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Wound healing of the oral and maxillofacial area affects the quality of life and

mental health of the patient; therefore, effective therapies are required to

promote wound healing. However, traditional treatment methods have

limited efficacy. Exosomes secreted by stem cells used for oral and

maxillofacial wound healing have shown outstanding results. Stem cell-

derived exosomes possess the regenerative and repair ability of stem cells.

Moreover, they are nontumorigenic and have good biosafety. However, the

application of natural stem cell exosomes is limited owing to their low yield,

impurity, lack of targeting, and low drug delivery rate. Many modification

methods have been developed to engineered stem cell exosomes with

beneficial properties, such as modifying parent cells and directly processing

stem cell exosomes. These methods include coincubation, genetic

engineering, electroporation, ultrasound, and artificial synthesis of

engineered stem cell exosomes. These engineered stem cell exosomes can

cargo nucleic acids, proteins, and small molecules. This gives them anti-

inflammatory and cell proliferation regulatory abilities and enables the

targeted promotion of efficient soft tissue repair after trauma. Engineered

stem cell exosomes can decrease inflammation, promote fibroblast

proliferation, and angiogenesis, and decrease scar formation to promote oral

and maxillofacial wound healing, including diabetic and burn wounds. Thus,

engineered stem cell exosomes are an effective treatment that has the potential

for oral and maxillofacial wound healing.
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Introduction

Oral and maxillofacial injuries are common oral and

maxillofacial conditions (Durham et al., 2017). Severe oral and

maxillofacial skin injury caused by trauma or surgery leads to

undesirable healing, such as delayed wound closure and scar

formation. This results in physical dysfunction and affects

maxillofacial appearance (Tanaka et al., 2021). Wound healing

is a complex process involving fibroblast and myofibroblast

subpopulations, growth factors, cytokines, and extracellular

matrix (ECM) components (Chang et al., 2002; Darby and

Hewitson, 2007; Driskell et al., 2013; Dalisson and Barralet,

2019; Hinz and Lagares, 2020; Kim et al., 2021). The

physiological wound-healing process can be regulated by

external factors and internal biological pathways (Gurtner

et al., 2008). Oral and maxillofacial skin injuries, including

chronic and infectious wounds and large burns, require

positive and effective therapy to promote wound healing

(Powers et al., 2016; Hall et al., 2017; Wang Y. et al., 2018;

Negut et al., 2018). Proteins, drugs, natural compounds, genes,

cells, and bioengineered therapies can be used for wound healing

(Cho et al., 2019; Veith et al., 2019). Because of the efficient

delivery system, exosomes have potential applications in

promoting wound healing.

Exosomes are cup-shaped or spherical bilayer phospholipid

membrane structures with a diameter of 40–160 nm released

from multivesicular bodies (MVBs) by exocytosis after fusion

with the cytoplasmic membrane (Sharma et al., 2010; Sokolova

et al., 2011; Kahroba et al., 2019; Kalluri and LeBleu, 2020). The

exosome structure enables them to carry various bioactive cargos,

such as proteins, nucleic acids (DNA and messenger [mRNA],

micro [miRNA], and long non-coding [lncRNA] RNAs), lipids,

metabolites, and small molecule drugs (Pascucci et al., 2014; Peng

H. et al., 2020; Zhou et al., 2020). The cargos depend on donor

cell differentiation and environmental stimulation (Pegtel et al.,

2014). Exosomes can be secreted by various cells, such as

immune, stem, cardiovascular, nerve, and tumor cells and

reticulocytes and platelets (Sokolova et al., 2011). Cell-derived

exosomes are widely distributed in the peripheral blood, urine,

saliva, sweat, milk, ascites, and amniotic fluid (Admyre et al.,

2007; Keller et al., 2007; Dai et al., 2008; Gonzales et al., 2009;

Lasser et al., 2011; Wang Q. L. et al., 2018; Wu and Liu, 2018).

Their biological functions are exerted by releasing their cargo,

such as intercellular signal transduction, cell growth, immune

response, and tissue repair and regeneration (Isola and Chen,

2017; Gurunathan et al., 2019).

