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Intervertebral discs are microstructurally complex spinal tissues that add greatly

to the flexibility and mechanical strength of the human spine. Attempting to

provide an adjustable basis for capturing a wide range of mechanical

characteristics and to better address known challenges of numerical

modeling of the disc, we present a robust finite-element-based model

formulation for spinal segments in a hyperelastic framework using

tetrahedral elements. We evaluate the model stability and accuracy using

numerical simulations, with particular attention to the degenerated

intervertebral discs and their likely skewed and narrowed geometry. To this

end, 1) annulus fibrosus is modeled as a fiber-reinforced Mooney-Rivlin type

solid for numerical analysis. 2) An adaptive state-variable dependent explicit

time step is proposed and utilized here as a computationally efficient alternative

to theoretical estimates. 3) Tetrahedral-element-based FE models for spinal

segments under various loading conditions are evaluated for their use in robust

numerical simulations. For flexion, extension, lateral bending, and axial rotation

load cases, numerical simulations reveal that a suitable framework based on

tetrahedral elements can provide greater stability and flexibility concerning

geometrical meshing over commonly employed hexahedral-element-based

ones for representation and study of spinal segments in various stages of

degeneration.
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1 Introduction

The human spine is a complex arrangement of passive and

active tissues (hard and soft) that provides postural control,

flexibility of motion, and protects the spinal cord (Kibler et al.,

2006; Agur and Dalley, 2009; Brittanica, 2014). Among these

tissues, the hydrated soft collagenous intervertebral discs (IVD)

separating adjacent vertebrae of the spine formmajor load-bearing

elements (Widmer et al., 2020) that provide cushioning, regulate

force distribution, and facilitate motion between spinal vertebrae

(Humzah and Soames, 1988; Adams and Roughley, 2006; Roberts

et al., 2006; Widmer et al., 2019). This multi-component complex

structure in conjunction with the mechanical loads that it

experiences during various physical activities (Schultz and

Andersson, 1981; Schultz et al., 1982) results in complex

internal load transfer mechanisms, which are expected to

influence spinal pathologies such as back disorders and pain

(Pearcy et al., 1984; Kumar, 1990; Dvořák et al., 1991;

Manchikanti, 2000; Thiese et al., 2014) as well as secondary

complications after surgical interventions such as adjacent

segment disease (Bertagnoli, 2011), pseudoarthrosis (Steinmann

and Herkowitz, 1992), and screw loosening (Bredow et al., 2016).

In this context, finite element (FE) based models encompassing

various spinal components have gained greater attention in recent

decades to study spine biomechanics (Noailly et al., 2005; Schmidt

et al., 2006; Campbell et al., 2016; Dreischarf et al., 2014; Zander

et al., 2009; Schmidt et al., 2013; Jaramillo et al., 2015;Maquer et al.,

2015; del Palomar et al., 2008; Ayturk et al., 2010; Zander et al.,

2017) with increasing applications towards pre-clinical/surgical

studies (Baroud et al., 2003; Rohlmann et al., 2007; Boccaccio et al.,

2008; Talukdar et al., 2021), evaluating the influence of

intervertebral disc degeneration (Schmidt et al., 2007b; Ayturk

et al., 2012; Cegoñino et al., 2014), and towards subject-specific

investigations (Widmer, 2020; Pickering et al., 2021). These

computationally powerful tools are particularly effective in

combining hierarchic intricacies of complex spinal systems with

material and geometrical non-linearities and a wide range of

loading scenarios (Schmidt et al., 2013). However, the

performance of these FE models (i.e., accuracy, computational

efficiency, and robustness) is greatly influenced by 1) component-

specific material models and the corresponding model parameters

(in particular for soft tissues like the IVD), 2) accuracy and

discretization of the three-dimensional geometry, and 3)

numerical solution techniques employed.

Due to complex inner microstructure and internal hierarchy

(see Section 2.1), the IVD exhibits highly non-linear behavior

(Markolf and Morris, 1974; Goel et al., 1995; Ebara et al., 1996;

Eberlein et al., 2001; Wagner and Lotz, 2004). Various

mathematical models were proposed in the literature, with

different mathematical treatments for the nucleus pulposus

(NP) and annulus fibrosus (AF) components of the IVD.

Example modeling approaches are linearised-elasticity-based

models (Harkness, 1961; Haut and Little, 1972; Ueno and Liu,

1987; Smit et al., 1997; Baroud et al., 2003; Polikeit et al., 2003),

non-linear composite models with a one-dimensional

description of collagen fibers (Schmidt et al., 2006; 2007b;

Rohlmann et al., 2007; Zander et al., 2009; Dreischarf et al.,

2014; Pickering et al., 2021), microstructure-based continuum

non-linear models (Eberlein et al., 2001, 2004; Ayturk et al., 2012,

2010; Jaramillo et al., 2015), and micromechanical models

(Ghezelbash et al., 2021). Continuum material models are

often employed to model the IVD as they are particularly

advantageous to represent its material non-linearity while

implicitly incorporating its anisotropy to the desired degree of

accuracy (Holzapfel et al., 2015, 2005) besides offering relative

ease for FE implementation. However, ambiguity with the

corresponding material parameters prevails because various

parameters suggested in the literature (Moramarco et al.,

2010; del Palomar et al., 2008; Jaramillo et al., 2015; Wagner

and Lotz, 2004; Eberlein et al., 2001, 2004) were each attuned to a

specific set of experiments that were largely uni-directional in

nature (Markolf and Morris, 1974; Goel et al., 1995; Ebara et al.,

1996; Eberlein et al., 2001; Wagner and Lotz, 2004). This suggests

a need for robust calibration using multi-directional

experimental data to increase the model’s predictive abilities.

