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Gastrointestinal tumours are the most common solid tumours, with a poor

prognosis and remain a major challenge in cancer treatment. Mesenchymal

stem cells (MSC) are multipotent stromal cells with the potential to differentiate

into multiple cell types. Several studies have shown that MSC-derived

exosomes have become essential regulators of intercellular communication

in a variety of physiological and pathological processes. Notably, MSC-derived

exosomes support or inhibit tumour progression in different cancers through

the delivery of proteins, RNA, DNA, and bioactive lipids. Herein, we summarise

current advances in MSC-derived exosomes in cancer research, with particular

reference to their role in gastrointestinal tumour development. MSC-derived

exosomes are expected to be a novel potential strategy for the treatment of

gastrointestinal cancers.
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Introduction

Gastrointestinal (GI) cancers are malignant tumours of the gastrointestinal tract and

the digestive appendages, including the liver and colorectum. According to the World

Health Organisation, over 15% of new diagnoses and 17% of cancer deaths are attributed

to GI cancers. Among these, the most common GI cancers are colorectal cancer with over

1.8 million cases per year, stomach cancer with 1.03 million cases, and liver cancer with

782,000 deaths (Ren and Xu, 2020). Overall, surgical resection remains the main clinical

treatment option for early treatment of colorectal, gastric, oesophageal, and other

gastrointestinal cancers. Despite the emergence of new treatments such as

neoadjuvant radiotherapy, bacterial therapy, and targeted immunotherapy, their

application has not yet been promoted and a significant number of patients still

develop distant metastases and drug resistance (Smyth and Moehler, 2019;

Soleimanpour et al., 2020; Wang et al., 2021a). Thus, there is an urgent need for a

OPEN ACCESS

EDITED BY

Sukhbir Kaur,
National Institutes of Health (NIH),
United States

REVIEWED BY

Xudong Feng,
Zhejiang University, China
Yu Meng,
Jinan University, China

*CORRESPONDENCE

Hua Qian,
ydfqqh@126.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Preclinical
Cell and Gene Therapy,
a section of the journal
Frontiers in Bioengineering and
Biotechnology

RECEIVED 15 August 2022
ACCEPTED 10 October 2022
PUBLISHED 20 October 2022

CITATION

Wang N, Pei B, Yuan X, Yi C,
Wiredu Ocansey DK, Qian H and Mao F
(2022), Emerging roles of mesenchymal
stem cell-derived exosomes in
gastrointestinal cancers.
Front. Bioeng. Biotechnol. 10:1019459.
doi: 10.3389/fbioe.2022.1019459

COPYRIGHT

© 2022 Wang, Pei, Yuan, Yi, Wiredu
Ocansey, Qian and Mao. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Review
PUBLISHED 20 October 2022
DOI 10.3389/fbioe.2022.1019459

https://www.frontiersin.org/articles/10.3389/fbioe.2022.1019459/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1019459/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.1019459/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.1019459&domain=pdf&date_stamp=2022-10-20
mailto:ydfqqh@126.com
https://doi.org/10.3389/fbioe.2022.1019459
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.1019459


new treatment strategy to improve the outcome and clinical

prognosis of patients with GI cancers.

Mesenchymal stem cells (MSCs) are an important source of

stem cell therapy in regenerative medicine. Also known as

“mesenchymal stromal cells”, MSCs are an important

component of the tumour microenvironment (TME)

(Whiteside, 2018). MSCs are a population of adult pluripotent

cells capable of self-renewal and differentiation into osteoblasts,

chondrocytes, and adipocytes, and may differentiate at tumour

sites. It is due to their powerful immunomodulatory and

immunosuppressive properties, as well as tissue regeneration

and repair capabilities that MSC therapy has emerged as a novel

clinical treatment strategy for cancer and a variety of diseases

with excessive immune responses such as inflammatory bowel

disease (IBD) and colorectal cancer (Kang et al., 2018). MSCs

play a double-edged sword-like role in tumourigenesis and

progression (Liang et al., 2021a). On the one hand, they

provide a framework for anchoring tumour cells in the form

of tumour stroma and secrete factors that facilitate tumour

growth. On the other hand, MSCs present in TME can be

transdifferentiated into M2 macrophages or myeloid-derived

suppressor cells (MDSC) under the influence of cytokines or

chemokines (Ridge et al., 2017).

