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We anticipate wide adoption of wrist and forearm electomyographic (EMG)

interface devices worn daily by the same user. This presents unique challenges

that are not yet well addressed in the EMG literature, such as adapting for

session-specific differences while learning a longer-term model of the specific

user. In this manuscript we present two contributions toward this goal. First, we

present the MiSDIREKt (Multi-Session Dynamic Interaction Recordings of EMG

and Kinematics) dataset acquired using a novel hardware design. A single

participant performed four kinds of hand interaction tasks in virtual reality

for 43 distinct sessions over 12 days, totaling 814 min. Second, we analyze

this data using a non-linear encoder-decoder for dimensionality reduction in

gesture classification. We find that an architecture which recalibrates with a

small amount of single session data performs at an accuracy of 79.5% on that

session, as opposed to architectures which learn solely from the single session

(49.6%) or learn only from the training data (55.2%).
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1 Introduction

The recognition and use of hand behavior for control is a technique with potential

applications in a wide range of fields. Surgical teleoperation systems use force and pressure

sensors to capture hand movements and relay control signals to remote robotic arms

(Wen et al., 2013); (Wen et al., 2014). Myoelectric prostheses use residual

electromyography (EMG) signals from the residual limb to control the degrees of

freedom of the prosthesis Resnik et al. (2018). Applications in Extended Reality (XR),

such as Virtual Reality (VR) and Augmented Reality (AR), generally use a form of hand

tracking to capture gestures and perform recognition for control in human-computer

interactions (HCI) Kong et al. (2021). EMG has thus far been focused mainly for
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prosthetic devices; however EMG can be potentially

transformative for HCI for consumer XR. An EMG-based

wearable might enable muscle-controlled interactions which

could work around the limitations of optical hand tracking,

like occlusion. To make this alternative control scheme

possible, three main goals must be met: practical EMG signal

acquisition hardware, a dataset to train a system or algorithm to

make sense of the complexities in muscle signals for dynamic

interaction recognition, and an understanding of how user-

specific and session-specific factors can be accounted for in

the recognition system. In this study, we present a proof of

concept which achieves these objectives.

The first contribution of this publication is a publicly

available dataset of simultaneous forearm sEMG and hand

kinematic data. This dataset was collected on a single subject

over the course of 2 weeks, resulting in 43 complete sessions

totalling 814 min (13.5 h) of activity recorded. The data of each

session consists of four main activities: a unlabelled object

stacking task, an unlabelled sequence of quick poses, a

labelled task of dynamic interaction gestures, and a labelled

task of rapidly performed poses. To our knowledge, this

dataset is unique in both the amount of sessions collected

from a single subject, as well as the wide range of dynamic

activities performed and collected. This dataset is called the

MiSDIREKt (Multi-session Single-subject Dynamic Interaction

Recordings of EMG and Kinematics) Dataset.

The second contribution is the proposal of a classification

scheme which addresses the issue of inter-session differences.

This architecture learns underlying session-invariant features by

training on a wide range of sessions, but performs well on unseen

sessions by using a quick recalibration. The architecture takes

advantage of the ability of the BiLSTM layer to understand the

temporal dependencies of EMG. This architecture also uses an

encoder-decoder structure with a bottleneck layer to take

advantage of non-linear dimensionality reduction for latent

dimension representations.

2 Background

2.1 Acquisition of multichannel
forearm EMG

EMG is an integral tool for investigating muscle activation,

neuron activity, and human control, and is typically acquired

according to the needs of the study. Intramuscular or needle

EMG performs acquisition by injecting a sensor into the tissue.

This provides more accurate localized readings with the

downsides of an invasive procedure, such as mobility

constraints, longer recovery time and discomfort. Surface

EMG (sEMG) is a non-invasive alternative which uses

electrodes to monitor electrical signals through skin contact,

with the consequence of less accurate signals. Wet electrodes are

applied to the skin with gel or paste and can provide high quality

readings for a shorter period of time and are used for applications

which require rapid movements. Alternatively, dry electrodes

need no extra material and can provide quick and easy

setup. However, they are prone to motion artifacts and are

generally noisier, and so are used for more stationary

applications Hinrichs et al. (2020). These sEMG electrodes

may be wired, which can sample at high rate with low latency

but the presence of wires impedes range of motion and

introduces wire impedance. There exist also wireless options,

which require a wireless communication protocol which can vary

in sample rate and latency, but provide a better user experience

due to the lack of connection to a host device.

Studies containing EMG acquisition have the option of

creating their own device, which allows for customization of

design parameters to be specific to the study Fang et al. (2013).

This flexibility allows for studies like Cisnal et al. (2021), where

an acquisition design also allows for real-time embedded control

for a device. The other option is to use a commercial device. One

of the most commonly used devices was the Myo Armband

(Thalmic Labs, Google Inc) which was a wireless band consisting

of 8 sEMG electrodes as well as an accelerometer, IMU, and

gyroscope Matsugi et al. (2022). While commercial off-the-shelf

products restrict parameters like sample rate and channel

number, they do allow for easy use. A market-dominant

device or hardware standard have not yet emerged, but we

anticipate that soon there will be widely adopted devices in

this space. Until then, there is a need for an open standard

hardware specification.