Various image-processing-based methods are in use to

generate FE models for spinal segments. These approaches use

computed tomography (CT) images of vertebrae (Moramarco

et al., 2010; del Palomar et al., 2008; Rohlmann et al., 2007;

Eberlein et al., 2004; Schmidt et al., 2006; Pickering et al., 2021;

Jaramillo et al., 2015) and magnetic resonance imaging (MRI)

scans of IVDs (Maquer et al., 2015, 2014), including those based

on automatic segmentation (Caprara et al., 2021). Hexahedral

elements (HE) often feature in the subsequent discretization of

the resulting geometry, in particular of healthy IVDs (Eberlein

et al., 2001, 2004; Jaramillo et al., 2015; Moramarco et al., 2010;

Rohlmann et al., 2007; Pickering et al., 2021; Baroud et al., 2003;

Schmidt et al., 2006, 2007b,a; Zander et al., 2009, 2017; Cegoñino

et al., 2014). This is because, 1) HEmesh regular geometries easily

and with fewer elements, while offering high solution accuracy

(Benzley et al., 1995), 2) they can be arranged parallel to the IVD

circumference with one of the local coordinate axes being tangent

to it and therefore simplifying the identification of local collagen

fiber directions, and 3) HE in the form of hourglass controlled

reduced integration overcome the volumetric locking problem in

incompressible soft materials (Bathe, 2006; Hughes, 2012).

However, degeneration-induced changes significantly affect the

geometry of IVDs. Specifically, there can be a considerable drop in

height, an accumulation of tears in the annulus region, and endplate

effects (Adams and Roughley, 2006; Widmer, 2020). Furthermore,

olisthesis or dorsal disc narrowing can result in strongly skewed or

wedged-shaped IVDs. Such complex geometries are extremely

difficult to reproduce with (homogeneously sized) HE and if

meshed inaptly this can cause numerical instabilities. This

mandates using computationally expensive and laborious high-

quality HE meshes. In this regard, tetrahedral elements (TE) are
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commonly employed in literature to discretize complex geometries

with relative ease due to their superior flexibility and adaptability

(Bathe, 2006; Hughes, 2012; Schneider et al., 2019). Furthermore,

volumetric locking can be addressed with a suitable choice of

integration schemes (e.g., reduced, selective reduced) (Bathe,

2006; Hughes, 2012). Refined approaches in the context of

volumetric locking issues with TE elements have also been

explored (Joldes et al., 2009; Pagani et al., 2014). Finally, while

implicit finite element analysis is generally faster for linear problems,

explicit numerical solution techniques are often selected over

implicit methods in addressing quasi-static problems (with

negligible inertial effects) in FE methods (FEM) because 1) no

iterations are required to evaluate solution variables, 2) evaluation

of computationally expensive inverse stiffness is not required, 3)

material and geometric non-linearities, as well as contacts, are

handled better, 4) high levels of efficiency are possible with

parallelization for analyses solved using multiple processors. Yet,

an optimal choice of the time step is paramount to ensure the desired

accuracy of numerical solutions while maintaining computational

efficiency. While this time step is deformation-dependent (Ogden,

1997), it is traditionally prescribed as a suitably small constant

(dependent on thematerial parameters) in typical explicit FE solvers

such as Ansys LS-DYNA and Radioss for ease of implementation in

a range of problems in mechanics (Freed et al., 2005; Wu et al.,

2020). However, in highly non-linear anisotropic hyperelastic

materials like IVD tissue, this time step can be noticeably

influenced by the state of deformation and local material

symmetry, suggesting a re-evaluation of the traditional approach.

This project focuses on establishing a novel and robust FE-

based model formulation for spinal segments using TE in a

hyperelastic framework. To this end, 1) a microstructure-based

continuum anisotropic material formulation is utilized for the

simulation of AF behavior in an explicit-time-integration-based

numerical framework. 2) An adaptive time-stepping approach is

proposed as a computationally efficient approximation to a

refined deformation-dependent alternative (Ogden, 1997).

Finally, 3) the performance of linear HE and TE is evaluated

in terms of their accuracy and stability during flexion, extension,

lateral bending, and axial rotation, using spinal FE models with

non-degenerated, moderately, and severely degenerated IVDs.

Also, a material parameter set is estimated using experimental

data of spinal segments during the above load cases (Widmer

et al., 2020) and an inverse FE-based approach.