All types of MSCs have a positive effect on the treatment of

cancer and can be a widely promoted therapeutic strategy in

clinical practice. The mechanisms of action of MSCs are based on

intercellular interactions and paracrine activity. Concerning

MSC-derived exosomes, which are considered to be a

paracrine interaction and play a powerful immunomodulatory

role in a variety of diseases including cancer, the therapeutic

functions of MSCs are largely dependent on these derived

exosomes (Jafari et al., 2019). Exosomes are bilayer membrane

structures containing proteins, lipids, RNA, metabolites, growth

factors, and cytokines, and are multifunctional transporters

between cells. Figure 1 illustrates the biogenesis, secretion, and

molecular composition of MSC-derived exosomes. It has been

established by studies that exosomes can transfer biomolecules

between tumour cells, stromal cells, fibroblasts, endothelial cells,

and immune cells, and act as paracrine mediators to facilitate

communication throughout the TME. Thus, exosomes are

FIGURE 1
Biogenesis, secretion, and molecular composition of MSC-derived exosomes. Multiple proteins are internalized from the cell surface or
transported from the Golgi; nucleic acids are endocytosed and delivered into the endosomes, followed by the formation of intracellular
multivesicular bodies (MVB). Further invagination of late endosomalmembranes ultimately results in the secretion of exosomes. MVBs are then either
taken up by lysosomes for degradation or fusedwith plasmamembrane for releasing all their cargos into extracellular spaces. Exosomal cargoes
include proteins, mRNAs, miRNAs, lncRNAs, circular RNAs, DNAs, etc.
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closely linked to cancer pathogenesis, progression, metastasis,

and immune regulation.

In recent years, the role of cancer tissue-derived exosomes in

the development and progression of gastrointestinal cancers has

been extensively studied (Table 1). Similarly, MSC-derived

exosomes have also been shown to be involved in the

development of various gastrointestinal cancers such as gastric

cancer, colorectal cancer, hepatocellular cancer, and pancreatic

cancer. Unfortunately, a systematic review on MSC-derived

exosomes in this context is still relatively lacking, and the

review written by Zhao et al. (Zhao et al., 2021) is a way

forward to filling this gap. In their review, they clearly

highlight the anti-tumour and pro-tumour effects of MSC-

derived exosomes on GI cancers and summarise the reasons

for the different roles played by exosomes in the development of

GI cancers. As a constantly expanding field with great potential,

research on the use of MSC-derived exosomes on GI cancers

needs regular assessment of the progress made. Thus, in this

review, we present a more detailed overview of the role of MSC-

derived exosomes in GI cancers and discuss their potential

clinical implications and future research directions. This will

contribute to driving the field in understanding the current status

of progress, identifying gaps, and addressing challenges towards

clinical application.

The dual role of MSCs in cancers

MSCs are adult stem cells with high differentiation potential

and self-renewal ability (Wei et al., 2013). MSCs are found in a

TABLE 1 Effects of cancer tissue-derived exosomes on gastrointestinal cancers.

Cancer
types

Exosomal
cargo

Studymodel Function Mechanism Reference

Pancreatic
cancer

miR-19a In vitro and in
vivo

Involve in the pathogenesis of pancreatic cancer-
associated diabetes

Induce β-cell dysfunction by targeting
ADCY1 and EPAC2

Pang et al.
(2021)

miR-30b-5p In vitro and in
vivo

A potential diagnostic marker for PDAC Promote tumour angiogenesis through the
inhibition of GJA1 expression

Chen et al.
(2022)

Myoferlin In vitro Influence the ability of human endothelial cells to
transfer nucleic acids

Promote tumour growth and angiogenesis
through the regulation of VEFG

Blomme et al.
(2016)

ZIP4 In vitro and in
vivo

A novel diagnostic biomarker for pancreatic cancer Stimulate proliferation, migration, and
invasion of non-metastatic pancreatic
cancer cells

Jin et al. (2018)

Colorectal
cancer

circPACRGL In vitro and in
vivo

Play an oncogenic role in CRC proliferation and
metastasis

Promote progression of colorectal cancer
via the miR-142-3p/miR-506-3p-TGF-β1
axis

Shang et al.
(2020)

HSPC111 In vitro and in
vivo

A potential therapeutic target for preventing CRC
liver metastases

Promote colorectal cancer liver metastasis
by reprogramming tumour-associated
fibroblast lipid metabolism

