Check for updates

OPEN ACCESS

EDITED BY Shuaifei Zhao, Deakin University, Australia

REVIEWED BY Chongqing Wang, Zhengzhou University, China Nuo Yu, Donghua University, China

*CORRESPONDENCE Shuangchen Ruan, scruan@sztu.edu.cn

SPECIALTY SECTION

This article was submitted to Bioprocess Engineering, a section of the journal Frontiers in Bioengineering and Biotechnology

RECEIVED 19 August 2022 ACCEPTED 04 October 2022 PUBLISHED 18 October 2022

CITATION

Wu M, He S, Ha E, Hu J and Ruan S (2022), A facile synthesis of PEGylated Cu2O@SiO2/MnO2 nanocomposite as efficient photo−Fenton−like catalysts for methylene blue treatment. Front. Bioeng. Biotechnol. 10:1023090. doi: [10.3389/fbioe.2022.1023090](https://doi.org/10.3389/fbioe.2022.1023090)

COPYRIGHT

© 2022 Wu, He, Ha, Hu and Ruan. This is an open-access article distributed under the terms of the [Creative](https://creativecommons.org/licenses/by/4.0/) [Commons Attribution License \(CC BY\).](https://creativecommons.org/licenses/by/4.0/) The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

[A facile synthesis of PEGylated](https://www.frontiersin.org/articles/10.3389/fbioe.2022.1023090/full) Cu₂O@SiO₂/MnO₂ [nanocomposite as ef](https://www.frontiersin.org/articles/10.3389/fbioe.2022.1023090/full)ficient photo−Fenton−[like catalysts for](https://www.frontiersin.org/articles/10.3389/fbioe.2022.1023090/full) [methylene blue treatment](https://www.frontiersin.org/articles/10.3389/fbioe.2022.1023090/full)

Mingzhou Wu^{1,2}, Shuqing He², Enna Ha², Junqing Hu² and Shuangchen Ruan^{1,3*}

¹Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China, ²College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China, ³Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China

The removal of toxic organic dyes from wastewater has received much attention from the perspective of environmental protection. Metal oxides see wide use in pollutant degradation due to their chemical stability, low cost, and broader light absorption spectrum. In this work, a Cu₂O−centered nanocomposite Cu₂O@SiO₂/MnO₂−PEG with an average diameter of 52 nm was prepared for the first time via a wet chemical route. In addition, highly dispersed MnO2 particles and PEG modification were realized simultaneously in one step, meanwhile, $Cu₂O$ was successfully protected under a dense $SiO₂$ shell against oxidation. The obtained Cu₂O@SiO₂/MnO₂−PEG showed excellent and stable photo−Fenton−like catalytic activity, attributed to integration of visible light–responsive Cu₂O and H₂O₂−responsive MnO₂. A degradation rate of 92.5% and a rate constant of 0.086 min⁻¹ were obtained for methylene blue (MB) degradation in the presence of H_2O_2 under visible light for 30 min. Additionally, large amounts of \bullet OH and ${}^{1}O_{2}$ species played active roles in MB degradation. Considering the enhanced degradation of MB, this stable composite provides an efficient catalytic system for the selective removal of organic contaminants in wastewater.

KEYWORDS

Cu2O@SiO2/MnO2−PEG, wastewater treatment, photocatalysis, photo−Fenton−like property, methylene blue

1 Introduction

Synthetic dyes and pigments like MB, Rhodamine B (RhB) and methyl orange (MO) used in the pharmaceutical, tannery, and textile industries are common sources of water pollution due to their complex aromatic molecular structure ([Mohammadzadeh et al.,](#page-10-0) [2020;](#page-10-0) [Fan et al., 2021\)](#page-10-1). This is especially true for textile manufacturing, as 10–50% of dye

losses are discharged into the effluent [\(Uddin et al., 2021](#page-11-0)). Various physicochemical treatment strategies, including membrane filtration ([Mohammed et al., 2020](#page-10-2); [Ni et al., 2022](#page-10-3); [Xiong et al., 2022](#page-11-1)), physical adsorption ([Qiu et al., 2020](#page-10-4); [Huang](#page-10-5) [et al., 2022](#page-10-5)), biological degradation [\(Deng et al., 2021](#page-10-6)), and advanced oxidation processes (AOPs) have been reported ([Wang et al., 2021a](#page-11-2); [Li et al., 2022b\)](#page-10-7). However, traditional treatments are hampered by recycling and economic costs. Using environmentally friendly, rapidly oxidative, and highly efficient pollutant elimination, photocatalysis and Fenton reactions are employed as common methods for pollutant elimination due to the oxidation activities of hydroxyl radicals (●OH) and superoxide anions $(O_2^{\bullet-})$ ([Zhang et al., 2021a;](#page-11-3) [Wang](#page-11-4) [et al., 2021b;](#page-11-4) [Yang et al., 2022a\)](#page-11-5).

Previous studies indicated that semiconductor materials such as metal oxides and transition metal sulfides are common photocatalysts. Metal−oxide−related photocatalysts underwent three generations, single−component materials, multiple−component materials, and solid substrate immobilized materials [\(Anwer et al., 2019;](#page-10-8) [Ivanets et al.,](#page-10-9) [2021\)](#page-10-9). Materials with photo-sensitive reaction and Fenton-like reaction have been widely reported in the area of catalysis and bioapplication, such as metals [\(Yu et al., 2018\)](#page-11-6), organics ([Qiu](#page-10-10) [et al., 2022\)](#page-10-10), and metal-organic frameworks [\(Yu et al., 2021a;](#page-11-7) [Liu](#page-10-11) [et al., 2022](#page-10-11); [Yu et al., 2022](#page-11-8)). Cuprous oxide $(Cu₂O)$ is a promising p−type semiconductor with a 2.1 eV bandgap and displays a wide absorption band in the visible light region [\(Yang et al., 2016](#page-11-9)). Moreover, considering its inexpensive and convenient synthesis, abundant resources, and non-toxicity, Cu₂O has been explored as an ideal candidate for photocatalysis ([Wu et al., 2012](#page-11-10)). However, nanosized Cu₂O particles readily oxidize in air or humid conditions, which significantly limits their application ([Zhai et al., 2014](#page-11-11)). To stabilize Cu₂O and improve its catalytic activities, reductive components have been utilized. For example, Wang et al. reported stable Cu₂O nanoparticles supported on reduced graphene oxide (Cu₂O/RGO), which showed excellent activity and recyclability towards Sonogashira cross−coupling of aryl halides with phenylacetylene and Ullmann coupling of phenols with aryl halides ([Zhai et al., 2014](#page-11-11); [Wang et al.,](#page-11-12) [2017a\)](#page-11-12). Recently, a Ag-Cu₂O composite film and a Ag/Cu₂O heterojunction were applied in dye degradation reported by Yu et al. and Li et al., respectively. They illustrated that Ag could improve the photocatalytic performance by facilitating photoelectron transfer and accelerating the separation of photoelectron–holes in Cu₂O. MB degradation rate of over 95.1% was obtained over Ag–Cu₂O composite film ([Yu et al.,](#page-11-13) [2021b](#page-11-13)). Similarly, methyl orange (MO) was almost complete eliminated within 40 min under visible light irradiation using Ag/ Cu₂O [\(Li et al., 2022a\)](#page-10-12). Moreover, hybrid Cu₂O-Cu cubes exhibited visible−light−driven degradation against MO and rhodamine B (RhB) in the presence of H_2O_2 as a sacrificial scavenger. Due to the efficient separation of electron−hole pairs and improved charge transfer, Cu₂O–Cu exhibits superior

photocatalytic performance [\(Alp, 2021](#page-10-13)). However, the reductive component in composite materials is often sensitive to H₂O₂−conducted degradation systems.