2 Methods

2.1 Continuum material formulations for
the IVD

The internal microstructure of the IVD consists of an inner

NP enclosed by an outer AF and cartilage endplates anchoring

the IVD to the vertebrae. Both AF and NP are predominantly

filled with water (65%–90% in AF (Marcolongo et al., 2017) and

70%–88% in NP (Humzah and Soames, 1988; Marcolongo et al.,

2017)) and a proteoglycan matrix into which collagen fiber

bundles are embedded (Hashizume, 1980; Inoue, 1981;

Cassidy et al., 1989). Collagen fiber bundles in AF are

arranged into several layers of concentric lamellae with

alternating orientations ranging between 25° and 45° (Cassidy

et al., 1989; Adams and Roughley, 2006; Ambard and Cherblanc,

2009; Malandrino et al., 2013) about the transverse plane, while

in NP they are randomly oriented in a homogeneous matrix

(Hashizume, 1980; Inoue, 1981). The arrangement of the

collagen fibers in AF is theorized to resist the high tensile

hoop loads resulting from the hydrostatic pressure transferred

from the nucleus pulposus during spinal compression by helping

to absorb and redistribute stresses. The complex internal

hierarchy and microstructure can be linked to the

experimentally determined non-linear mechanical behavior

observed both at the component and the tissue level (Markolf

and Morris, 1974; Goel et al., 1995; Ebara et al., 1996; Eberlein

et al., 2001;Wagner and Lotz, 2004; Holzapfel et al., 2005). In this

study, IVD is modeled as a multi-component system with

individual constitutive material models for AF and NP, to

incorporate its complex three-dimensional microstructure. To

this end, both AF and NP are modeled as hyperelastic solid

bodies utilizing an invariant-based formulation (Spencer, 1984;

Holzapfel, 2002) wherein pressure and displacement are

decoupled for numerical ease (Flory, 1961; Ogden, 1978; Simo

and Hughes, 2006).

2.1.1 Kinematics and preliminaries
In line with the standard notation in continuum mechanics, let

the configuration of a bodyB in the reference and current (at time t)

states be denoted by ϰR(B) and ϰt(B), respectively. Each material

point of B corresponds with the positions X ∈ ϰR(B) and

x ∈ ϰt(B), which are linked through the mapping x � χϰR(X, t).
The deformation gradient F(X, t), its determinant J(X, t), and the

right Cauchy-Green tensor C(X, t) are defined through

F � GradχϰR, J � detF> 0, C � FTF, (1)

where the dependence on location and time is understood.

Densities in the current (ρ) and reference states (ρ0) are

related through ρ = Jρ0. The strain energy density function

(SEDF) Ψ of each hyperelastic material component depends

on F through the right Cauchy-Green tensor C = FTF which,

in the decoupled form, becomes (Holzapfel et al., 2000)

Ψ � �Ψ �C( ) + ~Ψ J( ), (2)

where �C � �FT�F and �F � J−1/3F. �Ψ and ~Ψ represent the

distortional and dilatational isotropic strain energies,

respectively. Furthermore, for an anisotropic hyperelastic

material reinforced with n families of fibers whose directions

are specified by unit vectors Mi, i = 1, 2, . . . , n, the SEDF can be
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given as (Holzapfel and Weizsäcker, 1998; Holzapfel et al., 2000;

Truesdell and Noll, 2004)

Ψ � �Ψ �C( ) + ~Ψ J( ) + Ψ̂ �C,Mi( ), (3)

where Mi≔Mi ⊗Mi and Ψ̂ represents the distortional anisotropic

strain energy. The second Piola-Kirchhoff stress (S) and the

Cauchy stress (σ) are then obtained as

S � 2
zΨ
zC

, σ � J−1FSFT (4)

Finally, Cartesian components of the material (Cijkl) and

spatial (cijkl) elasticity tensors are obtained as (Ogden, 1997;

Holzapfel, 2002)

Cijkl � 2
zSij
zCkl

, cijkl � J−1FiPFjQFkRFlSCPQRS (5)

2.1.2 Nucleus pulposus
The behavior of the NP is modeled using a compressible

Mooney-Rivlin type formulation given as (Holzapfel, 2002)

ΨNP � b10 �I1 − 3( ) + b01 �I2 − 3( ) + kNP
2

J − 1( )2, (6)

where �I1 ≔ tr�C and �I2 ≔ tr�C−1 are kinematic invariants, b10 and

b01 are positive material constants with the units of stress and kNP is

the bulk modulus. Herein, it is noted that the NP is modeled as an

isotropic material despite the presence of collagen fibers because of

their random and homogeneous distribution in the matrix [see also

Schmidt et al. (2006, 2007a,b); Ayturk et al. (2012)] The material

model parameters for NP adopted from Schmidt et al. (2006, 2007a)

and Ayturk et al. (2012) are listed in Table 1.