Zhang et al.
(2022)

miR-106b-3p In vitro and in
vivo

A potential prognostic biomarker and therapeutic
target for CRC

Promote metastasis by downregulating the
expression of DLC-1

Liu et al.
(2020a)

Wnt4 In vitro Enhance β-catenin translocation to the nucleus in
CRC cells

Activate the Wnt/β-catenin pathway to
induce migration and invasion

Huang et al.
(2018)

CAPS1 In vitro Promote epithelial cell migration Overexpression of CAPS1 could alter the
expression pattern of exosomal proteins
involved in cell migration

Wu et al.
(2019)

Gastric
cancer

miR-301a-3p In vitro and in
vivo

A promising predictors and potential therapeutic
target for GC metastasis

Promote gastric cancer malignant behavior
and metastasis through HIF-1α
accumulation

Xia et al. (2020)

miR-130a In vitro and in
vivo

A potential biomarker for monitoring the activity
of GC

Target vascular endothelial cells C-MYB to
activate gastric cancer angiogenesis

Yang et al.
(2018)

X26nt In vitro and in
vivo

Promote the proliferation, migration, and tube
formation of human umbilical vein endothelial cells

Increase angiogenesis and vascular
permeability by targeting VE-cadherin

Chen et al.
(2021)

Liver cancer miR-4454 In vitro Promote the proliferation, migration,invasion, and
vascularization and accelerate cycle arrest,
apoptosis, and ROS of HepG2 cells

Promote Hepatic Carcinoma Progression by
Targeting Vps4A and Rab27A

Lin et al. (2021)

ADCY1, Adenylate cyclase 1; DLC-1, Deleted in Liver Cancer-1; EPAC2, exchange protein activated by cyclic-AMP 2; GC, gastric cancer; GJA1, Gap Junction Protein Alpha 1; HIF,

hypoxia-inducible factors; PDAC, pancreatic ductal adenocarcinoma; TGF-β1, transforming growth factor-β1; VE-cadherin, vascular endothelial cadherin; VEFG, vascular endothelial
growth factor; Vps4A, vacuolar protein sorting 4.
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wide variety of tissues, initially isolated from bone marrow and

later from adipose tissue, muscle, peripheral blood, hair follicles,

teeth, placenta, and umbilical cords (Hmadcha et al., 2020).

MSCs can differentiate into different cell types such as

osteoblasts, chondrocytes, myoblasts, and adipocytes, giving

rise to a variety of mesenchymal tissues. Interactions are

initiated by cytokines, chemokines, extracellular vesicles,

inflammatory stimuli, or co-culture with other cells (Song

et al., 2020). Due to their immunomodulatory and cell

survival-promoting functions, as well as their ease of access

and efficient proliferation in vitro, MSCs have been widely

studied and researched since their discovery, and a range of

MSC-based cell therapies are now available in the clinic. In its

application in inflammation, infection, metabolic abnormalities,

immune disorders, tissue damage, and many other diseases,

regenerative medicine solutions using MSCs as a therapeutic

tool has shown significant effects (Yuan et al., 2021).

Overall, MSCs have a dual role in promoting and

inhibiting tumourigenesis and development. In addition to

protecting the host from foreign invasion, the body’s immune

system recognises tumour antigens and destroys malignant

tumours. Thus, tumour growth, invasion and metastasis are

important aspects of the tumour immune escape mechanism.

MSCs have powerful immunosuppressive functions that

support tumour cell evasion from immune surveillance. In

the tumour microenvironment, MSCs are activated mainly by

the pro-inflammatory factors tumournecrosis factor-α (TNF-

α), Interferon-γ (IFN-γ) or interleukin-1β (IL-1β) and

interact with different types of immune cells such as

B cells, T cells, dendritic cells, NK cells, and macrophages

by secreting mediators and soluble factors such as

indoleamine 2,3-dioxygenase (IDO), prostaglandin E2

(PGE2), and NO (Rhee et al., 2015). MSCs play an

important role in promoting tumour angiogenesis through

the release of high levels of cytokines and pro-angiogenic

growth factors, including vascular endothelial growth factor

(VEGF), fibroblast growth factor-2 (FGF-2), IL-8, IL-6,

angiopoietin, and transforming growth factor-β (TGF-β)
(Feng and Chen, 2009; Du et al., 2016). Cancer-associated