2.2 Open datasets of EMG

Many publicly available datasets containing multichannel

forearm sEMG recordings of hand pose and activities

currently exist. The most extensive dataset is the NinaPro

database Atzori et al. (2014), which is divided into 10 separate

databases with varying modes of data, gestures, activities, and

subjects. Many of these subsets are also motivated differently,

resulting in some databases having a wider variation of tasks,

such as object grasping tasks. NinaPro is the most widely known

and used dataset, but there exist many more publicly available

datasets concerning sEMG recordings of hand activities. These

datasets differ in factors such as the EMG acquisition method, the

number of subjects and sessions, the amount and nature of the

hand activities, and coupled modes of recording. Table 1 shows a

small sample of more publicly available datasets, though this is

not an exhaustive list.

While some datasets include more dynamic movements, like

object grasping Atzori et al. (2014), a majority of the publicly

available datasets contain static isometric poses. While this style

of recording is valuable for investigating the characteristics of

static hand pose EMG, this lack of dynamic gestures can be
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detrimental in the pursuit of using EMG as an input for

prosthetic or interface control. Training with this type of data

can lead to inflated accuracies in performance evaluation because

static isometric poses are easier to classify than dynamic poses.

However, the algorithm trained on static poses may not be

particularly useful because realistically, the user will make

fluid and rapid dynamic movements in gesture interactions

and must not be constrained to slow and discrete static poses.

Additionally, training with carefully curated samples of isometric

poses could lead to algorithms that do not perform well in a noisy

environment and could degrade further with a user who does not

perform the gestures in the exact same manner as the data

collected.

2.3 Estimation of hand pose and discrete
gestures from EMG

2.3.1 EMG signal processing
EMG signals are generally noisy and a significant amount of

preprocessing is usually applied to extract a useful signal. Basic

preprocessing consists of using bandpass filters to remove

unwanted signals, such as n oise from motion artifacts or

power line interference Luca et al. (2010). Many applications

perform further signal processing, known as feature extraction, to

further transform the signal. The most common types of feature

extraction involve time domain calculations (Root-Mean-Square,

Variance, Mean Absolute Value, etc.) on the signal amplitudes

and transformations in the frequency domain (Autoregressive

Coefficients, Frequency Mean, etc) on the signal’s power spectral

density Spiewak (2018).

Dimensionality reduction techniques seek to facilitate

recognition by intelligently projecting the EMG signal to a

lower number of dimensions. This approach depends not only

on the number of channels or features, but also the width of the

window used. These techniques typically project the data onto

predefined basis functions with certain desirable properties.

Linear Discriminant Analysis (LDA) and Principal

Component Analysis (PCA) find feature subspaces by

maximizing separability of groups and capturing maximum

variation directions, respectively. Empirical mode

decomposition Aziz et al. (2019) and related approaches learn

representations for compression, building basis functions that

best represent the data using the data itself. However, these have

constrained a particular form for those representations that

limits their expressiveness Schmid (2010). The appeal of

neural network approaches are that they are flexible and

configurable in many ways to capture and represent features

of the data in a learned way. The technique of encoder-decoder

learning provides a learned transformation by training an

architecture to reduce the input down to few dimensions

(encoding), and then to reconstruct the input from these

dimensions (decoding). The resulting architecture can

compress and reconstruct EMG signals Dinashi et al. (2022)

without a significant loss of classification accuracy. Because of

this effect, encoder-decoder networks have begun to be

successfully used for EMG gesture recognition applications

Ibrahim and Al-Jumaily (2018) as well as for creating control

signals for prosthetic applications Vujaklija et al. (2018).

2.3.2 Recognition of discrete gestures
Recently, machine learning approaches have been used to

recognize static poses and gestures by classifying EMG signals.

Early studies in this field used more classical approaches of kNN

and Bayesian classifiers Kim et al. (2008); Chen et al. (2007).

More recently, deep learning architectures have achieved

unprecedented successes by taking advantage of larger

datasets and highly expressive and specialized classifier

architectures. Architectures like deep neural networks and

multi-layer perceptron classifiers have shown promise in

gesture recognition Fajardo et al. (2021), but the most

popular type of machine learning architecture in this task is

the Convolutional Neural Network (CNN). Many studies

choose to use the CNN in conjunction with the feature

extraction techniques which create image representations of

the signal, like Fourier Transforms or spectrograms.

Windowing can create images in time for the CNN

architecture inputs as well.

TABLE 1 List and details of some publicly available datasets. Each datasets contains value in a specific application, and the variation between datasets can be
seen through the parameters listed.