2.1.3 Annulus fibrosus
To model the anisotropic mechanical response of the AF, a

modified Mooney-Rivlin type formulation incorporating

contributions from two collagen fiber families M1 and M2 is

utilized based on (Eberlein et al., 2001; Eberlein et al., 2004;

Moramarco et al., 2010). Therefore, Ψ(�C, J,M1,M2) from Eq. 3

becomes

ΨAF � c10 �I1 − 3( ) + c01 �I2 − 3( ) + kAF
2

J − 1( )2

+∑2
i�1

a1
a2

exp a2〈�I i( )
M − 1〉2( ) − 1{ }, (7)

where the invariant �I(i)M ≔ tr(�CMi)measures the squared stretch

of fibres along Mi. c10, c01 and a1 are material parameters with

units of stress, a2 is a dimensionless constant, kAF is the bulk

modulus, and 〈x〉 = (|x| + x)/2. It is noted that only tensile stretch

of collagen fibers is considered due to their crimped structure

(Cassidy et al., 1989). In the current study, a homogeneous

distribution of collagen fiber bundles is assumed, despite their

alternating orientation in the lamellae, exploiting the periodic

and concentric nature of the lamellae (Eberlein et al., 2001, 2004;

Moramarco et al., 2010). Furthermore, M1 and M2 are assumed

to be at an average orientation of ±30° about the transverse plane

(Goel et al., 1995; Eberlein et al., 2001; Urban and Roberts, 2003;

Moramarco et al., 2010). While the orthotropic material

symmetry of the AF described by M1 and M2 is evident, the

same can be described by the directions M1 + M2 and M1 − M2

with relative ease1. The material model parameters of the AF used

for the IVD FE model testing (Section 2.3.1) are listed in Table 1

and are in accordance with previous literature findings (Schmidt

et al., 2006; 2007b; Ayturk et al., 2012).

2.2 Adaptive time step

Invoking the theory of infinitesimal waves and vibrations in

unbounded materials in the context of finite deformations

(Ogden, 1997), the acoustic tensor ~Q(n) and the wave speed v

of a plane given by v = mf (n·x − vt) are related through

ρv2 � ~Q n( )m[ ] ·m, ~Qjl � Aijklnink, Aijkl � cijkl + σ ikδjl,

(8)
where unit vectors n and m denote the direction of wave

propagation and polarisation of the wave, respectively. {n1, n2,

n3}, {m1, m2, m3}, and δij, respectively, represent the Cartesian

components of m, n, and the identity tensor. Aijkl is stiffness

tensor. For longitudinal (P-) waves defined through n = m, Eq. 8

simplifies to

v �
��������������������
J

ρ0
cijkl + σ ikδjl( )ninjnknl√

(9)

TABLE 1 Material model parameters of NP and AF, where kNP and kAF
are obtained from their respective Poisson’s ratios of 0.495
(Ayturk et al., 2012) and 0.45 (Goel et al., 1995).

Material Parameter Value

Nucleus pulposus b10 (kPa) 0.12

b01 (kPa) 0.03

kNP (kPa) 29.9

Annulus fibrosus c10 (kPa) 0.18

c01 (kPa) 0.045

a1 (kPa) 2

a2 100

kAF (kPa) 4.35

1 This property exploits the identical nature of collagen fibers along M1

and M2.
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Noteworthy, the local wave speed in anisotropic materials is

strongly influenced by the local fiber directions (Eqs 5, 7, 8). To

this end, let n1 = cos ϕ sin θ, n2 = sin ϕ sin θ, and n3 = cos θ

without loss of generality and with ϕ ∈ [0, π) and θ ∈ [0, π). Then,
the maximum local wave speed (vmax) and the corresponding

direction of propagation for a given state of deformation (F, σ)

can be deduced by maximizing a suitable objective function

v̂(ϕ, θ)2 i.e.,
vmax � max v̂ ϕ, θ( ) (10)

While the estimation of wave speed using Eq. 10 is essential

for numerical simulations using the explicit FEM (see Section

2.3), it also increases the overall computational effort. Therefore,

in this study vmax is approximated as

vmax � max ~v ~M( ), ~M ∈ M ≔ M1,M2,M1 +M2,M1 −M2,M1 × M2{ }
(11)

i.e, as the maximum of the wave speeds along the set of directions

M, by exploiting (i) the local orthotropy of the AF and (ii)

substantially higher collagen fiber stiffness over the matrix as a

rectification over the commonly used constant dilatational wave

speed approach (Freed et al., 2005; Wu et al., 2020). We discuss

this in Section 3, wherein the choice of M is compared against

the theoretically estimated propagation direction (Eq. 10).

2.3 FE modeling

Numerical simulations were performed on three different FE

models of lumbar spine segments representing various stages of

IVD degeneration (Supplementary Figure S1).

The 3D geometrical mesh information of individual bony

structures (i.e., cranial and caudal vertebra of each segment) was

obtained from manual segmentation of CT images (Philips

Brilliance 64, Philips Healthcare, Cleveland, OH,

United States) using the 3D Slicer (V4.8.1) (3D Slicer, 2021;

Fedorov et al., 2012) software (Figure 1). Statistical shape models

were transformed onto this outcome by utilizing specific

landmarks and invoking a non-rigid registration approach

(Caprara et al., 2021). This information was then utilized in

conjunction with custom-made scripts in MATLAB® (The

MathWorks Inc., Natick, MA, United States) to generate the

3D geometry of the enclosed IVD. For this purpose, the surface

geometry of the cranial vertebra’s lower endplate and the caudal

vertebra’s upper endplate were used. The circumferential profile

of the IVD was shaped by a modest radial translation of the

corresponding nodes to shape a gentle outward curvature. The

location, shape, and size of the NP near the center of the IVD

were defined based on anatomical studies (Pooni et al., 1986;

O’Connell et al., 2007).