Exosomes derived from stem cells play a vital role in

promoting wound healing by regulating biological processes

(Vu et al., 2021). Importantly, blood vessels play an integral

role in wound healing by providing oxygen and nutrients for

tissues and cells (Eble and Niland, 2009). A previous study has

shown that human umbilical cord mesenchymal stem cells

(HUC-MSCs) exosomes increase angiogenesis to promote

burn wound healing (Zhang et al., 2015b). Moreover,

exosomes derived from oral tissue stem cells, urine stem cells,

HUC-MSCs, bone marrow mesenchymal stem cells (BMSCs),

and mesenchymal stromal cells (MSCs) promote diabetic wound

healing and skin regeneration by promoting fibroblast

proliferation and migration, angiogenesis, and antioxidant

stress (Chen et al., 2018; Shi et al., 2020; Yang et al., 2020; An

et al., 2021; Pomatto et al., 2021). Scar formation is commonly

seen in wound healing, wherein pathological scar formation

affects the physiological functions of hair follicles and sweat

glands (Takeo et al., 2015; Monavarian et al., 2019). Stem-cell-

derived exosomes conduce to decrease scarring. One study

showed that HUC-MSC-derived exosomes inhibit

myofibroblast formation, which prevents scar formation (Fang

et al., 2016). These findings suggested that stem-cell-derived

exosomes positively affected wound healing by promoting cell

proliferation and angiogenesis and reducing scarring.

While stem-cell-derived exosomes positively affect wound

healing, naturally produced exosomes have limitations that can

affect their therapeutic effect, which includes low yield, impurity,

and lack of targeting (Shao et al., 2018; Thery et al., 2018)

(Table 1). However, the engineering of stem-cell-derived

exosomes can improve their yield, purity, targeting, drug

delivery, and therapeutic efficacy (Kucuk et al., 2021; Liang

et al., 2021). In the present review, we focused on engineering

stem cell exosomes, their application in wound healing, and their

therapeutic mechanisms.

Preparation of engineered stem cell
exosomes

Stem cell exosomes can be engineered with specific functions

by indirect, direct, and synthetic preparation methods (Figure 1).

These methods, including genetic engineering, co-incubation,

parent cell surface modification, and artificial synthesis, have

different advantages and limitations (Table 2).

Parent cell modification

Exosomes carrying nucleic acids and drugs can be derived by

treating exosome-secreting cells (Fitts et al., 2019). In the

traditional method, the cells are transfected with recombinant

viruses or plasmids to obtain exosomes carrying specific genes.

Studies show that parent cells transfected with lentiviral vectors

produced exosomes carrying miRNA 31-5p (miR-31-5p), which

was used to heal diabetic wounds by RNA interference (RNAi)

therapy (Huang et al., 2021b). Moreover, to obtain stem cell

exosomes loaded with HOX transcript antisense lncRNA

(HOTAIR), MSCs were transfected to overexpress these

lncRNAs to promote wound healing (Born et al., 2022). This

indicated that the parent cells were modified and produced
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exosomes loaded with mRNA and proteins, which promoted

wound healing. However, this method has various limitations,

such as variable transfection efficiency and gene expression.

Moreover, hydrophilic or hydrophobic molecules can be loaded

on exosomes by co-incubating them with parent cells to

improve the therapeutic effect of exosomes. One study

showed that exosomes have PD-L1 on their surface after cell

stimulation with IFN-γ, which affects the immunosuppressive

function of recipient cells (Su et al., 2019). Exosomes carrying

nucleic acids can also be derived by processing physical

materials. These processes include treating BMSCs with

magnetic nanoparticles (NPs) and static magnetic fields to

produce exosomes containing overexpressed miRNA 1260a

(miR-1260a) (Wu et al., 2021). Exosomes directly produced

by parent cells have advantages in targeting and therapeutic

effects. However, their disadvantages include low yield and the

presence of impurities, and they need to be characterized

before use.

TABLE 1 Comparison of different exosome-extraction methods.