The improvements of metal oxides related composite materials are commonly attributed to electron−hole separation facilitation, which promoted active species production (•OH, O_2 ^{•–} etc.) during degradation ([Hao et al., 2021\)](#page-10-14). Could additional O2 improve the degradation efficiency? Herein, we sought to develop an ideal material functional in both O_2 improvement and $Cu₂O$ protection. $MnO₂$ is well known for $O₂$ production from H2O2 via Fenton−like reaction for water treatment, biological antibacterial, and anticancer applications ([Wang et al., 2018;](#page-11-14) [Sun](#page-10-15) [et al., 2021;](#page-10-15) [Yang et al., 2021](#page-11-15); [Gemeay et al., 2008](#page-10-16)) reported polyaniline/MnO₂ composites in the oxidative decolorization of organic dyes with H_2O_2 . Based on H_2O_2 bubble generation over Fe₃O₄@MnO₂, a removal efficiency of 99% was reached via advanced oxidation and adsorptive bubble separation ([Kang](#page-10-17) [et al., 2019](#page-10-17)). Recently, Jiao et al. synthesized $MnO₂$ nanoparticle−loaded poly (amidoxime−hydroxamic acid)−modified microcrystalline cellulose (pAHA−MCC@ MnO₂). The birnessite−like MnO₂ nanoparticles on the pAHA−MCC microrod surfaces played a vital role in MB due to advanced Fenton−like catalysis [\(Jiao et al., 2021\)](#page-10-18). Therefore, combining Cu2O and MnO2 might develop an efficient catalyst for MB degradation in the presence of both visible light and H_2O_2 .

In this work, a novel composite catalyst $Cu₂O@SiO₂/$ MnO2−PEG was designed as photo−Fenton−like catalysts by introducing a highly dispersed ultrafine $MnO₂$ and a dense $SiO₂$ shell. This creative development sought to protect Cu₂O from instability coupled with producing $MnO₂$ from $KMnO₄$ and PEG, which endow the sample with photo−Fenton−like catalytic activity. The synthetic procedure occurs at lower temperatures and with low energy consumption. The catalytic performance of $Cu₂O@$ SiO2/MnO2−PEG was subsequently evaluated by degrading MB dye in the presence of H_2O_2 under visible light irradiation. Furthermore, the mechanism for MB degradation was investigated to illustrate the roles of each component during the reaction.

2 Materials and methods

2.1 Materials

Copper (II) acetate and ammonium molybdate were obtained from Macklin Biochemical Co., Ltd. Tetraethyl orthosilicate (TEOS) and polyethylene glycol 600 (PEG-600) were purchased from Aladdin Industrial Corporation. Deionized water was purified using Milli-Q system (Millipore Co., United States). Absolute ethyl alcohol and 30% hydrogen peroxide were sourced from Sinopharm Chemical Reagent Co.,

Ltd. Phosphate buffer saline (PBS) was sourced from Hyclone. All the reagents were used without further purification.

2.2 Synthesis of $Cu₂O$ nanospheres

 $Cu₂O$ was synthesized by a modified method, which was reported in the literatures [\(Zhang et al., 2011](#page-11-16); [An et al., 2018](#page-10-19)). In the procedure for $Cu₂O$ synthesis, 80 mg of copper acetate and 1 g of poly−(vinylpyrrolidone) (PVP, Mw 10,000) were dissolved in 30.0 mL of glycol at 70° C. After intensive stirring for 2 h, 10.0 mL of sodium hydroxide (2 mol L[−]¹) was added into the above mixture. Gradually, the transparent green solution turned blue, indicating the formatifon of copper hydrate. And then 0.5 h latter, 10.0 mL of ascorbic acid (AA) solution (0.15 mol L⁻¹) was quickly introduced into the solution to reduce the Cu (Ⅱ) ions. In order to proceed nanocrystal growth, the turbid yellow suspension was kept in the oil bath with stirring for another 0.5 h. And then it was centrifuged at 10000 rpm for 5 min with decanting the top solution. Finally, the precipitate was washed with distilled water for three times. The obtained $Cu₂O$ nanoparticles were re-dispersed in 5 mL of ethanol for further use.

2.3 Synthesis of $Cu₂O@SiO₂$

 5 mL of the obtained $Cu₂O$ ethanol dispersion were dispersed in a solution (57 mL of ethanol/11 mL of water, 0.4 g of PVP) with ultra−sonication. After stirring for 15 min, the as−prepared TEOS ethanol solution (0.15 mL of TEOS, 1.5 mL of ethanol) was added to the above dispersion and stirred for additional 15 min. Then, 1.0 mL of 0.1 M NaOH aqueous solution was added drop−wisely within 5 min at room temperature with stirring. After 14 h, $Cu₂O@SiO₂$ were collected by centrifugation (8000 rpm, 5 min) and washed twice with 1:2 volume ratio of water and ethanol. Finally, the sample was re−dispersed in 5 mL ethanol.

2.4 Synthesis of Cu₂O@SiO₂/MnO₂−PEG

The above $Cu₂O@SiO₂$ was dispersed in 75 mL water using sonication. At room temperature, aqueous PEG (Mw: 600, 1.5 mL, 5 mg mL[−]¹) was added into the suspension and mixed for 30 min. After the gentle addition of aqueous KMnO₄ (1.875 mL, 200 µg mL⁻¹), the mixture was stirred for 30 min. Subsequently, the mixture was centrifuged at 8000 rpm. The product washed with DI water and ethanol for three times.

2.5 Characterization

The morphology and structural characterization were performed on a scanning electron microscope (SEM, Hitachi S-4800, Japan) and a transmission electron microscope (TEM, JEM-2100F, Japan). X-ray diffraction (XRD) was performed on an Empyrean X-ray diffractometer (PANalytical, Netherlands). UV–vis–NIR spectra were recorded from 200 nm to 800 nm on a UV–vis–NIR spectrophotometer (LAMBDA 1050+, PerkinElmer). An ESCALab 250Xi (Thermo Scientific) spectrometer was used to measure X-ray photoelectron spectroscopy (XPS). An INVENIO S spectrophotometer (Bruker) was operated to acquire the Fourier transform infrared (FTIR) spectra. Photoluminescence (PL) spectra (Ex = 490 nm) were collected on FS 5 fluorescence spectrometer (Edinburgh Instruments) equipped with Xe lamp. The Brunauer-Emmett-Teller (BET) surface areas were obtained using the nitrogen adsorption–desorption isotherms determined at the temperature of liquid nitrogen on an automatic analyzer (Autosorb-iQ-MP, Quantachrome, United States). Electron paramagnetic resonance (EPR) spectra were recorded on a Bruker EMXnano.

2.6 Photo−Fenton−like catalytic degradation of methylene blue

The photo−Fenton−like catalytic performances were carried out in a 250 mL quartz beaker equipped with recirculation cooler in a light protective box. The visible light was created by a 300 W xenon lamp through an UV−cut off filter (≥ 420 nm). Typically, 100 mL, 10 mg L⁻¹ of MB dye and 0.015 g of Cu₂O@SiO₂/MnO₂−PEG was loaded in the beaker. After stirring for 30 min to establish the adsorption/desorption equilibrium, the mixture was exposed to the visible light and subsequently added a known concentration of H2O2. Samples of the reaction mixture were taken every 15 min intervals in the first 2 h, and 30 min intervals in the following 1 h. Batch experiments included catalyst dosage, concentration of MB, effects of ion species. Furthermore, solution pH variation and the types of reactive species were studied. The purpose was to investigate the catalytic activity and degradation mechanism of MB by $Cu₂O@$ SiO₂/MnO₂−PEG.

By using the external syringe−driven filter, the concentration of MB was investigated via a PerkinElmer Lambda 1050 + UV−Vis spectrophotometer. The quality of MB was obtained according to the maximum absorbance at a wavelength of 663 nm. The conversion efficiency for MB was calculated from [Eq. 1](#page-2-0):

$$
\%MB\,dye = C_t/C_0 \times 100\% \tag{1}
$$

The degradation reaction rate constant k was calculated according to the pseudo-first-order degradation reaction using [Eq. 2:](#page-3-0)

$$
C_t = C_0 e^{-kt} \tag{2}
$$

in which C_0 and C_t are the concentrations of MB before and after exposure for a time duration "t", respectively.