fibroblasts (CAFs) are present in most aggressive tumours and

secrete stromal cell-derived factor-1 (SDF-1), which promotes

angiogenesis and tumour growth (Orimo et al., 2005). It has

been shown that MSCs are resting fibroblasts from which they

can be transformed into CAFs and thus play a pro-tumour role

(Kalluri, 2016). In many tumours, molecules such as

hepatocyte growth factor (HGF), epidermal growth factor

(EGF), platelet-derived growth factors (PDGF), and TGF-β
can act as epithelial-mesenchymal transformation (EMT)-

inducible signals. Interestingly, these factors are secreted by

MSCs and activate a range of EMT-promoting transcription

factors to deliver EMT-promoting signals (Tse and Kalluri,

2007). Chen et al. (Chen et al., 2015) report that paracrine

factors from adipose MSCs, such as ZEB2, ZEB1, Twist, Slug,

and Snail, enhance the metastatic capacity of colon cancer

cells in a contact-dependent mode via the Wntsignalling

pathway in a co-culture model of colon cancer cells. In

addition to conferring tumour support by suppressing

immune responses in the tumour microenvironment,

promoting angiogenesis, transforming to CAFs, and

promoting tumour metastasis, MSCs can also mediate

inhibition of apoptosis and increase cancer stem cells

(CSCs) (Liang et al., 2021a).

In contrast, many other studies have shown that MSCs

have a tumour suppressive profile. Recently, the effective role

of immunologically activated umbilical cord blood-derived

MSC (hucMSC) induced by the TLR7 agonist imiquimod in

reducing the viability, proliferation, migration, and invasion

of A549 cells and enhancing their apoptosis has been

documented (Ye et al., 2021). Notably, the AKT signalling

pathway is a central node in many signalling pathways and is

closely associated with the survival, invasion, and migration of

most tumour cells (Revathidevi and Munirajan, 2019). In

Kaposi’s sarcoma model, Khakoo et al (Khakoo et al., 2006)

found that intravenously administered MSCs could reach

tumour sites and significantly reduce the proliferation of

tumour cells. They further found that MSCs could inhibit

the activation of AKT protein kinase in vitro but not in all

tumours and primary cell lines and that their tumour

suppressive effect was related to their ability to inhibit

AKT activity in target cells in vivo. In addition, hucMSC

could also inhibit the migration of glioma cells by down-

regulating the AKT pathway (Dasari et al., 2010). It is clear

from these findings that the regulation of cell signalling is one

of the ways in which MSCs exert their anti-tumour effects. Lu

et al. (Lu et al., 2008)isolated bone marrow MSCs (BMSCs)

from mouse bone marrow and co-cultured them with mouse

liver cancer H22, lymphoma (YAC-1 and EL-4), and rat

insulinoma INS-1 cells. MSCs were found to inhibit mouse

tumours both in vivo and in vitro by up-regulating the mRNA

expression of p21, a negative regulator of the tumour cell

cycle, and the expression of caspase 3, an apoptosis-related

protease. Moreover, MSCs can also inhibit tumour growth by

increasing inflammatory cell infiltration, regulating the cell

cycle, and inhibiting angiogenesis in various ways (Chen et al.,

2021).

The multiple effects of MSC-derived
exosome on cancers

It is generally accepted that MSCs exert their

immunomodulatory functions mainly through the paracrine

pathway, with their derived exosomes being one of the

bioactive substances that have received the most attention.

Studies have shown that exosomes are involved in multiple

stages of tumourigenesis and development, and as a new type
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of drug carrier, exosomes are unique in the field of cancer-

targeted therapy and personalized therapy (Figure 2). Just like

other exosomes, MSC-derived exosomes have also been reported

to closely relate tumour proliferation, apoptosis, metastasis,

angiogenesis, chemotherapy/radiotherapy resistance, and CSC

generation.

Tumour growth

The effect of exosomes on tumour progression has been

widely reported in the last decade or so. MSC-derived

exosomes have an impact on tumourigenesis and

progression in either a supportive or inhibitory manner,

and tumour-associated miRNAs enriched in these exosomes

are closely associated with promoting or inhibiting cancer cell

proliferation. For example, miR-130b-3p, a potential

therapeutic target and biomarker for lung cancer, is

upregulated in lung cancer and acts as a promoter of lung

cancer (Tian et al., 2016). A study conducted by Guo et al.