Dataset Subject/Session Poses EMG Hand kinematics

UC2018 DualMyo Simão et al. (2018) 1 Subjects 5 session per 8 gestures 110 reps each 16 channel 200 Hz N/A

CSL-HDemg Amma et al. (2015) 5 Subjects 5 session per 27 gestures x reps each 192 channel x Hz N/A

KIN-MUS UJI Jarque-Bou et al. (2018) 22 Subjects 1 session per 26 gestures 1 rep each 7 channel x Hz 18 joint angles CyberGlove

Kaczmarek et al. (2019) 44 Subjects 2 sessions per 26 gestures 1 rep each 24 channel 5210 Hz hand image Depth/RGB Camera

MyoArmband Dataset Côté-Allard et al. (2019) 40 Subjects 1 session per 7 gestures640 reps each 8 channel 200 Hz N/A

Zhang et al. (2020) 13 Subjects 1 session per 21 gestures 390 reps each 8 channel 200 Hz N/A
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Due to the dynamic temporal dependencies of EMG,

architectures more suited to time-series data have also been

investigated, such as Recurrent Neural Networks (RNN),

Gated Recurrent Units (GRU) or Long Short Term Memory

(LSTM). Simão et al. (2019) compared the performance of three

time-series architectures (RNN, GRU, LSTM) on a gesture

recognition classification on a several datasets of 8 gestures.

The authors found that the three architectures all tested above

95% on their own dataset and above 91% on a NinaPro

DB5 subset. Jabbari et al. (2020) explored the ability of a

stacked LSTM architecture to classify different gestures with

different forces levels. This study used a dataset consisting of

six different grip poses at three levels of force each (low, medium,

high), collected over nine subjects with amputation. Results

showed that the architecture performed at an accuracy of

91%, establishing the architecture’s ability to be able to

distinguish not only grip poses but the forces behind these

grips. Zhang et al. (2020) used a GRU architecture on raw

EMG windows to classify a dataset of 21 gestures of both

finger and wrist gestures to an accuracy of 90%. These results

suggest that the time-series architectures are capable of

recognizing gestures at a high accuracy comparable to the

conventional CNN architecture.

Comparisons between results of studies can be difficult due to

dataset differences, like the number and type of gestures, number

of subjects and sessions, and any class imbalances. Differences in

training scheme, particularly the training-validation-test split, as

well as factors in the data collection, such as electrode placement

or surface contact, will also introduce discrepancies between

studies.

2.3.3 Inter-session classification
Collected EMG data can differ drastically between subjects

based on individual anatomy. The data may even differ between

sessions of the same individual depending on electrode

placement, environmental differences or presence of noise.

Performance in gesture recognition from EMG signals suffers

on unseen subjects, causing applications like prosthetic

controllers to be highly subject-specific, requiring much

training for the subject.

Domain adaptation is a technique for using a large, labeled

source domain of data to train, and transferring representations

to a unlabeled target domain which shares some similarity in

labels to the source. This approach has largely been used for

vision and image problems Xie et al. (2022); Li et al. (2021).

Some approaches to this problem explore the varying domains

between subjects or sessions and use architecture choices or

adaptation to realize a subject-specific architecture from a

source architecture trained on multiple differing subjects or

sessions. Côté-Allard et al. (2019) proposed a Transfer Learning

(TL) architecture in which a source network is trained with the

data from all subjects with a subset of data. Then, a target

network is trained for each subject specifically while the weights

and most parameters of the source network are fixed. These

architectures are merged, through layer-by-layer element-wise

summation, during the training of the target network on the

unseen subjects, with rates of success comparable to

aforementioned studies. Du et al. (2017) introduced a deep

domain adaptation approach, using an algorithm which learned

a source domain distribution from the training data separately

from a target domain distribution from the test data. This

approach used adaptive batch normalization on unlabeled

recalibration data and fine-tuning with labeled recalibration

data when possible, showing significant improvement when

implementing the adaptation.

Other approaches use the idea of retraining or recalibration

by updating weights within the architecture based on previous

predictions to improve subject-specific performance. Zhai et al.

(2017) proposed a retraining scheme consisting of correcting

previous predictions motivated by the tendency of sEMG to drift

during a session. This retraining provided an approach which

required no new data, and found significant improvements.

Zheng et al. (2022) proposed an adaptive K-Nearest Neighbor

(kNN) architecture for user independent gesture recognition by

attributing weight changes based on the contribution of each

sample to the overall classification. The architecture allows for

incorrectly classified samples to have a smaller weight upon the

distribution in which it was misclassified and for correctly

classified samples to have larger weights in the correct

distribution. This approach found success comparable to the

literature especially with those using datasets with smaller

numbers of gestures. Another promising approach, used for

intracortical brain computer interface signals Ma et al. (2022),

is to align the distributions of latent representations from

different sessions using generative models.

COAPT Resnik et al. (2018) is an example of a commercially-

available EMG interface that provides the user with the

opportunity to recalibrate. A particular sequence of motions,

the same every time, is performed. The EMG signals used to

perform the sequence are used to replace, or update, the interface

parameters. This is useful because the ground truth of the desired

motions does not need to be sensed, but is instead prearranged.

In this manuscript, we take inspiration from this idea in the form

of the Hand Dance, described in more detail below, which is a

representative sequence of motions that the user could repeat

whenever recalibration is required.