Exosome-extraction
method

Advantages Disadvantages References

Ultracentrifugation The gold standard for exosome isolation Impurity Thery et al. (2006); Van Deun
et al. (2014)Feasible for large quantities prepared Low yield

Avoids cross-contamination High requirements for equipment and
technical knowledge

Change exosome’s structure and biological
function

Not conducive to downstream analysis

Sucrose or iodoxanol gradient
centrifugation

Yields high purity Low yield Kowal et al. (2016); Chen et al.
(2019)Need large sample volume

Coprecipitation High yield and convenience Low purity Rider et al. (2016); Weng et al.
(2016)

Dimension exclusion
chromatography

Extracellular vesicles can be isolated directly from viscous
and complex biological fluids

Low yield Boing et al. (2014); Muller et al.
(2014)

Rapid; Does not affect the exosome structure and
biological function

Impurity

FIGURE 1
Illustration of the synthesis of engineered stem cell exosomes.
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TABLE 2 Synthesis classification and characteristics of engineered exosomes.

Classification Producing
method

Cargos Advantages Disadvantages Application References

Parent cell
modification

Transfection MicroRNA Wide application Transfection efficiency variable;
Low loading efficiency

Engineered exosomes promote
diabetic wound healing by
enhancing angiogenesis,
fibrogenesis, and re-
epithelialization

Huang et al.
(2021b)

LncRNA HOTAIR overexpressed stem
cell exosomes promote the
angiogenesis and wound healing
of chronic diabetic wounds

Born et al. (2022)

Co-incubation Protein Convenient Potentially cytotoxic; inefficient
loading; Suitable for hydrophilic
substances

After IFN-γ stimulation, the
overexpression of PD-L1 on
exosomes inhibits overactive
immune cells and promotes
wound healing

Su et al. (2019)

MicroRNA Overexpression of miR-1260a in
exosomes enhanced
osteogenesis and angiogenesis in
bone mesenchymal stem cells
treated with magnetic
nanoparticles combined with
static magnetic field

Wu et al. (2021)

Exosome loading Co-incubation Curcumin Enhance the
solubility of drugs

Low drug loading rate; Limited
application; Suitable for
hydrophobic molecules

Curcumin-exosomes possess
anti-inflammatory activity and
have good therapeutic effect on
mice with septic shock induced
by lipopolysaccharide (LPS)

Sun et al. (2010)

Electroporation MicroRNA High loading rate;
Able to incorporate
large compounds

Size-dependent; Exosome
aggregation; siRNA loading
efficiency variable

Adipose stem cell exosomes
overexpressing miR-21-5p
promote diabetic wound healing

Kooijmans et al.
(2013)

Ultrasonic Silver
nanoparticles

Stable; high loading
rate

Not suitable for thermosensitive
compounds

Exosomes carrying AgNP, with
antibacterial properties, can
accelerate collagen deposition,
angiogenesis, and nerve repair
to enhance wound healing

Qian et al. (2020)

Exosome surface
modification

Genetic
engineering

Targeting
peptide

Targeting Need to be characterized Targeted peptides could be
introduced onto the exosome
surface by genetically
engineered, providing tissue
specificity and improving
efficacy

Curley et al. (2020)

Click chemistry Targeting
peptide

Fast reaction time;
high specificity

Need to be characterized; A
two-step procedure with
subsequent purification steps to
remove unbound molecules and
activate agents

Targeting peptides - Cardiac
homing peptides are coupled to
cardiac stem cell exosomes to
improve their targeting and
enhance the uptake of exosomes
by cardiac myocytes

Vandergriff et al.
(2018)

Artificial synthesis Top-down Like parent
cells

High purity; large
yield

Cargo loading lacks specificity After passing embryonic stem
cells (ES) through micropores,
exosome-like microvesicles are
obtained, which promote the
proliferation of fibroblasts and
contribute to tissue recovery or
wound-healing processes

Jeong et al. (2014)

Bottom-up Protein Controllable
production process;
high purity; large
yield

Complex operating procedures By combining bioactive protein
with liposome, artificial
exosomes with specific co-
function were obtained, which
reduced synovial hyperplasia
and inflammation of rabbit knee
joint and had therapeutic effect
on rheumatoid arthritis

Martinez-Lostao
et al. (2010)
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Exosome loading

