in combination with antibiotics and

other AMPs and exhibit strong antimicrobial effects even at low

concentrations. The dose-effect relation also reflects on the

adverse effects caused by the therapy. The fewer doses needed,

the more limited the unwanted side effects. Besides the low doses

required, another advantage of the increased effect of the AMP-

antibiotic or AMP-AMP combination is the reduction of

production costs and hospital costs with patient interaction.

New drugs will be developed in the future, based on proofs of

concept that demonstrate the great potential of AMPs and their

combinations (Duong et al., 2021).
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