(Guo et al., 2021) showed that MSC-derived exosomes deliver

miR-130b-3p to lung cancer cells and block the NFE2L2/

TXNRD1 pathway by inhibiting FOXO3 to achieve the

effects of promoting cancer cell proliferation, migration,

and invasion while inhibiting cancer cell apoptosis.

Similarly, in malignant tumours such as kidney cancer,

breast cancer, and nasopharyngeal carcinoma, MSC-derived

exosomes can exert oncogenic and pro-carcinogenic effects

through specific miRNAs (Du et al., 2014; Zhao et al., 2019;

Zhou et al., 2019). Furthermore, BMSC-derived exosomes

enhance the expression of VEGF in tumour cells by

activating the extracellular signal-regulated kinase 1/2

(ERK1/2) pathway and exerting a pro-cancer effect (Zhu

et al., 2012). In addition to higher miRNA levels, other

factors such as higher amounts of cytokines and adhesion

molecules in patient-derived exosomes may also be involved in

tumour promotion.

Contrary to this observation, miRNAs, proteins, and

lncRNAs enriched in MSC-derived exosomes also play a role

in cancer suppression. miR222-3p is highly expressed in BMSC-

derived exosomes (Furuta et al., 2016), which is delivered to

negatively regulate the IRF2/INPP4B signaling pathway, thus,

inhibiting proliferation and promoting apoptosis in acute

myeloid leukemia (AML) cells by targeting IRF2 (Zhang et al.,

2020). In addition to BMSC-derived exosomes, hucMSC and

adipose MSCs (AMSC)-derived exosomes also have anti-

oncogenic properties (Takahara et al., 2016; Maffey et al.,

2017). AMSC-derived exosomes inhibit prostate cancer by

FIGURE 2
Exosome-targeted therapy in tumour metastasis. As a new type of drug carrier, exosomes can be loaded with different types of compounds
such as small molecule chemical drugs, proteins, and nucleic acids to target tumour tissues and exert personalized therapeutic effects. Exosomes
play an important role in tumourigenesis and metastasis, promoting epithelial-mesenchymal transition, angiogenesis, and extracellular matrix
remodeling in the tumour microenvironment. Exosomes can also promote the formation of pre-metastatic niches by assisting tumour cells to
escape immune surveillance, allowing cancer cells to invade and colonize distant organs.
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delivering miR-145 to reduce Bcl-xL activity and promote

apoptosis via the caspase-3/7 pathway (Takahara et al., 2016).

Metastasis/invasion

EMT is the cellular process by which cells change from an

epithelial phenotype to a mesenchymal phenotype, reducing

intercellular adhesion and improving migration. Evidence

suggests that the pro-metastatic effects of MSC-derived

exosomes in tumour cells are associated with EMT induction.

Studies have shown that part of the mechanism by which MSCs

induce the invasion of breast cancer cells is via exosomes secreted

by MSCs (Maffey et al., 2017). Zhou et al. (Du et al., 2016)

previously demonstrated that hucMSC-derived exosomes induce

EMT via the ERK pathway, promoting the invasive and

migratory potential of breast cancer cells, and causing

malignant tumour progression and metastasis.

Angiogenesis

MSC-derived exosomes play an intermediary role in

intercellular signalling, which includes angiogenic signals, and

thus, play a pro- or anti-angiogenic role. To date, no consistent

conclusions have been drawn regarding the role of MSC-derived

exosomes in angiogenesis in the tumour environment. A recent

study found that exosomes isolated from BMSC conditioned

media could transfer several angiogenic-promoting miRNAs into

HUVEC, thus promoting angiogenesis in vivo and playing an

important role in stem cell-endothelial cell communication

(Gong et al., 2017). Wnts is a potent angiogenic factor and its

signalling pathway plays a major role in angiogenesis and

vascular remodelling (Olsen et al., 2017). McBride (McBride

et al., 2017) and colleagues reported that exosomes isolated from

BMSCs could transport Wnt3a to stimulate fibroblast

proliferation and enhance angiogenesis in vitro. Moreover,

exosomes derived from placental MSCs and adipose MSCs

have been reported to have pro-angiogenic properties

(Salomon et al., 2013; Lopatina et al., 2014).