In this study, the load cases of 1) flexion, 2) extension, 3)

lateral bending, and 4) axial rotation in the three FE models of

spinal segments were considered, as illustrated in Figure 2. To

this end, the upper cranial vertebra was subjected to a moment of

5 Nm about an axis through the centroid of the IVD and normal

to the sagittal plane for (1) and (2), frontal plane for (3), and

transverse plane for (4). The IVD was rigidly connected to both

vertebrae at their respective interfacing surfaces through a nodal

tie constraint and the lower caudal vertebra was allowed only to

rigidly translate in the moment plane. The purpose of this last

constraint was to closely replicate the conditions of previously

conducted biomechanical experiments (Widmer et al., 2020;

Cornaz et al., 2021).

The critical time step for Radioss explicit FE solver is

estimated as

Δtcrit � F lc
vmax

, (12)

Invoking Eq. 11 where lc and F � 0.9 are the characteristic

element length deduced from the FE mesh and a

multiplicative adjustment factor, respectively. The choice of

0.9 for this multiplication factor was based on a rational

compromise between maintaining a near-optimal

computational effort and providing a reasonable buffer below

the estimated minimum time step.

2.3.1 IVD degeneration and solid element type
We tested the described approach for IVD modeling by

generating three different spinal segment geometries

corresponding to L4-L5, L1-L2, and L2-L3 encompassing non-

degenerated, moderately, and severely degenerated IVDs,

respectively. Numerical simulations were performed on these

three different FE models of lumbar spine segments with the IVD

geometry being volumetrically discretized once with linear HE

and once with linear TE. While the volumetric discretization of

the IVD using hexahedral elements was performed in MATLAB,

Hypermesh [HyperMesh, version 2017.2, Altair Engineering

Inc., Troy, United States (HyperMesh, 2017)] was utilized for

the tetrahedral-element-based discretization of the same.

All mechanical analyses were performed through a FE

simulation of the corresponding boundary value problems

with the explicit FE solver Radioss (2019). The load cases

considered in this regard were implemented on a domain

comprising the two vertebrae encompassing the IVD. Due to

the considerable difference between the mechanical stiffness of

the spinal vertebrae and the IVD (Lu et al., 1996; Baroud et al.,

2003; Schmidt et al., 2006; Rohlmann et al., 2007), the former are

modeled as rigid bodies. For both of the considered solid element

types, a built-in Mooney-Rivlin-type material model in Radioss

was used for NP, while the material model for AF followed the

description of Sections 2.1 and 2.2 and was implemented through
2 For incompressible materials, m · n = 0 and hence Eqs 9, 10 must be

adjusted accordingly.
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a user-defined material subroutine. Herein, the local collagen

fiber directions (M1 and M2) in the local orthonormal basis

{ê1, ê2, ê3} are defined as

M1 � cosΦ, sinΦ, 0[ ], M2 � cosΦ,−sinΦ, 0[ ], (13)

where Φ represents the orientation of the fibers about the local

transverse plane spanned by ê1 and ê3. These vectors are then

related to the element-specific coordinate system {�e1, �e2, �e3}
through an orthogonal transformation

QR: {ê1, ê2, ê3} → {�e1, �e2, �e3}. The element-specific coordinate

system is defined for the solver and based on the element

edges and the sequence of the corresponding nodes (Radioss,

2019). The Euler angles of QR (Varshalovich et al., 1988) were

determined in a pre-processing step performed inMATLAB with

custom scripts using elemental edge (for HE) and orientation (for

HE and TE) information and were provided as an initial input to

the FE solver. Noteworthy, elemental collagen fiber orientations

were determined by considering their tangency to the IVD outer

circumference, a consequence of the concentric alignment of the

lamellae (Holzapfel et al., 2005). Supplementary Table S1

summarizes the details of the FE discretization for all the

models utilized in this study. Herein, it is noted that the

vertebrae are discretized using shell-type elements with a

thickness of 0.05 mm to associate non-zero inertia.

Furthermore, a homogeneous FE mesh was considered to

facilitate ease of meshing. Mesh dependency for the case of

flexion is explored in Supplementary Figure S2 of the

supplementary material wherein the mesh size was varied over

2.2 mm for coarse and 1.0 mm for refined meshes. Herein, it is

noted that at 1.4 mm nominal size the maximum discretization

error in relevant parameters was under 3% compared to the

refined mesh. Therefore, 1.4 mm was chosen as a reasonable

compromise between accuracy and computational efficiency

(Supplementary Figure S2).

To compare the results of maximum longitudinal wave

speeds determined by Eqs 10, 11 with each other, numerical

simulations were first performed on the FE model of a spinal

segment with non-degenerated IVD with TE and using a small

value of Δtcrit3. Thereafter, the desired elemental state variables

({F,σ}e) at the peak loading state were extracted. Finally, these

output variables were used in conjunction with Eqs 10, 11 to

estimate the corresponding elemental wave speeds. To this end,

all four load cases were considered and material parameters

based on the results of Eberlein et al. (2001); Ayturk et al.