Compared with parent cell modification, exosome modification

has more beneficial effects. Exosome-loading methods include co-

incubation, electroporation, high- and low-temperature cycling, and

ultrasound (Nasiri Kenari et al., 2020). Cargo co-incubation is a

common method. By incubating with curcumin, exosomes loaded

with small anti-inflammatory molecules improve their therapeutic

effect on inflammation (Sun et al., 2010). This method increases drug

solubility and utilization but is limited by its low drug loading rate and

unsuitability for hydrophobic molecules. Electroporation is another

commonly used method for loading exosomes that has a high cargo

loading rate. Moreover, electroporation increases the amount of RNA

and small hydrophilic molecules loaded in exosomes, which decreases

RNA degradation in the woundmicroenvironment (Fuhrmann et al.,

2015). The therapeutic effect of functional RNA is improved by

loading miRNA 21-5p (miR-21-5p) into adipose stem cell exosomes

via electroporation, resulting in engineered exosomes with good

promotive effects on diabetic wound healing (Lv Q. et al., 2020).

Electroporation can produce exosomes with gene delivery and load

large molecular compounds. However, it is limited to hydrophilic

compounds and length-dependent gene delivery (Lamichhane et al.,

2015). Considering that electroporation can lead to the aggregation of

exosomes, exogenous cargos can be loaded into exosomes via

ultrasound (Johnsen et al., 2016). Exosomes derived from HUC-

MSCs were treated with ultrasound to carry silver NPs (AgNPs),

which improved their antibacterial activity (Qian et al., 2020).

Treatment with ultrasound maintains exosome stability and

promotes cargo loading better than co-incubation (Haney et al.,

2015). It is a beneficial method because of its improved gene and

drug delivery. However, its disadvantages include low rates of cargo

loading.

Exosome surface modification

Exosome surface modification can improve their targeting

abilities, which can be mainly achieved by genetic engineering

and chemical modification (Salunkhe et al., 2020). Genetic

engineering is effective for displaying genetically engineered

proteins on the exosome surface, which requires exosome

identification (Wan et al., 2017; Mishra et al., 2021). A

previous study showed that targeted peptides can be loaded

onto the exosome surface by genetic engineering, which allows

tissue specificity and improves efficacy (Curley et al., 2020).

Coupling cardiac stem cell exosomes with a targeted heart-

homing peptide improves the targetability and uptake of

exosomes in myocardial infarcted hearts (Vandergriff et al.,

2018). Chemical modifications can load various molecules

onto the exosome surfaces via non-covalent or covalent

interactions. This has the advantages of fast reaction, high

specificity, and water buffer compatibility (Smyth et al., 2014;

Armstrong et al., 2017). Exosome surface modification can

improve exosome targeting. However, it is limited by the strict

separation methods that are required to obtain engineered

exosomes with high purity.

Artificial synthesis of exosomes

Artificial synthesis includes both top-down and bottom-up

methods. In top-down methods, parent cells are treated to obtain

vesicle-forming membrane segments, which are reassembled into

exosomes. One study showed that passing ESCs through tiny pores

created the derived exosomes promoting fibroblast proliferation,

which contributed to tissue recovery and wound healing (Jeong

et al., 2014). However, exosomes derived from cell-disrupted

phospholipid bilayer membranes have donor cell signaling

compounds and lipid-induced toxicity (Lv et al., 2006). The

yield of artificial synthesis exosomes is higher than naturally

occurring exosomes. However, their immunogenicity is lower,

and they lack cargo loading specificity. Bottom-up methods can

be used to prepare bilayer structures and simulate exosome

components by physical or chemical methods. The lipid bilayer

can then be combined with surface proteins to simulate exosome

production (Vazquez-Rios et al., 2019). A previous study showed

that biologically active anti-inflammatory proteins, namely

APO2L and TRAIL, can be combined with liposomes to obtain

artificial exosomes (Martinez-Lostao et al., 2010). Artificially

synthesized stem cell exosomes have categorical characterization

and composition and a controllable production process.

Compared with naturally produced exosomes, engineered

exosomes have improved targeting, high drug loading rate, high

purity, and large yield. Engineered exosomes with different

loading cargoes can be used to promote wound healing via

anti-inflammatory, growth-promoting, angiogenesis-

promoting, and collagen synthesis-regulating activities.

Engineered stem cell exosomes
promote oral and maxillofacial
wound healing

Engineered stem cell exosomes have good efficacy in

promoting oral and maxillofacial wound healing by regulating

inflammation, promoting fibroblast proliferation, improving

angiogenesis, and decreasing scar formation.