3 Methods

3.1 Hardware

3.1.1 Virtual reality
Our data collection virtual reality application was

developed in Unity (Unity Technologies) and designed to

run as a standalone application on the Meta Quest 2 (Reality
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Labs, Meta) virtual reality headset. We use the headset’s built-in

hand-tracking to collect the hand’s kinematic pose and present

physically-simulated hands to the user Preechayasomboon and

Rombokas (2021). The high frame rate hand-tracking mode

was used (60 Hz), but our hand kinematic data is sampled at the

headset’s display frame rate with an average of 72 Hz.

3.1.2 EMG acquisition hardware
For data collection, we fabricated a custom wireless 8-

channel surface EMG data acquisition armband, as shown in

Figure 1. The armband’s electronics is a derivative of the

OpenBCI Cyton (OpenBCI), miniaturized to a 19 mm by

22 mm footprint. We use an ADS1299 (Texas Instruments)

as our analog front-end (AFE) for signal amplification and

analog-to-digital conversion, and an nRF52832 (Nordic

Semiconductor) microcontroller for wireless data

streaming. Our armband’s system can stream 8 channels of

24-bit EMG readings at 1,000 Hz wirelessly to USB dongle that

forwards the readings to a host PC, smartphone or virtual

reality headset.

Our armband’s electrodes are dry electrodes 3D-printed

from electrically conductive carbon-black infused

thermoplastic polyurethane (TPU), PI-ETPU 95–250 Carbon

Black (Palmiga Innovation). The electrodes are circular in

shape with a diameter of 14 mm and have brass snap

fasteners. We 3D-printed a flexible armband using Shore 98A

TPU to house pairs of electrodes circumferentially, and connect

the electrodes using snap fasteners wired to our wireless EMG

system. A more thorough description of hardware design and

characterization of the electrodes, including dependence on

mechanical grounding with the skin, may be found in

Prechayasomboon and Rombokas (2023).

3.2 Data collection

The dataset of simultaneous EMG and hand kinematic data

was collected over the span of 12 days. The subject was a left-

handed male with no musculoskeletal impairments. All

experimental procedures were approved by the Institutional

Review Board of the University of Washington

(STUDY00011627). The subject performed between one and

four sessions per day, wherein one session consisted of four

unique tasks: Hand Dance, Stacking, Gestures, Dynamic

Interactions. The subject always began and ended with the

Hand Dance task, which was designed as a quick series of

discrete gestures to warm up before and cool down after the

other three main tasks. After the initial Hand Dance task, the

subject was presented with the three other tasks, which are

described more in detail down below, in a pseudo-random

order. While the Stacking and Dynamic Interaction tasks were

performed only once, the Gestures task was performed twice,

though never consecutively. Finally, the subject would perform

the Hand Dance task again to complete the trial.

3.2.1 Stacking task
The goal of the stacking task was to stack a series of objects

past a specific height. The stacking objects task was performed for

a total of nine repetitions, with three times at three different

heights: a “tall” height, “medium” height, and “short” height. The

objects, described in Figure 2, were chosen such that the user

would use a certain grip, and are categorized either as primitive

objects or function-based objects. The primitive objects were

chosen to create general power and precision grasps described

from grasp documentation studies Feix et al. (2016); Cutkosky

(1989) while function-based objects were more complex and

created more specific grips intended for task actions, described in

a study for grasp patterns Kamakura et al. (1980). The dynamic,

varying nature of grasping, manipulating, and placing objects is

valuable to represent natural interactions with objects and to

provide unsupervised data from unstructured movements, which

were inspired by real-life everyday tasks Atzori et al. (2016).

3.2.2 Gestures
The In-Air Hand Gestures consisted of a series of 20 hand

gestures, shown in Figure 3, given in random order for the subject

to perform. For each in-air hand gesture, a subject would observe

a hand gesture in the virtual environment. Once prompted to

start, the subject had 5 seconds to complete as many repetitions

of that gesture as they pleased. The subject was not instructed to

complete as many repetitions of the gesture as possible, but was

encouraged to complete multiple iterations of the gesture. In

between each distinct gesture, there was a small, periodic idle

phase. This idle pose allows fingers to relax and minimizes EMG

activity between gestures. The chosen poses were based on

previous studies on EMG robotic and prosthesis control

Atzori et al. (2016); Sebelius et al. (2005); Crawford et al.

FIGURE 1
Apparatus used to collect the EMG data. It is a wireless 8-
channel surface EMG device for data collection and input for AR
and VR. The compact embedded system uses commercially-
available hardware and the dry electrodes may be easily 3D
printed.
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(2005). These movements have minimal self-contact, contain the

most kinematic variability, and are valuable for constructing a

latent kinematics manifold. These movements were also

explicitly used in a gesture classification study Crawford et al.

(2005) which used EMG data as an aim to control a

prosthetic arm.

3.2.3 Dynamic Interactions
In the Interaction Gestures task, the subject performed a

series of 14 dynamic hand gestures, shown in Figure 4 given in

random order. The subject was first cued to prepare for the

gesture for a second, then the subject was prompted to perform

the gesture and hold it for a second, after which the subject

FIGURE 2
The description of the stacking task. Shown are the objects used for each for each of the target heights during the task, as well as the view of the
user. The various target heights are described numerically.