3 Results and discussion

3.1 Characterization of prepared $Cu₂O@$ SiO₂/MnO₂−PEG

The synthesis process of $Cu₂O@SiO₂/MnO₂–PEG$ was shown in [Figure 1A.](#page-3-1) SEM and TEM tests further studied the morphology of pure $Cu₂O$ and $Cu₂O@SiO₂/$ MnO₂−PEG. As shown in [Figures 1B,E](#page-3-1), Cu₂O displayed a nearly spherical structure with a diameter of approximately 40 nm. [Supplementary Figure S1](#page-9-0) gives the size distribution histogram of Cu₂O in the supporting information. Notably, [Figure 1C,D](#page-3-1) clearly show the core-shell $Cu₂O@SiO₂/$ $MnO₂$ −PEG nanostructure with a 7 nm thick uniform SiO₂ shell on the Cu₂O. The existence of such a dense $SiO₂$ coating protects Cu₂O from instability. According to SEM and TEM images, the $Cu₂O@SiO₂/MnO₂–PEG$ particles have diameters of approximately 52 nm. Moreover, [Figure 1F](#page-3-1) shows the X−ray diffraction (XRD) patterns, in which the XRD for pure $Cu₂O$ (marked as "C") agreed with standard $Cu₂O$ (JCPDS card no. 05-0667). Both $Cu₂O@SiO₂$ (marked as "CS") and Cu2O@SiO2/MnO2−PEG (marked as "CSM−PEG") exhibit a broad peak due to amorphous SiO2 with a characteristic peak at 21.4° , which matched the standard $SiO₂$ (JCPDS card no. 39-1425). Remarkably, due to minimal $MnO₂$ loading, it was difficult to verify the exhibition of the $MnO₂$ component either in electron microscope images or in the XRD patterns. It reveals that $Cu₂O$ was successfully coated by $SiO₂$ shell.

FIGURE 2

(A,B) TEM and HRTEM images of Cu₂O@SiO₂/MnO₂−PEG. (C−G) HAADF−STEM image and element mapping of Cu, Si, and Mn, as well as overall maps for the Cu₂O@SiO₂/MnO₂−PEG composite.

FIGURE 3

(A) Cu 2p XPS spectra for Cu₂O@SiO₂ and Cu₂O@SiO₂/MnO₂−PEG. (B) FT−IR spectra for Cu₂O@SiO₂ and Cu₂O@SiO₂/MnO₂−PEG. (C) UV−Vis spectra for Cu₂O, Cu₂O@SiO₂, and Cu₂O@SiO₂/MnO₂−PEG dispersed in water. (D) PL spectra of Cu₂O, Cu₂O@SiO₂, and Cu₂O@SiO₂/MnO₂−PEG suspension.

As shown in Figures 2A, B, the lattice fringes of $Cu₂O$ and the interfaces of $Cu₂O$ and $SiO₂$ were resolved clearly in the high−resolution TEM (HRTEM). The set of lattices with interlayer spacings of 0.250 nm corresponded to the (111) planes of $Cu₂O$. Furthermore, elemental mapping investigated the homogeneous distribution of Cu, Si, and Mn in the $Cu₂O@$ SiO₂/MnO₂−PEG composite. [Figure 2C](#page-4-0)−G verify that Cu₂O is coated entirely by $SiO₂$ and that $MnO₂$ uniformly incorporated throughout the $SiO₂$ shell, which suggested successful loading of $MnO₂$ on $SiO₂$. It is worth mentioning the special core−shell structure enabled the integration of $MnO₂$ and unstable Cu₂O.

X−ray photoelectron spectroscopy (XPS), as a sensitive characterization technique, determined the amount of each element in the sample. Herein, XPS spectra for $Cu₂O@SiO₂$ and Cu₂O@SiO₂/MnO₂−PEG were observed. The Cu 2p spectrum shown in [Figure 3A](#page-4-1) contains Cu $2p_{1/2}$ and Cu $2p_{3/2}$. Because of the filled 3 days shells in Cu⁺, no charge transfer between Cu⁺ compounds and metallic Cu occurred. Herein, the absence of strong satellite peaks located at 6 eV and 8 eV above the principal Cu 2p line confirmed Cu(Ⅰ), and ruled out the possibility of a CuO phase in $Cu₂O@SiO₂$ and $Cu₂O@SiO₂$ / MnO₂−PEG ([Colón et al., 2006\)](#page-10-20). As a result, Cu₂O nanoparticles were sufficiently protected by SiO₂. Moreover, the peaks at 933.2 eV and 933.5 eV correspond to Cu $2p_{3/2}$ ([Ghodselahi](#page-10-21) [et al., 2008\)](#page-10-21). Compared with $Cu₂O@SiO₂$, the characteristic peaks for Cu⁺ in Cu₂O@SiO₂/MnO₂−PEG broadened and attributed to the abundant PEG chain on its surface. As shown in [Figure 3B](#page-4-1), FTIR peaks observed at 3355 cm⁻¹, $2858-2946$ cm⁻¹, and 1077 cm⁻¹ were attributed to characteristic −OH, −CH2, and C−O−C vibrations, respectively. Furthermore, the peak centered at 1648 cm[−]¹ was assigned to bending and stretching vibrations of the surface OH groups stemming from PEG modifications on the $Cu₂O@SiO₂/$ MnO2 surface ([Caccamo and Magazù, 2017](#page-10-22); [Singh et al., 2020](#page-10-23); [Ghauri et al., 2022\)](#page-10-24). Additionally, the broad absorption peaks at approximately 1063 cm[−]¹ and 797 cm[−]¹ corresponded to the asymmetric stretching mode of Si−O−Si and Si−O−C bonds and symmetric stretching vibration of Si−O bonds, respectively ([Cheng et al., 2022\)](#page-10-25). The band at 630 cm[−]¹ was coincident with the optically active lattice vibration of Cu−O in Cu2O [\(Zhang et al., 2009;](#page-11-17) [Hao et al., 2021](#page-10-14)). As a result, the characteristic peaks observed for PEG, $SiO₂$, and $Cu₂O$ in the FTIR spectra confirmed the successful preparation of PEGylated $Cu₂O@SiO₂/MnO₂$ and agreed with TEM and XPS data. In addition, wavelengths of visible light range from 770 nm to 350 nm, corresponding photon energy from 1.61 eV to 3.54 eV. However, photon energy band gap of $SiO₂$ is approximately 9.3 eV ([Weinberg et al., 1979](#page-11-18)), which is much higher than 3.54 eV, resulting in almost no absorption of visible light. Consequently, it is demonstrated that $SiO₂$ coating will not inhibit $Cu₂O$ from photosensitivity. The efficient photocatalytic activity commonly occurs with the complex generation of

electron−hole pairs within a semiconductor. UV−Vis spectra for Cu_2O , $Cu_2O@SiO_2$ and $Cu_2O@SiO_2/MnO_2-PEG$ were shown in [Figure 3C.](#page-4-1) The peak intensity at 465 nm increased, followed by the $SiO₂$ coating, and $MnO₂$ −PEG incorporation. The irradiation energy accelerated the generation of electron−hole pairs in Cu₂O@SiO₂/MnO₂−PEG under visible light, which increased photocatalytic efficiency. Photoluminescence (PL) spectra of Cu₂O, Cu₂O@SiO₂, and Cu2O@SiO2/MnO2−PEG investigated the migration and separation efficiency of the photo−generated charge carriers. As shown in [Figure 3D](#page-4-1), the emission intensity at 600 nm decreased in the following order, $Cu₂O@SiO₂ > Cu₂O >$ Cu₂O@SiO₂/MnO₂−PEG. The weakened emission intensity of Cu2O@SiO2/MnO2−PEG indicated low recombination of the electron−hole pairs in VB and CB due to MnO₂. Thus, the effective separation of electron−hole pairs improved the photocatalytic properties ([He et al., 2017;](#page-10-26) [Hao et al., 2021\)](#page-10-14).