Engineered stem cell exosomes decrease
the levels of inflammatory factor

Long-term inflammation seriously affects the wound-healing

process, and sustained local inflammation can lead to abnormal

wound healing and pathological scar formation (Wang et al.,

2020). Engineered stem cell exosomes can decrease the
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inflammatory response and promote wound healing by

inhibiting pro-inflammatory factor secretion (Figure 2A). One

study showed that exosomes produced by treating MSCs with

melatonin (MT) or deferoxamine targeted the phosphatase and

tensin homolog (PTEN)/AKT signaling pathway to promote

diabetic wound healing by shortening inflammatory period

(Ding et al., 2019; Liu et al., 2020). Another study has shown

that exosomes from MSCs stimulated with inflammatory factors

such as tumor necrosis factor (TNF-α) and interferon (IFN)-γ
can decrease the release of pro-inflammatory cytokines and have

improved anti-inflammatory abilities (Harting et al., 2018). A

previous study showed that exosomes from MSCs that are

pretreated with lipopolysaccharide can regulate the TLR4/NF-

κB/STAT3/AKT signaling pathway viamiRNA let-7b to promote

diabetic skin wound healing by regulating chronic inflammation

regression (Ti et al., 2015). The overexpressed RNA and

transcription factors of engineered stem-cell-derived exosomes

play a role in promoting wound healing (Hu et al., 2019). Of note,

when the transcription factor nuclear factor E2-related factor 2

(Nrf2) was overexpressed in adipose stem-cell-derived exosomes,

it inhibited the production of reactive oxygen species and

inflammatory cytokines to promote diabetic wound healing

(Li et al., 2018). Exosomes loaded with overexpressed miRNA

181c (miR-181c) derived from HUC-MSCs decreased TNF-α
and interleukin (IL)-1β and increased IL-10 levels via the

TLR4 signaling pathway to promote burn wound healing (Li

et al., 2016). Overall, the cargo of engineered stem cell exosomes

can decrease the release of inflammatory factors and the duration

of the inflammatory response to facilitate wound healing.

Engineered stem cell exosomes promote
fibroblast proliferation

Fibroblasts are important effector cells in skin wounds,

whose function can be increased to promote wound healing

FIGURE 2
Effect of engineered stem cell exosomes on wound healing. (A) Engineered stem cell exosomes decrease the levels of inflammatory factor. (B)
Engineered stem cell exosomes promote angiogenesis. (C) Engineered exosomes decrease scar formation.
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by using engineered stem cell exosomes (Bhattacharyya et al.,

2013; Lian and Li, 2016). A previous study showed that hypoxic

adipose stem cell exosomes promoted fibroblast proliferation and

migration and accelerated high-quality diabetic wound healing

by activating the PI3K/AKT pathway to regulate the expression

of various growth factors (Wang et al., 2021b). Moreover,

engineered stem cell exosomes carrying H19 affected the H19/

miR-152-3p/PTEN axis, regulating the PI3K/AKT signaling

pathway to increase fibroblast proliferation and apoptosis

inhibit, accelerating the diabetic wound healing process (Li B.

et al., 2020). In addition, Wnt4 delivered by MSC-derived

exosomes promoted β-catenin nuclear translocation and

activity to increase skin cell proliferation. This played a vital

role in wound re-epithelialization (Zhang et al., 2015a).

Interestingly, synthetically engineered exosomes, which are

effectively taken up by recipient cells, can be used for

promoting wound healing. One study showed that

nanovesicles obtained from extruded embryonic stem cells

(ESCs) activated the mitogen-activated protein kinase

(MAPK) signaling pathway to promote fibroblast proliferation

and wound healing (Jeong et al., 2014). Thus, engineered stem

cell exosomes can help in promoting fibroblast proliferation to

accelerate wound healing through their cargos.