(2012); Goel et al. (1993, 1995) were assumed for AF.

Numerical simulations were performed on the FE models

considering two different mesh element types, i.e., linear

hexahedral and linear tetrahedral, and the corresponding

results were compared with each other in terms of the

distributions of pressure p, isotropic energy density �Ψ, and

anisotropic energy density Ψ̂. p is defined as (Rajagopal, 2015)

FIGURE 1
Finite element model generation of lumbar spine segments. (A) CT images of human cadaveric spines were used to obtain (B) vertebral 3D
models through segmentation. (C) The endplates of the resulting vertebral surfaces were used to create the intervertebral disc geometry in between.
Local collagen fiber directions M1 and M2 of the AF are displayed. {e1, e2, e3} and {ê1 , ê2 , ê3} are respectively the global and local orthonormal bases.
(D) Finally, the components of the spinal segment were assembled into one FE model composed of bony and soft tissue (translucent upper
vertebra for illustration purposes only).

FIGURE 2
Load cases of (A) flexion/extension in the sagittal plane, (B)
lateral bending in the frontal plane, and (C) axial rotation in the
transverse plane for an applied moment of 5 Nm about the
illustrated axis of rotation through the geometric center of
the IVD.

3 One order ofmagnitude smaller than in Graff (2012), Freed et al. (2005),
Wu et al. (2020).
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p � −tr σ( )
3

(14)

Further, simulation results (i.e., stability and load-

displacement) obtained using HE and TE types were

compared for various degeneration states (Supplementary

Figure S1A). Simulations providing results for the prescribed

load without extreme deformation and buckling of single

elements (causing the simulation to stop) were considered to

be stable.

2.3.2 AF material parameters and inverse FEM
A set of material parameters of AF were estimated using

inverse FEM and the calculations were performed on the spinal

segment model with non-degenerated IVD meshed with TE

elements (Supplementary Table S1). The experimental data for

the four load cases were obtained fromWidmer et al. (2020) and

the average results for 31 non-degenerated spine segments were

considered to be the experimental reference.

Briefly, the desired material parameter set (popt) of the AF is

determined using an optimization algorithm implemented in

MATLAB that iteratively minimizes the difference between

numerically simulated responses from FE analyses performed

in Radioss and the corresponding experimental data (see e.g.,

Ahn and Kim (2010); Kuravi et al. (2021); Böl et al. (2013)). To

this end, the sequential quadratic programming algorithm

(Wright and Nocedal, 2006) implemented in MATLAB’s

fmincon function was invoked to minimize the objective

function given as

O p( ) � ��������������������
1
n
∑n
i�1

Θexp
i − Θsim

i p( )
Θexp

n

( )2

√√
, (15)

where Θexp
i and Θsim

i (p), respectively, denote the experimental

and simulated range of motion for a given parameter set pwhile n
denoted the number of load increments. Figure 3 summarises the

optimization algorithm.

3 Results

In the first part of the results section, the outcome of time step

estimation using a deformation-dependent and computationally

efficient method are reported (Section 3.1). Thereafter, numerical

simulation results using HE and TE are presented and compared

with each other for the considered four load cases and for models

with varying levels of degeneration (Section 3.2). Finally, material

parameters based on experimental results obtained for non-

degenerated IVDs through inverse FEM are reported (Section 3.3).

3.1 Time step estimation for explicit FEM

Figures 4A,B, respectively, depict probability density

functions of the ratio of wave speeds and the corresponding

angular separation estimated from Eqs 10, 11 for all elements of

AF (Supplementary Table S1). The corresponding mean (�μ) and
standard deviation (SD) values are given in Table 2.

FIGURE 3
Flowchart of the MATLAB-driven inverse-FEM-based optimization algorithm. The material properties characterizing the AF behavior are
optimized towards the best agreement between experimental measurements and results of finite element simulations emulating the experiments.
ROM: range of motion.
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3.2 Spinal model predictions for HE and TE

Figure 5–7, respectively, compare the state variables of

mechanical pressure, isotropic (distortional), and anisotropic

contributions to the SEDF of the numerical simulations

obtained from a non-degenerated IVD meshed either with

HE or with TE. Normalized histograms and empirical

cumulative distribution functions (ECDF) were used to

illustrate the distribution of the values in the elements.

ECDF is a continuous function depicting the number of

observations in percentile i.e., the percentage of

observations that are less or equal to the value at a given

point on X-axis.

Only a modest variation was inferred for pressure (Figures

5A–D), isotropic (Figures 6A–D) and anisotropic (Figures

7A–D) energy densities, illustrated as normalized histograms.

The corresponding ECDF exhibited 3.8%–15.6% (Figures 5E–H),

1.6%–5.6% (Figures 6E–H), and 0.8%–7.9% (Figures 7E–H)

variations, respectively, for the above load cases. For the

applied torque of 5 Nm, the range of motion (ROM) differed

moderately between the element types with a variation of 2.7%,

8.2%, 9.1%, and 9.9% for flexion, extension, lateral bending, and

axial rotation, respectively.