FIGURE 3
The 20 gestures for the In-Air Gestures Task, with the Idle pose being a representation of the general shape of the hand when subject rested.
Note that for the visualization, posesmay not be in the orientation as they were when actually performed. Subject would transition between the pose
and an neutral pose for each pose.
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returned to a neutral pose. This neutral pose was self-selected by

the subject when performing it, and differs from the specific

“Rest” gesture included in this task. As opposed to the In-Air

Hand Gestures task, subjects performed and held the gesture at a

cued, specified time instead of performing as many repetitions as

they pleased. For this task, the subject performed 10 repetitions of

each gesture. The movements were based on modern mobile-

device smartphone gestures, as well as actions we would believe

to be useful in a 3D, virtual environment for XR applications.

3.3 Classification

To analyze a subset of the data and how to utilize the sessions

of data, we consider a classification task on the dynamic interaction

gestures described in Section 3.2.3 and shown in Figure 4.

Although in the figure they appear to be specific poses, they are

more like gestures. They are dynamic and more transitory than

typical isometric poses from previous literature. These are poses

appropriate for interacting with a user interface, and are somewhat

similar in timing and execution from session to session. This

means that, compared to the other parts of the dataset, session

specific differences are more influenced by EMG acquisition

differences than behavioral variability.

3.3.1 Network architecture
We explore the time-series capability of the BiLSTM layers,

as recurrent layers like the LSTM layers are able to identify and

extract important information from time series data. With the

complicated nature of temporally dynamic EMG, BiLSTM units

are used in this architecture due to their ability to outperform

LSTM units, albeit with slower convergence Siami-Namini et al.

(2019). We also employ the encoder-decoder architecture as a

form of dimensionality reduction, as it forces the high-

dimensional input data to be represented in a smaller number

of latent dimensions. The architecture used in this paper takes

inspiration from the autoencoder architecture, which contains a

bottleneck layer Hinton and Salakhutdinov (2006) through

which the latent representation is created. This latent

representation is not inherently interpretable, but can provide

information like clusters or separability through visualization

and analysis. This architecture is not a true autoencoder, since

autoencoders aim for reconstruction of the original signal, while

this architecture aims to perform classification. However, apart

from the output layer, the symmetric form Hinton and

Salakhutdinov (2006) of the autoencoder is used, where the

decoder consists of a mirror network to the encoder. This

encoder has previously been shown proven to extract useful

latent representations for lower-limb activities Boe et al. (2021)

and hand movements Portnova-Fahreeva et al. (2020, 2022).

Hyperparameter optimization on this architecture was

performed on a subset of five sessions from the dataset, where

each session had a training/validation split of 60%/40%. These

sessions were the first sessions of the day for the first 5 days,

because these sessions would represent situations where the user

had the least amount of bias or familiarity, as the subject would

FIGURE 4
Visualizations of the gestures for the Interaction Gestures Task. Note that for the visualization, poses may not be in the orientation as they were
when actually performed. For these poses, the user would start in a neutral pose with similar wrist orientations, then perform the pose.
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not be influenced or possibly fatigued from a previous session.

This approach found that two layers of BiLSTM and two fully

connected layers, for each portion of the architecture, provided

the best performance. To provide resilience against overfitting,

dropout layers were inserted between each of the layers with a

rate of 0.25. For the final training, the architecture used the Adam

optimizer with a learning rate of 0.01, batch size of 128, and Early

Stopping to further mitigate overfitting. For each session during

training, an average of 20 epochs was used; however this number

changed based on the Early Stopping and the particular session.

Figure 5 shows the details of the shapes and types of each of the

layers.

3.3.2 Data processing
All of the EMG data in this dataset was processed in the same

way, starting by scaling the data to millivolts. Next, a set of filters

was applied, consisting of a bandpass filter from 60–500 Hz to

remove motion artifacts, as well as two notch filters at 60 and

120 Hz, to remove power line interference. For this classification

task specifically, the EMG data was also downsampled from

1,000 Hz to 72 Hz. A low pass filter was first applied to avoid alias

artifacts; the filtered data was then downsampled by extracting

the EMG signal at the time instances closest to those of the

kinematic frames. This was done to match the sampling rate of

the hand kinematics and to ensure that the labels had a

corresponding sample in each data mode.

For a given session, the relatively static poses were extracted

from the interaction gesture subset of data. The following

gestures were removed from this task: Nearer, Further, Zoom.

Each allowed pose is held statically for one second, which results

in 60 samples. Each session has 10 instances of each pose

resulting in around 500–600 samples of each pose per session,

due to tracking errors and edge trimming. Each sample

corresponds with a 8 × 24 window of the processed EMG

data, which corresponds to a time window of 330 m.