3.2 Photocatalytic performance

To evaluate the photo−Fenton−like catalytic performance of Cu₂O@SiO₂/MnO₂−PEG, degradation of MB was chosen as the model organic pollutant removal reaction. [Figure 4A](#page-6-0) illustrates the degradation efficiencies for MB with Cu₂O@SiO₂/MnO₂−PEG under different conditions, with or without H_2O_2 , $Cu_2O@SiO_2/$ MnO₂−PEG, and visible light irradiation at wavelengths $\lambda \geq$ 420 nm. Virtually no degradation of MB occurred using just H_2O_2 or pure Cu₂O@SiO₂/MnO₂−PEG in the absence of light. The concentration of MB decreased by ~0.3% after an hour, which indicated little catalytic activity for the Cu₂O@SiO₂/MnO₂−PEG catalyst in the absence of an exogenous stimulus. However, Cu2O@SiO2/MnO2−PEG showed effective catalytic activity in the presence of either H_2O_2 or visible light and reached MB degradation rates of 47.7% and 34.8% after 60 min, respectively. Subsequently, the catalytic activities of Cu₂O@SiO₂/MnO₂−PEG were investigated with both H_2O_2 and visible light irradiation, which resulted in MB degradation rates of 92.5% and 99.0% for 30 and 60 min reaction times, respectively. These results were attributed to MnO₂ Fenton–like catalytic and Cu₂O photocatalytic properties, through which reactive oxygen species (ROS) and electron−hole pairs were produced as the active reaction species, respectively ([Watts et al., 2005;](#page-11-19) [Furman et al.,](#page-10-27) [2009](#page-10-27)). Furthermore, H_2O_2 acts as a good radical \bullet OH generator because of its advantages in electron acceptor and facilitation in the separation of electron−hole pairs [\(Zhai et al., 2013\)](#page-11-20). As a result, the integration of $MnO₂$ and $Cu₂O$ promotes MB degradation efficiency under visible light and the presence of H_2O_2 . Additionally, zeta potential of Cu₂O@SiO₂/MnO₂−PEG before and after adsorption equilibrium were −18.3 eV and −16.4 eV, respectively. No obvious change was observed.

Time−dependent UV−Vis absorption spectra measured MB solution concentrations using Cu₂O@SiO₂/MnO₂−PEG (see [Figure 4B](#page-6-0)). The intensity of the MB absorption peak at 664 nm

TABLE 1 Catalytic performances of catalytic degradation of MB dye reported elsewhere.

declined significantly within the first 30 min. This behavior follows pseudo−first−order kinetics, and the value of the linear slope equals the degradation rate constant ([Siddiqui et al., 2020\)](#page-10-28). A plot of ln $C/C₀$ versus time (see [Figure 4C\)](#page-6-0) yielded an MB degradation rate

constant of 0.086 min[−]¹ . In comparison with previous studies, see [Table 1,](#page-6-1) Cu₂O@SiO₂/MnO₂−PEG showed excellent catalytic activity at a sample concentration of 150 mg L[−]¹ for MB degradation under visible light with H_2O_2 addition. In addition, it is generally

FIGURE 5

(A) Catalytic activities of Cu2O@SiO2/MnO2−PEG for degradation of MB using various catalyst dosage (5 mg, 10 mg, 15 mg, and 20 mg). (B) Alteration of initial MB concentration (5 mg L⁻¹, 10 mg L⁻¹, 15 mg L⁻¹, and 20 mg L⁻¹) in MB degradation. (C) Changes of different pH environment adjusted by HCl and NaOH (pH = 5.5; 7.0, and 8.5) in MB degradation. (D) Catalytic performances of MB degradation co-existence of inorganic irons (HCO₃⁻ or CO₃²⁻). Common experimental conditions: 15 mg of Cu₂O@SiO₂/MnO₂−PEG; 10 mg L⁻¹ of MB concentration; pH = 7.0 of reaction solution without any other inorganic ion.

accepted that surface areas play a significant role in the photocatalytic activity of photocatalyst. For $Cu₂O@SiO₂/$ $MnO₂$ −PEG, the specific surface areas is 26.8 m² g⁻¹, which was much higher than reported $Cu-BiVO_4$ (6.5 m² g⁻¹). In addition, N_2 physical adsorption and desorption curves showed typical type IV isotherms with H3-type hysteresis loops, indicating the presence of slit-shaped mesopores formed by the stacking of nanoparticles (supporting information [Supplementary Figure S2\)](#page-9-0) [\(Xu et al., 2020](#page-11-25)). High surface areas would favor the initial adsorption of MB and providing additional accessible active sites, which benefit to enhance the activity of photocatalyst ([Wang et al.,](#page-11-26) [2017b\)](#page-11-26). The schematic illustration of MB degradation under visible light over Cu₂O@SiO₂/MnO₂−PEG was shown in [Figure 4D.](#page-6-0) In addition, the effects of reaction conditions on catalytic activity and possible mechanism of this reaction had been investigated and illustrated carefully in the following study.

3.3 Effects of reaction conditions on the degradation of MB

The influence of reaction conditions (such as catalyst dosage, MB concentration, pH value, and inorganic ions)

were carried out. The results were shown in [Figure 5.](#page-7-0) Degradation rate decreases with catalyst dosage increasing from 10 mg to 20 mg. This might be resulted from the agglomeration of Cu₂O@SiO₂/MnO₂−PEG, which resulted in decrement of active points on its surface. However, the degradation rate shows tiny difference for catalyst dosage variation of $Cu_2O@SiO_2/MnO_2-PEG.$ In [Figure 5B,](#page-7-0) with the increasement of MB concentration, the tendency of degradation rate first shows an upward trend and then decreases within 60 min. The $10 \text{ mg } L^{-1}$ of MB status presents the highest degradation rate when MB concentration increased from -20 mg L⁻¹. Additionally, the influence of pH on the photodegradation of MB value was evaluated from 5.5 to 8.5. See in [Figure 5C,](#page-7-0) Cu2O@SiO2/MnO2−PEG exibits better photocatalytic activity at pH = 7.0 than others. The pH affected the stability of catalyst, which would further affect the photocatalytic performances. In acid solution, $MnO₂$ reacted with $H₂O₂$ to Mn2+. Meanwhile, •OH could be scavenged by OH[−] under alkaline conditions, resulting in less •OH in MB solution [\(Liu](#page-10-32) [et al., 2015](#page-10-32)). Therefore, the photocatalytic efficiency decreased with the variation of $pH = 7$. In fact, various inorganic ions may co-exist in dye wastewater. Herein, the effects of coexisting ions on MB degradation was examined. In current study, HCO₃⁻ (1500 mg L⁻¹) and CO₃²⁻ (1500 mg L⁻¹) were

chosen as the extra existence of irons. As shown in [Figure 5D](#page-7-0), no significant variable is observed in alterative test, which suggests that degradation is well stably controlled. Consequently, the descended removal efficiency would not be caused by the interaction of inorganic irons. As a result, 15 mg of catalyst dosage and 10 mg L[−]¹ of MB concentration at pH = 7.0 environment were chosen as the optional experimental conditions. Finally, all of the MB dye was degraded totally.

3.4 Mechanism

To investigate the mechanism involved in the photodegradation of MB over Cu₂O@SiO₂/MnO₂−PEG, EPR is employed. 5,5-dimethly-1-pyrroline-Noxide (DMPO, 30 mmol L^{-1})) and 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO, 10 mmol L[−]¹) were used as the trapping agents of •OH and ¹ O2, respectively. It was reported that the strong intensity peaks ratio of 1:2:2:1 and 1:1:1 would be classified to the formation of DMPO−•OH and TEMPO−¹ O2, respectively ([Harbour et al., 1974](#page-10-33); [Ma et al., 2022\)](#page-10-34). As shown in [Figures 6A,B](#page-8-0), there are no signals using Cu₂O@SiO₂/MnO₂−PEG alone. It can be observed that radical \bullet OH was presented with H_2O_2 addition instead of visible light exposure over Cu₂O@SiO₂/MnO₂−PEG. Thus, the results indicated the importance role of H_2O_2 as the

 \bullet OH generator. Comparably, ${}^{1}O_{2}$ was generated in the presence of H_2O_2 or visible light. Any of the two ways of stimuli is effective on ${}^{1}O_{2}$ generation. Finally, the co-stimuli of $H_{2}O_{2}$ and visible light may contribute to the high efficient degradation of MB over Cu₂O@SiO₂/MnO₂−PEG.