Engineered stem cell exosomes promote
angiogenesis

Angiogenesis is an intrinsic repair pathway for wound

healing and tissue regeneration. Insufficient angiogenesis,

which involves genes and proteins, such as vascular

endothelial growth factor (VEGF), delays the wound-healing

process (Zhao et al., 2017). Therefore, the VEGF receptor

(VEGFR) can initiate angiogenesis and promote wound

healing (Johnson and Wilgus, 2014). Gene-modified parental

cells have been widely used to obtain exosomes that can promote

angiogenesis. The proangiogenic ability of vascular endothelial

cells can be increased by miRNAs and cytokines uptake by

engineered stem cell exosomes (Figure 2B). On study showed

that MSC exosomes with high levels of miRNA 126-3p (miR-

126-3p) can promote human dermal microvascular endothelial

cell proliferation, migration, and angiogenesis (Tao et al., 2017).

MSC exosomes carrying miR-21-5p promote angiogenesis by

upregulating the VEGF, AKT, and MAPK pathways, which

positively affects diabetic wound healing (Huang C. et al.,

2021). Moreover, the vascularization ability of exosomes can

also be increased by physical processing. One study showed that

blue light treatment upregulated miR-135b-5p and miR-499a-3p

levels in HUC-MSC-derived exosomes, which promoted human

umbilical vein endothelial cell (HUVECs) proliferation,

migration, and angiogenesis (Yang et al., 2019). Moreover,

exosomes secreted by stem cells that are treated with various

biological compounds also have significant angiogenesis-

promoting abilities (Liu et al., 2019). A previous study showed

that exosomes from BMSCs stimulated with iron oxide (Fe3O4)

NPs and static magnetic field promoted angiogenesis by

upregulating miR-21-5p targeting SPRY2 and activating PI3K/

AKT and ERK1/2 signaling pathways in wound healing (Wu

et al., 2020). Exosomes of BMSCs pretreated with deferoxamine

activated the PI3K/AKT signaling pathway via miR-126-

mediated PTEN downregulation to stimulate angiogenesis

in vitro (Ding et al., 2019). Moreover, exosomes treated with

superparamagnetic ferric oxide NPs have precise targeting, which

accumulates in the damaged area and significantly increases

angiogenesis (Li X. et al., 2020). Moreover, chemically-treated

stem cell exosomes also promote angiogenesis. Stem cell

exosomes pretreated with atorvastatin (ATV) or pioglitazone

significantly promoted the angiogenesis of endothelial cells by

mediating the PTEN/AKT/eNOS pathway in diabetic wound

healing (Yu et al., 2020; Hu et al., 2021). Artificially synthesized

exosomes with specific protein composition and RNA load

significantly promoted angiogenesis (Tao et al., 2018; Kim

et al., 2021). These findings suggested that engineered stem

cell exosomes have potential therapeutic effects in promoting

wound healing by modulating the proangiogenic ability of

endothelial cells.

Engineered exosomes decrease scar
formation

Chronic inflammation and myofibroblast aggregation can

cause the thickening of pathological scarring in the wound area

(Ogawa, 2017; Rippa et al., 2019). The application of engineered

stem cell exosomes can decrease scar formation (Figure 2C). A

studies has shown that miRNAs 21 (miR-21), 23A (miR-23A),

125b (miR-125b), and 145 (miR-145) in MSC exosomes can

inhibit fibroblast and myofibroblast differentiation by targeting

TGF-β/Smad2 signaling pathway to decrease scarring (Fang

et al., 2016). Moreover, human adipose-derived MSC

exosomes overexpressing miRNA 29a (miR-29a) inhibit scar

hyperplasia after burn injury by targeting TGF-β2/
Smad3 signaling pathway (Yuan et al., 2021). Notably,

engineered stem cell exosomes can inhibit scar formation by

decreasing inflammatory factor expression. Previous studies have

shown that human amniotic fluid stem cell exosomes can

decrease scar formation by decreasing the secretion of

inflammation-related cytokines via miRNA 146a-5p (miR-

146a-5p) (Wgealla et al., 2022). Exosomes derived from MSCs

overexpressing tumor necrosis factor (TNF)-stimulated gene-6

(TSG-6) can decrease MCP-1, TNF-α, IL-1β, and IL-6 levels in

scar tissue and inhibit the inflammatory response in pathological

scars, significantly reducing scar formation (Jiang et al., 2020).