Each of the training schemes requires a train/validation/test

split. We do not take a random percentage of the data for each

split because this may cause issues with independence in the test

set. This is because windowing creates overlap when the stride

length is smaller than the window length, so two consecutive

samples will contain a portion of identical data. Instead of

random splits, we split along lines of each pose instance,

shown in Figure 6. For example, if we require a split of 80%

and 20%, we will take the first eight pose instances of each pose,

which eliminates any possibility of having any samples from

these eight instances in the remaining 20%, the remaining two

pose instances of each pose. Because of the windowing overlap,

using random splits would most likely introduce data leakage

between the training and testing sets, as two consecutive samples

which contain portions of identical data could be split into

different sets. Using our proposed method, data leakage

becomes less of a concern, since there is an amount of idle

time between each instance that is larger than the time

windowing parameter. This process allows our training,

validation, and test sets to have independence from each other

for proper validation and evaluation.

3.3.3 Training and calibration
There are significant differences in the raw data collected

between sessions, despite the data being collected from the same

subject. To understand if every session is so distinct such that

there is no shared information between sessions and if there is

any value in this large amount of data, we propose to compare

three different training schemes for classification:

FIGURE 5
(A) The session-calibrator architecture, which preserves the shape of the EMGwindow. (B) Themain encoder-decoder LSTM architecture used
for training. The symmetry and bottleneck mimic that of a standard autoencoder.
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• Single-Session Scheme

• Cumulative Scheme

• Recalibration Scheme

For the cumulative and retraining schemes, we use the first

38 sessions as a training set, and for each of the schemes, we use

the last five sessions for the test set during evaluation.

3.3.3.1 Single-session scheme

In applications, particularly in EMG-controlled prosthesis, a

control algorithm can be created for the specific subject by

training over a large amount of data from a single user. To

imitate this, our first baseline training scheme (“Single-Session

Training”) trains the architecture using the first 70% of pose data

from one specific session, validates on the next 10% and tests the

performance on the remaining 20% of the poses. This training

uses the encoder-decoder architecture described in Figure 5B.

This type of training scheme is represents the choice one might

make for creating the most specialized algorithm for a particular

session, but may not generalize well as it has the possibility of

overfitting to the training data and learning the session’s

irregularities.

3.3.3.2 Cumulative Scheme

A draw of machine learning is that architectures can take

advantage of large amounts of data to learn hidden general

relationships. To understand how much underlying

commonalities exist between sessions and how much impact

that these session-independent relationships have on

performance, our second baseline training scheme

(“Cumulative Training”) trains the architecture using the

training set, with each session being split as the first 80% of

data for training and the last 20% for validation. The

performance is tested on 100% of the unseen test set, as there

is no session-specific training required. This training also uses the

encoder-decoder architecture described in Figure 5B. This type of

training scheme is common in many machine learning

approaches to learn general trends in the data, but may also

be unable to learn specific trends of particular sessions.

3.3.3.3 Recalibration Scheme

We imagine that a high quality algorithm should be able to

take advantage of large amounts of data as well as being

generalizable to specific sessions. To accomplish this, we unite

the previous two approaches for our third training scheme

(“Recalibration Training”). Shown in Figure 7, a different

training scheme is used to isolate the session-specific

differences from the common relationships shared across all

sessions. For each training session, the data is split into the first

80% for training and the remaining 20% for validation. Using this

split, a session-calibrator architecture, shown in Figure 5A, is

trained and validated while the weights and parameters of the

encoder-decoder architecture, shown in Figure 5B, are frozen.

Then, the encoder-decoder is unfrozen while the session-

calibrator is frozen in the same way, and training is done

again using same data split. By first recalibrating, the data

from the specific session is transformed to not contain the

irregularities of the session and so the encoder-decoder is not

FIGURE 6
An example of the split of a specific session into independent percentages by separating based on particular pose examples. This ensures that
splits include equal examples of poses, and are not simply randomly selected.
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constantly updating itself with session-specific information. This

allows for the encoder-decoder to extract the underlying

similarities in gestures while the recalibrating learns to

transform the data by mitigating the effect of session

differences. To evaluate performance for each of the unseen

sessions in the test set, a rapid re-training of the architecture is

done first on a small “calibration portion” of session data, which

is the first 20% of the data. The remaining 60% of the data from

that session is still unseen to the user and is used for the

evaluation.

4 Results

4.1 Classification performance

The recalibration training scheme has the highest performance

amongst the three training schemes at an average of 79.5%, while

the single-session and cumulative training schemes have lower

accuracies of 49.6% and 55.2%. These accuracies reported, shown

in more detail in Figure 8A, are an average taken over the five test

sessions that are unseen to the architecture during training. For the

two training schemes that involve some form of training (single-

session and recalibration), 5-fold cross validation was performed

twice for each test session to ensure robustness of the results. Each

fold is split based on instances and not random splitting to ensure

no data leakage potential between the training and testing sets. The

difference between the data split of each fold lies in which instances

of each pose are selected for training and testing. For performance

analysis, the average accuracies of the folds are used for these

schemes. For the cumulative training, training was performed on

the same five test sessions.

The results show that gestures with similar kinematicmovements

are more often misclassified as each other. The confusion matrix for

each of the training schemes, as shown in Figure 8B, reveals that

gestures within a group, like the fist gestures or the finger dexterous

movements are more often misclassified as each other. Furthermore,

exertion of force seems to also be apparent as a source of

misclassification, as the more forceful movements, like the

clenched fist and hard pinch, are also sometimes misclassified

with each other. In the most successful training scheme, the

confusion matrix reveals that there are still some misclassifications

but mainly between gestures of similar types and less often.