To confirm the possible mechanism for photo−Fenton−like degradation of MB, an •OH indicator (3,3',5,5' – tetramethylbenzidine, TMB, 10 mg L⁻¹) and an ¹O₂ indicator (1,3−diphenylisobenzofuran, DPBF, 2 mg L[−]¹) were added. As shown in [Figure 6](#page-8-0), the appearance of a peak at 652 nm indicated the reaction of •OH and TMB, and the intensity decrease of the peak at 425 nm demonstrated the reaction of ¹O₂ and DPBF ([Fan et al., 2015;](#page-10-35) [Deng et al., 2019\)](#page-10-36). Radical •OH only was generated during the catalytic decomposition of H_2O_2 via TMB testing (marked as "H" in [Figure 6C](#page-8-0)). Meanwhile, both visible light and H_2O_2 stimuli generated ${}^{1}O_2$, the active species in the catalytic degradation of MB (see [Figure 6D](#page-8-0)). Consequently, the results were exactly consistent with the EPR characterization.

According to the previous evaluation, the possible formation mechanism of main active radicals is as follows. First, owing to short lifetime and limited migration distance of •OH, reactions to generate ¹O₂ readily occured ([Eq. 3](#page-9-1)). Furthermore, \bullet OH scavenger t−butanol (TBA, 0.1 g) was introduced into the reaction system, and the time−dependent curve (labeled "CSM−PEG + P + H + TBA") displayed a similar extension to the "P + H" curve (see [Figure 4A](#page-6-0)). This result agreed with the results shown in [Figure 5A](#page-7-0), which confirmed the absence of •OH under visible light irradiation [\(Kang et al., 2019;](#page-10-17) [Yan et al., 2021](#page-11-27); [Yang L. et al., 2022\)](#page-11-28).

$$
4\bullet OH \rightarrow {}^{1}O_{2} + 2H_{2}O \tag{3}
$$

Many e^- (CB) and h^+ (VB) pairs formed on the (Cu₂O) photosensitizer surface via visible light irradiation [\(Eq. 4](#page-9-2)). At the same time, $MnO₂$ catalyzed $H₂O₂$ to generate $O₂$, which combined with an electron to form an O_2 ^{\bullet -} species [\(Eqs. 5](#page-9-3), [6\)](#page-9-4). Subsequently, $O_2^{\bullet-}$ generated ${}^{1}O_2$ as shown in [Eq. 7](#page-9-5) ([Zhu](#page-11-29) [et al., 2019;](#page-11-29) [Rajagopal et al., 2020](#page-10-29)). Therefore, H_2O_2 benefited O_2 production, which resulted in significant amounts of ${}^{1}O_{2}$. Furthermore, due to PEG modification, many surface OH groups on $Cu_2O@SiO_2/MnO_2$ acted as hole traps, which facilitated the separation of electron−hole pairs and promoted •OH and ¹ O2 production (Trandafilović [et al., 2017](#page-11-30)).

$$
Cu2O \xrightarrow{hv} Cu2O (h+ + e-)
$$
 (4)

$$
H_2O_2 \stackrel{MnO_2}{\rightarrow} H_2O + O_2 \tag{5}
$$

$$
O_2 + e^- \to O_2^{\bullet -} \tag{6}
$$

$$
2O_2^{\bullet-} + 2H_2O \rightarrow {}^1O_2 + H_2O_2 + 2OH^-
$$
 (7)

$$
\bullet \text{OH}/{}^{1}\text{O}_{2} + \text{MB} \rightarrow \text{degraded products} \tag{8}
$$

Ultimately, \bullet OH and ${}^{1}O_{2}$ triggered the degradation of MB via the integration of radical and non−free radical pathways [\(Eq. 8](#page-9-6)). Cu₂O@SiO₂/MnO₂−PEG enhanced the catalytic degradation of MB by a photo-Fenton-like process over H_2O_2 under visible light irradiation.

4 Conclusion

Cu2O@SiO2/MnO2−PEG, with a core−shell structure and an average 52 nm diameter, was synthesized and protected Cu₂O against oxidation via a dense $SiO₂$ shell. Integration of Cu₂O and MnO2 united the photo−Fenton−like catalytic properties of $Cu_2O@SiO_2/MnO_2-PEG$ in the presence of H_2O_2 under visible light. Additionally, a degradation rate of 92.5% and a rate constant of 0.086 min[−]¹ were recorded for MB degradation in 30 min for a 10 mg L[−]¹ MB solution, which indicated excellent catalytic activity of Cu₂O@SiO₂/MnO₂−PEG as compared to previous studies. MB degradation was well stably controlled, resulting from no significant change of catalytic performances after catalyst dosage, MB concentration, pH value, and inorganic ions variation. Based on EPR characterization and $\rm ^*OH$ and $\rm ^1O_2$ indicators, MB degradation proceeds via the integration of radical and non-free radical pathways. Thus, Cu₂O@SiO₂/ MnO2−PEG is a promising candidate for the degradation of dye pollutants sensitive to \bullet OH and ${}^{1}O_{2}$. The growth mechanism in structure–oriented MnO₂ and its interaction with $Cu₂O$ requires further exploration.

Data availability statement

The original contributions presented in the study are included in the article/[Supplementary Material,](#page-9-0) further inquiries can be directed to the corresponding authors.

Author contributions

MW performed the experiments and wrote the manuscript. SH and EH discussed the results and revised the manuscript. JH discussed the results. SC supervised all the works. All authors listed contributed to the article and approved it for publication.

Funding

This research was funded the National Natural Science Foundation of China (grant numbers: 61935014, 51972055, 22004087, 21701135); the Shenzhen Pengcheng Scholar Program; the Guangdong Basic and Applied Basic Research Foundation (grant numbers: 2019A1515110926); the Natural Science Foundation of Top Talent of Shenzhen Technology University (grant numbers: 20200202); the Shenzhen Science and Technology Innovation Commission (grant number: JCYJ20180508152903208 and JCYJ20190809145601651).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: [https://www.frontiersin.org/articles/10.3389/fbioe.2022.](https://www.frontiersin.org/articles/10.3389/fbioe.2022.1023090/full#supplementary-material) [1023090/full#supplementary-material](https://www.frontiersin.org/articles/10.3389/fbioe.2022.1023090/full#supplementary-material)

Wu et al. [10.3389/fbioe.2022.1023090](https://doi.org/10.3389/fbioe.2022.1023090)

References

Alp, E. (2021). The Facile Synthesis of Cu₂O-Cu hybrid cubes as efficient visiblelight-driven photocatalysts for water remediation processes. Powder Technol. 394, 1111–1120. doi[:10.1016/j.powtec.2021.09.031](https://doi.org/10.1016/j.powtec.2021.09.031)

An, L., Wang, X., Rui, X., Lin, J., Yang, H., Tian, Q., et al. (2018). The *in situ* sulfidation of Cu₂O by endogenous H_2S for colon cancer theranostics. Angew. Chem. Int. Ed. 57 (48), 15782–15786. doi:[10.1002/anie.201810082](https://doi.org/10.1002/anie.201810082)

Anwer, H., Mahmood, A., Lee, J., Kim, K.-H., Park, J.-W., and Yip, A. C. K. (2019). Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. 12 (5), 955–972. doi:[10.1007/s12274-019-2287-0](https://doi.org/10.1007/s12274-019-2287-0)

Caccamo, M. T., and Magazù, S. (2017). Thermal restraint on PEG-EG mixtures by FTIR investigations and wavelet cross-correlation analysis. Polym. Test. 62, 311–318. doi:[10.1016/j.polymertesting.2017.07.008](https://doi.org/10.1016/j.polymertesting.2017.07.008)

Cao, Y., Ren, Y., Zhang, J., Xie, T., and Lin, Y. (2021). Activation of H_2O_2 by photo-generated electrons for enhanced visible light driven methylene blue degradation with $ZnFe₂O₄/BiVO₄ heterojunction$. Opt. Mat. (Amst). 121, 111637. doi[:10.1016/j.optmat.2021.111637](https://doi.org/10.1016/j.optmat.2021.111637)

Cheng, L., Liu, W., Zhang, Z., Zhou, Y., and Li, S. (2022). Enhanced breakdown strength and restrained dielectric loss of polypropylene/maleic anhydride grafted
polypropylene/core-shell ZrO₂@SiO₂ nanocomposites. *Polym. Compos*. 43, $2175 - 2183$. doi[:10.1002/pc.26530](https://doi.org/10.1002/pc.26530)