Therefore, engineered stem cell exosomes are an effective

approach for enhancing their biological activity and

improving repair efficacy in reducing scar formation.
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The application of engineered exosomes
in oral and maxillofacial wound

Oral and maxillofacial injury can easily damage the hard and

soft tissues (Lv L. et al., 2020). Because of the special location of

oral andmaxillofacial, the healing process has an important effect

on the physiological function and mental health of patients. The

application of engineered exosomes can positively promote the

accurate and efficient healing of oral and maxillofacial wounds.

Engineered exosomes can increase accumulation at the wound

site by precise delivery, thereby effectively promoting wound

healing (Li X. et al., 2020). Furthermore, the engineered

exosomes can achieve a therapeutic effect on oral and

maxillofacial wound healing through their cargos, including

diabetes and burn wounds, which are difficult to heal (Aryan

et al., 2018; Peng Q. et al., 2020; Liu et al., 2021; Hade et al., 2022;

Hsu et al., 2022). Moreover, because oral and maxillofacial nerve

repair is directly associated with expression, the application of

engineered exosomes can contribute to nerve repair and

regeneration and promote the early recovery of expression

functions (Yang et al., 2021; Wang Y. et al., 2022). Compared

with traditional treatment and cell therapy, engineered stem cell

exosomes have better effects on oral and maxillofacial wound

healing and have good application prospects (Maqsood et al.,

2020; Md Fadilah et al., 2022). Presently, manymore efficient and

safer cell-free scaffold dressings carrying exosomes have been

developed for wound healing (Las Heras et al., 2020). The

combined application of exosomes and biomaterials has a

positive effect on promoting wound healing, which can

maintain the stability of exosomes in vivo with good

biocompatibility (Golchin et al., 2022).

The application of exosomes in
clinical trials

Stem cell-derived exosomes avoid the risk of cell therapy and

have a good application prospect in regenerative medicine (Phinney

and Pittenger, 2017). The clinical application of exosomes in wound

healing is gradually increasing (Supplementary Table S1) (Li et al.,

2022). One study evaluated the effectiveness of exosomes extracted

from adipose tissue of patients for wound healing (NCT05475418).

In an early Phase 1 clinical trial, exosomes extracted from the plasma

of patients were applied to the ulcer site to clear the effectiveness of

exosomes in promoting skin wound healing (NCT02565264). In

addition, a clinical trial started in March 2022 has completed the

safety and tolerability study of the topical application of MSC

exosome ointment in Psoriasis (NCT05523011). Moreover, a

clinical study on atrophic acne scar treatments using adipose

tissue-derived stromal cells (ADSCs) exosomes showed promising

therapeutic effects (Kwon et al., 2020).

With the advantages of good biocompatibility and low

immunogenicity, exosomes provide new tools for the

development of therapeutic drugs for human wound healing

(Hade et al., 2021). Moreover, exosomes can protect the cargos

they carry by a biomembrane from enzymes and other substances

that can damage proteins, and exosome-packaged proteins are

more stable and efficient (Lu et al., 2019). Therefore, oral and

maxillofacial trauma can be treated by synthesizing engineered

exosomes with specific functions. At present, with the in-depth

study of engineered exosome preparation technology and

treatment mechanism, some exosome-based drugs have been

developed, and the clinical application of exosomes still has a

broad space to explore.

Discussion

Presently, the application of hydrogel-loaded and ECM-

loaded stem cells has positively helped in the process of

wound healing (Lee et al., 2007; Rustad et al., 2012; Ariyanti

et al., 2019). Stem cells play a crucial role in regenerating

damaged organs via their paracrine effects (Ratajczak et al.,

2012). Because the knowledge of intercellular functions has

increased, exosomes can be developed as a precise and

targeted therapeutic strategy (van Niel et al., 2018). Compared

with normal cells, stem-cell-derived exosomes can escape

phagocytosis and have the advantages of greater

biocompatibility, increased retention, and low immunogenicity

(Saunderson et al., 2014; Kamerkar et al., 2017; Wortzel et al.,

2019; Hassanzadeh et al., 2021). Importantly, stem-cell-derived

exosomes have the advantages of easier storage and application,

penetration of the blood–brain barrier, and a long circulation

half-life (Turturici et al., 2014; Chen et al., 2016; Gowen et al.,

2020; Huang et al., 2021c). The function of exosomes is related to

the donor cells and environmental stimuli (Stavrou and Ortiz,

2022). Stem cells and exosomes in adipose tissue have a positive

impact on promoting angiogenesis, which has great application

potential in regenerative medicine (Kamat et al., 2020).