Numerical simulation results (i.e., load-displacement curves)

from FE models for non-, moderately, and severely degenerated

spinal segments (Supplementary Figure S1) using HE and TE

types were compared in terms of stability. All simulations

converged and yielded physically meaningful results except for

severely degenerated instances, where the HE approach failed in

flexion and generally yielded high computational times (in

extension in particular).

3.3 Calibration of material constants for
non-degenerated IVDs

The optimal constitutive model parameter set popt for the

non-degenerated AF is listed in Table 3 and was deduced

following the termination of the optimization algorithm

(Figure 3). Figure 8 depicts the good agreement between the

numerically simulated and the corresponding experimental data

for all four load cases.

4 Discussion

The goal of this work is to develop and validate state-of-the-

art spinal FE models (developed from CT scan images) using a

hyperelastic formulation for the IVDs and employing TE

elements. To this end, continuum material models were used

for the NP and the AF in FE models employing an adaptive

refined time-stepping approach, in contrast to the traditional

approaches (Freed et al., 2005; Graff, 2012; Wu et al., 2020).

Furthermore, numerical simulations were performed and

verified for their stability and accuracy for flexion, extension,

lateral bending, and axial rotation load cases on FE models of

pristine as well as moderately and severely degenerated spinal

segments. Finally, a set of material constants meant to describe

the average behavior of non-degenerated AF tissue was found

with an optimization approach.

4.1 Time step estimation for explicit FEM

In a variety of problems in non-linear mechanics, Δtcric is
often prescribed as a small enough constant to ensure the

stability and accuracy of the numerical solutions. However,

in the presence of material, geometrical, and contact non-

linearities, much smaller time steps are generally utilized

which also increases the involved computational effort.

Though in the current study the latter aspects are not

involved, large deformations can be expected due to material

non-linearities including influences from anisotropy. This can

greatly impact Δtcric owing to the state of deformation and

FIGURE 4
Comparing the theoretically predicted and approximated
longitudinal wave speeds in non-degenerated AF. Plot (A) shows
the ratio of wave speeds from Eq. 10 and the maximum from the
directions in M and plot (B) shows the angular separation
between the corresponding propagation directions, both
expressed as probability density functions. �μ and SD, respectively,
range in (1.033–1.038), (0.0281–0.0510) for (A), and (10.56–11.12),
(4.75–6.25) for (B).

TABLE 2 Comparing theoretical and approximated (P-) wave speed
parameters.

Load case Wave speed ratio
(�μ, SD)

Angular separation
(�μ, SD)

Flexion (1.038, 0.0404) (10.56, 5.22)

Extension (1.033, 0.0510) (11.00, 6.25)

Lateral
bending

(1.033, 0.0385) (10.93, 5.256)

Axial rotation (1.0368, 0.0281) (11.12, 4.75)
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stress. In this context, theoretically estimated Δtcric (Eq. 10) can
be employed as an alternative to choosing small but arbitrary

time steps. However, such an approach involves a

computationally expensive iterative optimization. To this

end, the approximation method presented in this work (Eq.

11) provides an excellent alternative, in that the obtained results

differ only modestly from the theoretical estimates, i.e., < 10%
and ≈ 10° in the magnitude of wave speed and the

corresponding direction of propagation, respectively.

Noteworthy, these differences were estimated considering all

FIGURE 5
Comparing themechanical pressure expressed as probability (normalized histogram) and ECDF for flexion (A,E), extension (B,F), lateral bending
(C,G), and axial rotation (D,H) for HE and TE types.

FIGURE 6
Comparing the isotropic contribution to the SEDF expressed as probability (normalized histogram) and ECDF for flexion (A,E), extension (B,F),
lateral bending (C,G), and axial rotation (D,H) for HE and TE types.
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four load cases, thus involving over 2 × 105 instances of {F,σ}e

(Supplementary Table S1), which is a reasonable sample size.

4.2 Spinal model predictions for HE and TE

Only moderate differences were observed between numerical

simulation results obtained with HE and TE, although the former

offers increased accuracy over the latter in general (Hughes,

2012). Herein, ROM, isotropic and anisotropic energy densities

differed modestly between both element types for all load cases,

while for mechanical pressure moderate differences were

observed (in excess of 10% for axial rotation).

Numerical simulations on non-degenerated, moderately, and

severely degenerated spinal segments reveal that TE-based FE

models were stable and computationally efficient in all three

scenarios for all four load cases. In contrast, HE-based FE models

exhibited stability only for non-degenerated and moderately

degenerated scenarios involving relatively smooth IVD

geometries and failed in the case of a severely degenerated

IVD with a highly skewed geometry. These results reinforce

the superiority of TE elements for simulations involving complex

geometrical shapes in line with Schneider et al. (2019) while

maintaining a homogeneous element size. Although similar

results can be expected from HE types with refined and

inhomogeneous meshes, the generation of these can be labor-

intensive and computationally expensive.

In light of the above results involving commonly

encountered load cases and various degenerative states of

IVD, it is proposed that the presented TE-based FE models

with component-specific models and a revised explicit time step

offer a robust and computationally efficient alternative to

studying the mechanics of the spine in general.