Colón, G., Maicu, M., Hidalgo, M. C., and Navío, J. A. (2006). Cu-doped $TiO₂$ systems with improved photocatalytic activity. Appl. Catal. B Environ. 67 (1) , 41-51. doi[:10.1016/j.apcatb.2006.03.019](https://doi.org/10.1016/j.apcatb.2006.03.019)

Dasgupta, S., Atta, S., Singh, N. D. P., Deb, D., Kassel, W. S., and Bhattacharjee, M. (2014). Synthesis and structure of $[Et_3NH]$ $[Fe(HL)_2]$ $[H_3L = L-2-(3, 5-Di-tert$ butyl-2-hydroxybenzylamino)succinic acid] and its catalytic activity towards efficient photodegradation of dyes in the presence of H_2O_2 . Eur. J. Inorg. Chem. 2014 (30), 5125–5134. doi[:10.1002/ejic.201402314](https://doi.org/10.1002/ejic.201402314)

Deng, H.-H., Luo, B.-Y., He, S.-B., Chen, R.-T., Lin, Z., Peng, H.-P., et al. (2019). Redox recycling-triggered peroxidase-like activity enhancement of bare gold
nanoparticles for ultrasensitive colorimetric detection of rare-earth Ce³⁺ ion. Anal. Chem. 91 (6), 4039–4046. doi:[10.1021/acs.analchem.8b05552](https://doi.org/10.1021/acs.analchem.8b05552)

Deng, S., Jothinathan, L., Cai, Q., Li, R., Wu, M., Ong, S. L., et al. (2021). FeO_x@ GAC catalyzed microbubble ozonation coupled with biological process for industrial phenolic wastewater treatment: Catalytic performance, biological process screening and microbial characteristics. Water Res. 190, 116687. doi[:10.](https://doi.org/10.1016/j.watres.2020.116687) [1016/j.watres.2020.116687](https://doi.org/10.1016/j.watres.2020.116687)

Fan, B.-Y., Liu, H.-B., Wang, Z.-H., Zhao, Y.-W., Yang, S., Lyu, S.-Y., et al. (2021). Ferroelectric polarization-enhanced photocatalytic heterostructured BaTiO₃@TiO₂ via interface engineering. J. Cent. South Univ. 28 (12), 3778–3789. doi:[10.1007/s11771-021-4847-y](https://doi.org/10.1007/s11771-021-4847-y)

Fan, W., Bu, W., Shen, B., He, Q., Cui, Z., Liu, Y., et al. (2015). Intelligent $MnO₂$ nanosheets anchored with upconversion nanoprobes for concurrent $pH-/H₂O₂$ responsive UCL imaging and oxygen-elevated synergetic therapy. Adv. Mat. 27 (28), 4155–4161. doi:[10.1002/adma.201405141](https://doi.org/10.1002/adma.201405141)

Furman, O., Laine, D. F., Blumenfeld, A., Teel, A. L., Shimizu, K., Cheng, I. F., et al. (2009). Enhanced reactivity of superoxide in Water−Solid matrices. Environ. Sci. Technol. 43 (5), 1528–1533. doi:[10.1021/es802505s](https://doi.org/10.1021/es802505s)

Gemeay, A. H., El-Sharkawy, R. G., Mansour, I. A., and Zaki, A. B. (2008). Catalytic activity of polyaniline/MnO₂ composites towards the oxidative decolorization of organic dyes. Appl. Catal. B Environ. 80 (1), 106–115. doi[:10.](https://doi.org/10.1016/j.apcatb.2007.11.014) [1016/j.apcatb.2007.11.014](https://doi.org/10.1016/j.apcatb.2007.11.014)

Ghauri, Z. H., Islam, A., Qadir, M. A., Ghaffar, A., Gull, N., Azam, M., et al. (2022). Novel pH-responsive chitosan/sodium alginate/PEG based hydrogels for release of sodium ceftriaxone. Mat. Chem. Phys. 277, 125456. doi[:10.1016/j.](https://doi.org/10.1016/j.matchemphys.2021.125456) [matchemphys.2021.125456](https://doi.org/10.1016/j.matchemphys.2021.125456)

Ghodselahi, T., Vesaghi, M. A., Shafiekhani, A., Baghizadeh, A., and Lameii, M. (2008). XPS study of the Cu@Cu₂O core-shell nanoparticles. Appl. Surf. Sci. 255 (52), 2730–2734. doi:[10.1016/j.apsusc.2008.08.110](https://doi.org/10.1016/j.apsusc.2008.08.110)

Hao, J., Qi, B., Wei, J., Li, D., and Zeng, F. (2021). A Z-scheme Cu₂O/WO₃ heterojunction for production of renewable hydrocarbon fuel from carbon dioxide. Fuel 287, 119439. doi[:10.1016/j.fuel.2020.119439](https://doi.org/10.1016/j.fuel.2020.119439)

Harbour, J. R., Chow, V., and Bolton, J. R. (1974). An electron spin resonance study of the spin adducts of OH and HO2 radicals with nitrones in the ultraviolet photolysis of aqueous hydrogen peroxide solutions. Can. J. Chem. 52 (20), $3549 - 3553$. doi[:10.1139/v74-527](https://doi.org/10.1139/v74-527)

He, Z., Xia, Y., Tang, B., and Su, J. (2017). Fabrication and photocatalytic property of magnetic NiFe₂O₄/Cu₂O composites. Mat. Res. Express 4 (9), 095501. doi[:10.](https://doi.org/10.1088/2053-1591/aa7cb8) [1088/2053-1591/aa7cb8](https://doi.org/10.1088/2053-1591/aa7cb8)

Huang, R., Gao, P., Zhu, J., Zhang, Y., Chen, Y., Huang, S., et al. (2022). Insights into the pollutant electron property inducing the transformation of peroxymonosulfate activation mechanisms on manganese dioxide. Appl. Catal. B Environ. 317, 121753. doi[:10.1016/j.apcatb.2022.121753](https://doi.org/10.1016/j.apcatb.2022.121753)

Ivanets, A., Prozorovich, V., Sarkisov, V., Roshchina, M., Grigoraviciute-Puroniene, I., Zarkov, A., et al. (2021). Effect of magnesium ferrite doping with lanthanide ions on dark-visible- and UV-driven methylene blue degradation on heterogeneous Fenton-like catalysts. Ceram. Int. 47 (21), 29786-29794. doi[:10.](https://doi.org/10.1016/j.ceramint.2021.07.150) [1016/j.ceramint.2021.07.150](https://doi.org/10.1016/j.ceramint.2021.07.150)

Jiao, C., Wei, N., Liu, D., Wang, J., Liu, S., Fu, F., et al. (2021). Sustainable Fenton-
like degradation of methylene blue over MnO₂-loaded poly(amidoxime-
hydroxamic acid) cellulose microrods. *Int. J. Biol. Macromol.* doi[:10.1016/j.ijbiomac.2021.11.026](https://doi.org/10.1016/j.ijbiomac.2021.11.026)

Kang, Y. G., Yoon, H., Lee, C. S., Kim, E. J., and Chang, Y. S. (2019). Advanced oxidation and adsorptive bubble separation of dyes using MnO_2 -coated Fe₃O₄ nanocomposite. Water Res. 151, 413–422. doi[:10.1016/j.watres.2018.12.038](https://doi.org/10.1016/j.watres.2018.12.038)

Li, J., Sun, Z., He, M., Gao, D., Li, Y., and Ma, J. (2022a). Simple synthesis of Ag nanoparticles/Cu₂O cube photocatalyst at room temperature: Efficient electron transfer improves photocatalytic performance. Inorg. Chem. Commun. 138, 109200. doi[:10.1016/j.inoche.2022.109200](https://doi.org/10.1016/j.inoche.2022.109200)

Li, M., Li, Z., Yu, X., Wu, Y., Mo, C., Luo, M., et al. (2022b). FeN₄-doped carbon nanotubes derived from metal organic frameworks for effective degradation of organic dyes by peroxymonosulfate: Impacts of FeN4 spin states. Chem. Eng. J. 431, 133339. doi[:10.1016/j.cej.2021.133339](https://doi.org/10.1016/j.cej.2021.133339)