Compared with stem cells derived from other tissues,

mesenchymal stem cells in adipose tissue are easily accessed

and have a high density (Buschmann et al., 2013). Moreover, a

study shows that microfragmented adipose tissue (MFAT) has

long-lasting anti-inflammatory activity (Nava et al., 2019).

Clinical trials proved that MFAT used to treat ulcer caused by

prosthesis effectively promote rapid healing of skin ulcers

(Copeland and Martin, 2021). Therefore, stem-cell-derived

exosomes have beneficial advantages in wound healing and

can be potentially used in wound healing therapies.

Exosomes can be used as a delivery system for drugs,

proteins, mRNA, miRNA, lncRNA, and small molecules to

recipient cells, which can regulate macrophages, fibroblasts,

vascular endothelial cells, and myofibroblast functions in

wounds to promote healing (Bunggulawa et al., 2018). They

promote the uptake by recipient cells and protect RNA from

extracellular degradation, thereby enabling them to be an ideal
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treatment tool for oral and maxillofacial wound healing

(Kooijmans et al., 2012; Zhang et al., 2013; Zhang J. et al., 2015).

However, the application of naturally produced exosomes is

limited (Villarroya-Beltri et al., 2014; Taylor and Shah, 2015;

Bjorge et al., 2017; Bian et al., 2022). Nevertheless, engineered

stem cell exosomes loaded with functional cargos can have

remarkable therapeutic effects (Marcus and Leonard, 2013).

The exosomes are loaded with overexpressed nucleic acids by

various methods, such as transfection, co-incubation, ultrasound,

and electroporation, which provide them with targeting, anti-

inflammatory, cell proliferation, and apoptotic functions

(Weaver, 1993; Jo et al., 2014; Smyth et al., 2014; Fang et al.,

2016; Garcia-Manrique et al., 2018; Ding et al., 2019; Li B. et al.,

2020; Li X. et al., 2020). Importantly, engineered exosomes can be

designed for different wound types, such as diabetes and burns,

with functions in attenuating anti-inflammatory processes,

promoting angiogenesis, and decreasing scar formation (Lv L.

et al., 2020) (Figure 3). However, it is necessary to solve the needs

of large-scale production and high purity for clinical application.

Hollow fiber bioreactors are ideal for large-scale production

(Kimiz-Gebologlu and Oncel, 2022). In recent years, with the

advancement of technology, microfluidics, electrical, centrifugal

and acoustical forces have been introduced into the separation of

exosomes, which has led to the rapid development of some new

exosome separation technologies. They include polymer-based

precipitation, ultrafiltration, bioreactor systems, production of

FIGURE 3
Wound healing promoting mechanism of engineered stem cell exosomes.
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biomimetic vesicles, membrane-based separation methods, and

microfluidic methods (Supplementary Table S2) (Wang et al.,

2021a; Zhang et al., 2021). Among them, microfluidic devices

that can be used for exosome isolation and purification become

promising devices for exosome therapy (Chen et al., 2021). The

bottom-up production of synthetic exosomes in engineered

exosomes can be synthesized by a method similar to liposome

microfluidic to realize large-scale production of exosomes (Wang

X. et al., 2022), which will promote the application of exosomes in

oral and maxillofacial wound healing.

The oral and maxillofacial region contains various important

blood vessels and nerves that are vulnerable to trauma and prone

to bleeding and infection after any injury (Kageyama et al., 2021).

The engineered stem cell exosomes can act as biological carriers

delivering various bioactive substances to act on target cells. They

can participate in the regulation of wound repair via signal

transduction, which can be effective in oral and maxillofacial

wound healing (Maqsood et al., 2020).

Conclusion

Engineered stem cell exosomes have high yields, low

immunogenicity, and specific functional cargos. Moreover,

engineered stem cell exosomes can decrease inflammation and

scar formation and promote angiogenesis and fibroblast

proliferation. These properties of engineered stem cell

exosomes can be leveraged in the future for oral and

maxillofacial wound healing.
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