4.3 Calibration of material constants for
non-degenerated IVDs

The AF exhibits an inhomogeneous microstructure with

varying collagen directions within the lamellae. Moreover,

these directions along with the amount of water in the AF are

also reported to be influenced by its degenerative states. For

instance, collagen fiber bundles are less organized in severely

degenerated IVDs. However, in this work, the AF was

represented as a micro-structurally homogeneous hyperelastic

material using a 3D continuum formulation with two constant

preferential directions. While this is in line with many state-of-

the-art approaches [e.g., Eberlein et al. (2001); Schmidt et al.

FIGURE 7
Comparing the anisotropic contribution to the SEDF expressed as probability (normalized histogram) and ECDF for flexion (A,E), extension (B,F),
lateral bending (C,G), and axial rotation (D,H) for HE and TE types.

TABLE 3 Material model parameters of the AF obtained through
inverse FEM and with the experimental results published in
Widmer et al. (2020).

Material Parameter Value

Annulus fibrosus c10 (kPa) 0.016

c01 (kPa) 0.001

a1 (kPa) 1

a2 151

kAF (kPa) 170
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(2006; 2007a); Jaramillo et al. (2015); Ayturk et al. (2010; 2012)],

noteworthy, it is more appropriate to associate such a

characterization of the IVD tissue with non-degenerated states. To

this end, the corresponding material parameters of the IVD were

estimated using the experimental data obtained from spinal segments

in a non-degenerated state. Herein, mean curves were utilized for the

optimization-algorithm-driven inverse FEM, for simplicity.

Furthermore, many previous studies have utilized uni-axial

experimental data for calibrating material models. However, in

view of the complex IVD microstructure, model calibration-

based multi-axial experimental data is highly desirable for it not

only enhances the predictive abilities for generic load cases but

also towards highly valued applications in clinical and subject-

specific studies (Widmer, 2020; Pickering et al., 2021; Fasser et al.,

2022). Therefore, in this study mean experimental data from

flexion, extension, lateral bending, and axial rotation loads were

employed to appropriately estimate IVD material parameters

utilizing a state-of-the-art inverse FEM approach employing

explicit time stepping method and driven by an optimization

algorithm. Noteworthy, in the case of degenerated IVDs, the

anisotropy component of SEDF in Eq. 7 can be suitably altered by

employing the generalized structural tensor approach (Gasser

et al., 2006; Holzapfel et al., 2015) to represent various degrees of

local anisotropy.

4.4 Limitations

Intervertebral disc degeneration is reported to cause irreversible

morphological changes such as the appearance of inhomogeneous

tears and delaminations, increased disorganization in the AF

microstructure (Urban and Roberts, 2003; Adams and Roughley,

2006), biochemical changes such as a decrease in water content,

stiffening of theAF (Ebara et al., 1996), and geometrical changes such

as an irregular but substantial reduction in height (Frobin et al., 1997);

see Urban and Roberts (2003); Adams and Roughley (2006) formore

details. Addressing the morphological and biochemical aspects

mandates a rigorous mathematical framework involving inelastic,

time-dependent, andmulti-phasic effects (e.g., Cegoñino et al. (2014);

Yang and O’Connell (2019)) and is beyond the scope of the current

work. In this study, readily available geometry details extracted from

CT scans were considered and the performance of the corresponding

spinal segment FE models was explored in the realm of

hyperelasticity. Furthermore, it is noted that TE-based FE

discretization employed here is known to exhibit overly stiff

behavior in pure displacement formulation when Poisson’s ratio

approaches 0.5. The use of higher-order elements with reduced

integration methods and mixed element formulations can reduce

volumetric locking and improve the accuracy of numerical

simulations (Joldes et al., 2009), the exploration of which is

beyond the scope of this contribution.

5 Summary and conclusion

In this work, a continuum hyperelastic anisotropic material

model was utilized to represent the AF component of the IVD.

To facilitate the computational efficiency of explicit time-stepping

method for spinal segment FEmodels, a novel approach for adaptive

time step approximation was used and its proximity to theoretical

estimates was evaluated. Furthermore, the effectiveness of TE-based

FE models over HE-based ones was verified for various load cases

when dealing with complex shapes of degenerated IVDs. Finally, a

material parameter set was determined using inverse FEM and

experimental data from flexion, extension, lateral bending, and

axial rotation of non-degenerated human cadaveric spinal

segments. Integrating the proposed approach of time step

estimation with appropriately formulated TEs enables time-

efficient modeling of even highly degenerated human IVD

anatomies. Such anatomies often present severe challenges to

FIGURE 8
Comparison of experimental results vs. numerically simulated responses for (A) flexion, (B) extension, (C) lateral bending, and (D) axial rotation
load cases. The shaded grey area covers the range of mean experimental ROM (dotted black line) ± one standard deviation. Experimental data were
obtained from 31 non-degenerated spine segments (Widmer et al., 2020).
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automated finite element meshing strategies and/or result in

suboptimal computational efficiencies to severely limit the clinical

translation of patient-specific FE modeling approaches. The

proposed work offers a path forward to overcoming these

obstacles, without compromising on numerical accuracy. The

subroutine developed in this work and used for the description of

the AFmaterial model is incorporated into Altair Radioss and will be

released in the next official release in 2023.
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