4.2 Latent dimension representation

The latent representations of the sessions are shown in

Figure 9, as the training progresses, the latent representations

show improvement in the visual separability. The single-session

scheme seems to show only a few main groupings with little

variation within these groupings, while the cumulative scheme

FIGURE 7
The proposed session-specific calibration scheme, which has two stages in both training and evaluation.Whenever a new session is introduced,
a new session-calibrator architecture is created and trained while freezing the encoder-decoder architecture. Once the session-calibrator is trained,
it is frozen, and transforms the inputs into amore session-independent format to be used as inputs to the encoder-decoder. The session-calibrator is
frozen and the encoder-decoder is trained on the current session, with less session-specific bias.
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starts to show some differentiation in the latent representations.

When the session calibrator architecture is trained, large clusters

become muchmore defined and separable, and there is also focus

around separating the classes within the larger clusters. The small

pose clusters also show tighter distributions as opposed to the

larger clouds seen in the other training schemes.

4.3 Multi-session benefit

One of the motivations for comparing the three training

schemes was to examine any potential benefit of using a large

amount of data. As evident by the classification accuracies, it is

found that there is benefit to using other sessions during training

even if session-specific training must be done. During the

recalibration scheme, this beneficial effect starts to plateau at

about 14 sessions, with a training accuracy of 80% and a

validation accuracy of 72%, suggesting that training on further

data provides only small incremental benefits to the encoder-

decoder architecture. During recalibration training, we train with

a single session at a time because each session has a specific session-

calibrator architecture. Whenever a new and unseen session is

introduced to train with, the accuracy suffers before rebounding to

the plateau. However, the relative impact on the performance of all

training data (shown as the trendline in Figure 10), seem to decrease

as the number of total epochs and training sessions increase.

5 Discussion

The enormous potential for EMG as an interface channel has

been recognized for decades. It is a window into the activity of the

FIGURE 8
(A) The distribution of classification accuracies for each training scheme. (B) The confusion matrices corresponding to each training scheme.
The improvement in performance is shown through the misclassification tendencies and the most misclassified poses.

FIGURE 9
Each set of four panes represent an average latent dimension representation created from the bottleneck layer of the encoder-decoder for the
single-session, cumulative, and recalibration schemes. As there are four dimensions or activations in the bottleneck, we display them plotted against
each other for visualization. Each pose corresponds to a different color and separability is being shown between the various clusters of poses.
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actuators of the body: muscles. Muscles are the means by which

humans interact with the world, beyond generating body poses.

They generate forces, stiffness and compliance through

antagonist coactivations, with a richness that is not visually

apparent. Using EMG we can make devices and systems that

seamlessly mesh with those interactions. This motivates the

dynamic, temporally diverse gestures we present here. Human

interactions are spatiotemporal, transient, and interactive. The

utility of a system based on holding a sequence of static poses is

limited. Until recently, however, EMG datasets have focused on

that case because computational methods have not been

adequate for handling dynamic data. Even for static gestures,

EMG signals reflect the dynamic physiological activity of

muscles, and this complexity amplifies the temporal

complexity of the problem. The recurrent neural network

method we demonstrate here can learn these complexities.

Practical realizations of a commercial EMG interface are

likely to be systems worn daily by the same user. It is not

necessary to make a single model for all potential users if we

can leverage the data arising from repeated use of a single user.

To our knowledge, this dataset is the first to focus on many-

session EMG for the same user, and the recalibration scheme is a

way to more effectively use that data, providing 79.5% accuracy

for the 11 gestures, as opposed to learning solely from the single

session (49.6%).

We believe that for a commercially viable XR interaction

system or a control scheme for a prosthesis or assistive device,

quick and dynamic gestures are more common and natural to

users, which is why we believe our dataset to be valuable. We also

strive to show the impact of the differences between sessions and

how these different sessions can still be used in training an

architecture. Therefore, we focus on the increase of performance

between the different training schemes.

5.1 Architecture choice

The reasoning behind using the encoder-decoder

architecture with the bottleneck layer comes from two factors.

The first factor is that of visualization of the performance of each

architecture. The latent dimensions allows for a low dimensional

representation of the data, in which patterns, clusters, and

separability is more easily distinguished. While pure

performance metrics, like accuracy or RMSE may be adequate

to report overall performance, this latent representation affords

the opportunity to better understand how an architecture may be

learning or representing data. The second factor is that of the

potential future uses of this pipeline. Low dimensional

representations of high dimensional data can be used in

control, demonstrated by Vujaklija et al. (2018), where an

autoencoder learned the latent dimension representations of

EMG frames and directly extracted these representations for

controlling an interface. Similarly, we are developing systems for

using low-dimensional EMG control to interface with low-

dimensional representations of high-dimensional virtual or

prosthetic hands Portnova-Fahreeva et al. (2020, 2022). These

applications justify an exploration of using data-driven

compression architectures, which when implemented properly,

have only a small impact on the performance Dinashi et al.