Liu, S., Wen, M., Huang, M., Wang, H., Chen, Z., and Yu, N. (2022). Nanoscale hematoporphrin-based frameworks for photo-sono synergistic cancer therapy via
utilizing Al(III) as metal nodes rather than heavy metals. *J. Colloid Interface Sci*. 616, 23–33. doi[:10.1016/j.jcis.2022.02.040](https://doi.org/10.1016/j.jcis.2022.02.040)

Liu, Y., He, X., Duan, X., Fu, Y., and Dionysiou, D. D. (2015). Photochemical degradation of oxytetracycline: Influence of pH and role of carbonate radical. Chem. Eng. J. 276, 113–121. doi[:10.1016/j.cej.2015.04.048](https://doi.org/10.1016/j.cej.2015.04.048)

Ma, W., Dong, X. a., Wang, Y., He, W., Zhang, W., Liang, Y., et al. (2022). Highly enhanced photocatalytic toluene degradation and *in situ* FT-IR investigation on designed Sn-doped BiOCl nanosheets. Appl. Surf. Sci. 578, 152002. doi[:10.1016/j.](https://doi.org/10.1016/j.apsusc.2021.152002) [apsusc.2021.152002](https://doi.org/10.1016/j.apsusc.2021.152002)

Mohammadzadeh, A., Khoshghadam-Pireyousefan, M., Shokrianfard-Ravasjan, B., Azadbeh, M., Rashedi, H., Dibazar, M., et al. (2020). Synergetic photocatalytic effect of high purity ZnO pod shaped nanostructures with H_2O_2 on methylene blue
dye degradation. *J. Alloys Compd*. 845, 156333. doi:[10.1016/j.jallcom.2020.156333](https://doi.org/10.1016/j.jallcom.2020.156333)

Mohammed, A. A., Atiya, M. A., and Hussein, M. A. (2020). Simultaneous studies of emulsion stability and extraction capacity for the removal of tetracycline from aqueous solution by liquid surfactant membrane. Chem. Eng. Res. Des. 159, 225–235. doi:[10.1016/j.cherd.2020.04.023](https://doi.org/10.1016/j.cherd.2020.04.023)

Ni, T., You, Y., Xie, Z., Kong, L., Newman, B., Henderson, L., et al. (2022). Wastederived carbon fiber membrane with hierarchical structures for enhanced oil-in-
water emulsion separation: Performance and mechanisms. J. Memb. Sci. 653, 120543. doi[:10.1016/j.memsci.2022.120543](https://doi.org/10.1016/j.memsci.2022.120543)

Qiu, P., Huang, M., Wu, S., Wen, M., Yu, N., and Chen, Z. (2022). Dynamic effects of endo–exogenous stimulations on enzyme-activatable polymeric
nanosystems with photo–sono–chemo synergy. ACS Appl. Mat. Interfaces 14 (26), 29537–29549. doi:[10.1021/acsami.2c05276](https://doi.org/10.1021/acsami.2c05276)

Qiu, Y., Xu, X., Xu, Z., Liang, J., Yu, Y., and Cao, X. (2020). Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties. Chem. Eng. J. 389, 124471. doi[:10.1016/j.cej.2020.](https://doi.org/10.1016/j.cej.2020.124471) [124471](https://doi.org/10.1016/j.cej.2020.124471)

Rajagopal, S., Paramasivam, B., and Muniyasamy, K. (2020). Photocatalytic removal of cationic and anionic dyes in the textile wastewater by H_2O_2 assisted TiO2 and micro-cellulose composites. Sep. Purif. Technol. 252, 117444. doi:[10.1016/](https://doi.org/10.1016/j.seppur.2020.117444) [j.seppur.2020.117444](https://doi.org/10.1016/j.seppur.2020.117444)

Siddiqui, H., Qureshi, M. S., and Haque, F. Z. (2020). Biosynthesis of flowershaped CuO nanostructures and their photocatalytic and antibacterial activities. Nano-Micro Lett. 12 (1), 29. doi:[10.1007/s40820-019-0357-y](https://doi.org/10.1007/s40820-019-0357-y)

Singh, K., Kumar, A., Pandey, S. K., Awasthi, S., Gupta, S. P., and Mishra, P. (2020). Interpretation of adsorption behavior of carboxymethyl cellulose onto functionalized accurel polymeric surface. Ind. Eng. Chem. Res. 59 (43), 19102–19116. doi[:10.1021/acs.iecr.0c03894](https://doi.org/10.1021/acs.iecr.0c03894)

Sun, X., Sun, J., Sun, Y., Li, C., Fang, J., Zhang, T., et al. (2021). Oxygen self-sufficient nanoplatform for enhanced and selective antibacterial photodynamic therapy against anaerobe-induced periodontal disease. Adv. Funct. Mat. 31 (20), 2101040. doi:[10.1002/adfm.202101040](https://doi.org/10.1002/adfm.202101040)

Trandafilović, L. V., Jovanović, D. J., Zhang, X., Ptasińska, S., and Dramićanin, M. D. (2017). Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. Appl. Catal. B Environ. 203, 740–752. doi[:10.1016/](https://doi.org/10.1016/j.apcatb.2016.10.063) [j.apcatb.2016.10.063](https://doi.org/10.1016/j.apcatb.2016.10.063)

Tu, T. H., Tai, L. T., Tien, N. T., Huong, L. M., Oanh, D. T. Y., Nam, H. M., et al. (2020). Synthesis of $\rm Fe_2O_3/TiO_2/graphene$ aerogel composite as an efficient Fentonphotocatalyst for removal of methylene blue from aqueous solution. Vietnam J. Chem. 58 (5), 697–704. doi:[10.1002/vjch.202000109](https://doi.org/10.1002/vjch.202000109)

Uddin, M. J., Ampiaw, R. E., and Lee, W. (2021). Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere 284, 131314. doi[:10.1016/j.chemosphere.2021.131314](https://doi.org/10.1016/j.chemosphere.2021.131314)

Wang, B., Wang, Y., Guo, X., Jiao, Z., Jin, G., and Guo, X. (2017a). Reduced graphene oxide supported Cu2O nanoparticles as an efficient catalyst for Sonogashira coupling reaction. Catal. Commun. 101, 36–39. doi[:10.1016/j.](https://doi.org/10.1016/j.catcom.2017.07.020) [catcom.2017.07.020](https://doi.org/10.1016/j.catcom.2017.07.020)

Wang, C., Huang, R., Sun, R., Yang, J., and Sillanpää, M. (2021a). A review on persulfates activation by functional biochar for organic contaminants removal: Synthesis, characterizations, radical determination, and mechanism. J. Environ. Chem. Eng. 9 (5), 106267. doi[:10.1016/j.jece.2021.106267](https://doi.org/10.1016/j.jece.2021.106267)

Wang, C., Sun, R., Huang, R., and Wang, H. (2021b). Superior fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: Synthesis, catalytic performance, and mechanism. Sep. Purif. Technol. 270, 118773. doi:[10.1016/j.seppur.2021.118773](https://doi.org/10.1016/j.seppur.2021.118773)

Wang, D., Zhao, P., Yang, J., Xu, G., Yang, H., Shi, Z., et al. (2020). Photocatalytic degradation of organic dye and phytohormone by a Cu(II) complex powder catalyst
with added H₂O₂. Colloids Surfaces A Physicochem. Eng. Aspects 603, 125147. doi[:10.1016/j.colsurfa.2020.125147](https://doi.org/10.1016/j.colsurfa.2020.125147)

Wang, M., Guo, P., Chai, T., Xie, Y., Han, J., You, M., et al. (2017b). Effects of Cu
dopants on the structures and photocatalytic performance of cocoon-like Cu-
BiVO₄ prepared via ethylene glycol solvothermal method. *J* 8–14. doi:[10.1016/j.jallcom.2016.08.198](https://doi.org/10.1016/j.jallcom.2016.08.198)

Wang, Z., Zhang, Y., Ju, E., Liu, Z., Cao, F., Chen, Z., et al. (2018). Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 9 (1), 3334. doi:[10.1038/s41467-](https://doi.org/10.1038/s41467-018-05798-x) [018-05798-x](https://doi.org/10.1038/s41467-018-05798-x)

Watts, R. J., Sarasa, J., Loge, F. J., and Teel, A. L. (2005). Oxidative and reductive pathways in manganese-catalyzed fenton's reactions. J. Environ. Eng. 131131 (1), 1581–2164. doi[:10.1061/\(asce\)0733-9372\(2005\)131:1\(158\)](https://doi.org/10.1061/(asce)0733-9372(2005)131:1(158))

Weinberg, Z. A., Rubloff, G. W., and Bassous, E. (1979). Transmission, photoconductivity, and the experimental band gap of thermally grown SiO₂ films. Phys. Rev. B 19 (6), 3107–3117. doi:[10.1103/PhysRevB.19.3107](https://doi.org/10.1103/PhysRevB.19.3107)

Wu, G., Zhai, W., Sun, F., Chen, W., Pan, Z., and Li, W. (2012). Morphologycontrolled electrodeposition of Cu₂O microcrystalline particle films for application in photocatalysis under sunlight. Mat. Res. Bull. 47 (12), 4026–4030. doi[:10.1016/j.](https://doi.org/10.1016/j.materresbull.2012.08.067) [materresbull.2012.08.067](https://doi.org/10.1016/j.materresbull.2012.08.067)

Xiong, Z., Huang, Y., Huang, Z., Shi, Y., Qu, F., Zhang, G., et al. (2022). Confining nano-Fe₃O₄ in the superhydrophilic membrane skin layer to minimize internal fouling.
ACS Appl. Mat. Interfaces 14 (22), 26044–26056. doi[:10.1021/acsami.2c04685](https://doi.org/10.1021/acsami.2c04685)

Xu, C., Shi, S., Wang, X., Zhou, H., Wang, L., Zhu, L., et al. (2020). Electrospun SiO2- MgO hybrid fibers for heavy metal removal: Characterization and adsorption study of Pb(II) and Cu(II). *J. Hazard. Mat.* 381, 120974. doi[:10.1016/j.jhazmat.2019.120974](https://doi.org/10.1016/j.jhazmat.2019.120974)

Yan, Q., Lian, C., Huang, K., Liang, L., Yu, H., Yin, P., et al. (2021). Constructing an acidic microenvironment by MoS₂ in heterogeneous fenton reaction for pollutant control. *Angew. Chem. Int. Ed.* 60 (31), 17155–17163. doi[:10.1002/](https://doi.org/10.1002/anie.202105736) [anie.202105736](https://doi.org/10.1002/anie.202105736)

Yang, J., Huang, R., Wang, L., Luo, D., and Wang, C. (2022a). Efficient degradation of toxic mixed dyes through peroxymonosulfate activation by copper/iron nanoparticles

loaded on 3D carbon: Synthesis, characterizations, and mechanism. J. Environ. Chem. Eng. 10 (3), 107606. doi:[10.1016/j.jece.2022.107606](https://doi.org/10.1016/j.jece.2022.107606)

Yang, L., Jiao, Y., Xu, X., Pan, Y., Su, C., Duan, X., et al. (2022b). Superstructures with atomic-level arranged perovskite and oxide layers for advanced oxidation with an enhanced non-free radical pathway. ACS Sustain. Chem. Eng. 10 (5), 1899–1909. doi[:10.1021/acssuschemeng.1c07605](https://doi.org/10.1021/acssuschemeng.1c07605)

Yang, R., Fan, Y., Ye, R., Tang, Y., Cao, X., Yin, Z., et al. (2021). MnO₂-Based materials for environmental applications. Adv. Mat. 33 (9), 2004862. doi:[10.1002/](https://doi.org/10.1002/adma.202004862) [adma.202004862](https://doi.org/10.1002/adma.202004862)

Yang, Y., Xu, D., Wu, Q., and Diao, P. (2016). Cu₂O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci. Rep. 6 (1), 35158. doi:[10.1038/srep35158](https://doi.org/10.1038/srep35158)

Yu, N., Qiu, P., Ren, Q., Wen, M., Geng, P., Macharia, D. K., et al. (2021a). Transforming a sword into a knife: Persistent phototoxicity inhibition and alternative therapeutical activation of highly-photosensitive phytochlorin. ACS Nano 15 (12), 19793–19805. doi[:10.1021/acsnano.1c07241](https://doi.org/10.1021/acsnano.1c07241)

Yu, N., Tu, W., Qiu, P., Ren, Q., Chen, X., Zhu, M., et al. (2022). Full-route advances via biomimetic and biodegradable ultrasmall-in-nano architectures with radiation-photo synergy. Nano Today 43, 101427. doi[:10.1016/j.nantod.2022.](https://doi.org/10.1016/j.nantod.2022.101427) [101427](https://doi.org/10.1016/j.nantod.2022.101427)

Yu, N., Wang, Z., Zhang, J., Liu, Z., Zhu, B., Yu, J., et al. (2018). Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy. *Biomaterials* 161, 279–291. doi[:10.1016/j.](https://doi.org/10.1016/j.biomaterials.2018.01.047) [biomaterials.2018.01.047](https://doi.org/10.1016/j.biomaterials.2018.01.047)

Yu, X., Zhang, J., Chen, Y., Ji, Q., Wei, Y., Niu, J., et al. (2021b). Ag-Cu₂O composite films with enhanced photocatalytic activities for methylene blue degradation: Analysis of the mechanism and the degradation pathways. J. Environ. Chem. Eng. 9 (5), 106161. doi:[10.1016/j.jece.2021.106161](https://doi.org/10.1016/j.jece.2021.106161)

Zhai, W., Sun, F., Chen, W., Zhang, L., Min, Z., and Li, W. (2013). Applications of Cu₂O octahedral particles on ITO glass in photocatalytic degradation of dye pollutants under a halogen tungsten lamp. *Mat. Res. Bull.* doi[:10.1016/j.materresbull.2013.07.034](https://doi.org/10.1016/j.materresbull.2013.07.034)

Zhai, Z., Guo, X., Jiao, Z., Jin, G., and Guo, X.-Y. (2014). Graphene-supported Cu2O nanoparticles: An efficient heterogeneous catalyst for C–O cross-coupling of aryl iodides with phenols. Catal. Sci. Technol. 4 (12), 4196–4199. doi:[10.1039/](https://doi.org/10.1039/C4CY01048E) [C4CY01048E](https://doi.org/10.1039/C4CY01048E)

Zhang, D.-F., Zhang, H., Shang, Y., and Guo, L. (2011). Stoichiometry-controlled fabrication of Cu_xS hollow structures with $Cu₂O$ as sacrificial templates. *Cryst.* Growth Des. 11 (9), 3748–3753. doi:[10.1021/cg101283w](https://doi.org/10.1021/cg101283w)

Zhang, D. F., Zhang, H., Guo, L., Zheng, K., Han, X. D., and Zhang, Z. (2009). Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mat. Chem. 19 (29), 5220–5225. doi:[10.1039/B816349A](https://doi.org/10.1039/B816349A)

Zhang, X., Li, C., Chen, T., Tan, Y., Liu, X., Yuan, F., et al. (2021a). Enhanced visible-light-assisted peroxymonosulfate activation over MnFe2O4 modified g-C3N4/diatomite composite for bisphenol A degradation. Int. J. Min. Sci. Technol. 31 (6), 1169–1179. doi[:10.1016/j.ijmst.2021.11.008](https://doi.org/10.1016/j.ijmst.2021.11.008)

Zhang, X., Wu, H., Ke, Z., Yang, J., Chen, H., Xue, F., et al. (2021b). A new effective way to degrade methylene blue by introducing negative ions powder into Fe₃O4/H₂O₂ system to accelerate Fe(III)/Fe(II) transformation. Water Sci. Technol. 83 (8), 1834–1846. doi:[10.2166/wst.2021.097](https://doi.org/10.2166/wst.2021.097)

Zhu, S., Li, X., Kang, J., Duan, X., and Wang, S. (2019). Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ. Sci. Technol. 53 (1), 307–315. doi:[10.1021/acs.est.8b04669](https://doi.org/10.1021/acs.est.8b04669)

Zong, M., Song, D., Zhang, X., Huang, X., Lu, X., and Rosso, K. M. (2021). Facetdependent photodegradation of methylene blue by hematite nanoplates in visible light. Environ. Sci. Technol. 55 (1), 677–688. doi:[10.1021/acs.est.0c05592](https://doi.org/10.1021/acs.est.0c05592)