(2022).

FIGURE 10
Accuracy during training and validation of the recalibration scheme. Startingwith the first training session, performance increases as the number
of training epochs increase. Eventually this performance reaches a plateau, at which we begin training on a new session to avoid overfitting on
specific sessions. The switch of session data is marked by a vertical line and a subsequent initial drop in performance is observed. The performance
accuracy on the overall set of used training data is shown as the bold trendline.

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Karrenbach et al. 10.3389/fbioe.2022.1034672

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1034672


5.2 Limitations and future work

Differences in data acquisition, number of gestures and

subjects, and protocol make it difficult to directly compare

these gesture classification results with other similar studies.

For example, there are diverse approaches to what EMG

frequencies should be included. There is undoubtedly

information content in the sub-60 Hz band Sbrollini et al.

(2018), but also possible degradation or contamination from

other sources, such as motion of the limb, ECG cross-talk, etc.

For this reason, most HCI applications use low-frequency cutoffs

somewhere between 20Hz and 60Hz López et al. (2018); de Rugy

et al. (2012). For this experiment we did not conduct a thorough

study of this choice, but chose to remove the low sub-60 Hz

frequency content. There is a chance that information from the

low frequencies could be used by the learning system to improve

performance.

The focus of this study is not to compare classification

methods, but to address the problem of generalization across

sessions. The second training scheme (Cumulative Training)

shows that despite the large number of sessions performed by

the same subject, session-specific factors make it difficult to train

a network that successfully transfers to a new session. However,

by briefly training the session-specific front end calibration

network, the data is transformed in such a way that it can be

successfully processed by the session-agnostic main network, and

can contribute fruitfully to its training. An interesting direction

would be to test the effectiveness of the recalibration architecture

by passing these transformed features into various other models.

Additionally, it would be potentially fruitful to separate the

effects of session-specific calibration from the efficacy of the

classifier architecture. As we describe in section 2.3.3, other

methods have been developed to accommodate inter-session

differences. In this manuscript, we do not implement these

methods on our dataset for comparison. Architecture design

choices, hyperparameter tuning, and similar implementation

details can have large effects on the end performance of an

approach. To facilitate comparison, we include, alongside the

MiSDIREKt dataset, example scripts for loading the dataset and

reproducing results presented here. As this research topic

matures and more studies are conducted, it will be

increasingly important to understand how recalibration

methods interact with classification methods and gesture types.

The classification analysis presented in this paper considers a

small subset of the dataset, and indeed the most static and

isometric poses that were available in the data. The rest of the

dataset, which is triple the amount used in this analysis, contains

valuable recordings of dynamicmovements and interactions with

virtual objects. These may hold the key to understanding the

relationship between kinematics and EMG, and future works can

explore the use of this data for applications like regressive

prediction of hand joint kinematics or prosthesis control.

Electrode placement is critical to ensure signal quality,

which can degrade through poor surface contact and sliding.

The standard placement of the electrode band or array is on the

forearm, but recent studies have shown differing effects and

quality of data when recording EMG of the wrist Botros et al.

(2022). This study found that EMG recordings from electrodes

placed on the wrist often provided better quality signals for

gestures which involved fine finger movements and had

comparable quality to forearm EMG for gestures involving

the wrist. These findings translated to the performance of

gestures recognition, as classifiers trained on the wrist EMG

on average performed better on these fine finger gestures and

comparably on the wrist gestures to classifiers trained on the

forearm EMG.

As the dataset created and used in this study was for a single

subject over many sessions, additional experiments would be

required to demonstrate validity for many subjects. Du et al.

(2017) and Zhai et al. (2017) have shown the benefit of using

retraining on a subject’s multiple sessions. Though these studies

use a smaller amount of sessions, these studies use a multitude of

subjects, which shows promise for robustness of retraining

architectures. With this precedent in mind, future studies

which create similar datasets on multiple subjects using the

retraining architecture would be a necessary step to show

robustness for potential applications.

6 Conclusion

This paper presents a dataset, which a novel device design

was used to collect, consisting of four distinct tasks, of which

some were repeated, of varying dynamic hand movements and

tasks: a quick sequence of poses back to back, a sequence of poses

where each pose repeated rapidly, a sequence of dynamic

interaction gestures held mostly static, and stacking objects to

reach a target height repeatedly with different height targets. This

dataset collected both EMG and hand kinematic data from hand

tracking software within the VR headset. The dataset consists of

43 complete sessions over 12 days, amassing 13.5 h of data, which

is one of the largest continuous dynamic datasets publicly

available. We perform gesture classification of this dataset

using an encoder-decoder architecture for dimensionality

reduction. This classification architecture also contains a

recalibration process with a session-calibrator architecture to

generalize to new sessions, with an accuracy of 79.5%, a marked

improvement over the single-session and non-recalibrating

architectures which had 49.6% and 55.2% respectively. The

success of this architecture on this novel dataset shows

promise for more accurate gesture recognition on unseen

data, and future works will focus on utilizing the rest of the

dataset for dynamic kinematic control through dimensionality

reduction architectures.
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