The anti-vascular remodeling properties of MSC-derived

exosomes have also been confirmed by several other studies.

For example, miR-16, a miRNA known to target VEGF, is

enriched in MSC-derived exosomes. A study found that miR-

16 in MSC-derived exosomes is involved in the inhibition of

angiogenesis by down-regulating the expression of VEGF and

CD31 in breast cancer cells (Lee et al., 2013). Pakravan et al.

(Pakravan et al., 2017) similarly found that MSC-derived

exosomes inhibit angiogenesis in vitro by regulating the

mTOR/HIF-1α/VEGF signalling axis in breast cancer cells.

The concentration of oncogenic proteins, cytokines, and

adhesion molecules may also be associated with exosome-

mediated angiogenesis.

Regulation of the immune response

MSC-derived exosomes have a wide range of

immunomodulatory capabilities similar to those of MSCs.

Exosomes not only act as natural antigen carriers, but also as

presenters to regulate direct and indirect antigen presentation,

and stimulate adaptive and innate immune responses. Exosomes

also act as carriers for the transfer of antigenic peptides or

bioactive molecules, which in turn regulate other immune cell

subsets (Thery et al., 2009). BMSC-derived overexpression of

IDO-1 exosomes reduces IFN-γ expression in DCs and T cells

(He et al., 2018). BMSC-derived exosomes have also been

reported to induce immature IL-10-secreting DC activation,

increase Foxp3+ Treg cell numbers, and suppress

inflammatory T helper 17 (Th17) responses (Favaro et al.,

2016). Other sources of MSC-derived exosomes are also

involved in the regulatory processes of the immune system.

AMSC-derived exosomes have been reported to inhibit the

proliferation and activation of stimulated T cells, while

hucMSC-derived exosomes produce immunosuppressive-

related cytokines by binding to monocytes in human

peripheral blood mononuclear cells (PBMCs) and producing

M2 macrophages (Blazquez et al., 2014; Hu et al., 2020).

Roles of MSC-derived exosomes in GI
cancers

As earlier mentioned, MSC-derived exosomes are closely

associated with tumourigenesis and progression. The

components of exosomes mainly include proteins, nucleic

acids, and lipids, all of which participate in the cancer

process. Of these, the role of miRNAs in GI cancer has been

most widely studied (Table 2). This section focuses on the role of

MSC-derived exosomes and their clinical applications in

GIcancer such as gastric, colorectal, hepatocellular, and

pancreatic cancers.

Gastric cancer

Gastric cancer (GC) remains a thorny and unsolved clinical

challenge. With over one million new cases estimated each year,

GC is considered the fifth most diagnosed malignancy in the

world (Smyth et al., 2020). In 2018, the global age-standardized

gastric cancer incidence and mortality rates were 11.1 and 8.2 per

100,000 people respectively (Thrift and El-Serag, 2020). There are

many risk factors for the development of GC, including diet,

smoking, alcohol consumption, and Helicobacter pylori and

Epstein-Barr virus (EBV) infections (Machlowska et al., 2020).

Systemic chemotherapy, radiotherapy, surgery, immunotherapy,

and targeted therapy are all available as treatment options for GC

(Joshi and Badgwell, 2021). In recent years, multidisciplinary
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treatment has been widely accepted, and more clinicians are

opting for triple combination chemotherapy, which can cure GC

(Chalabi, 2021). Available evidence has shown that exosomes

play an important role in the progression of GC, including

tumourigenesis, metastasis, angiogenesis, immune evasion, and

drug resistance (Fu et al., 2019). The promise of exosomes,

particularly of MSC origin, provides hope and a new

perspective on the future of GC prevention and treatment.

It is documented that hBM-MSCs promote GC growth by

regulating c-Myc (Chen et al., 2018), which positively regulates

the progression of GC. Gu et al. (Gu et al., 2016) found that MSC-

derived exosomes could induce EMT and enhance the migration

and invasion of GC cells through activation of the AKT pathway,

thereby promoting the development and metastasis of GC.

Similarly, a study conducted by Jin et al. (Qi et al., 2017)

reports that exosomes secreted by hBMSCs have the ability to

activate the Hedgehog signalling pathway to promote the

proliferation, differentiation, and metastasis of GC cells. These

findings provide new evidence for the involvement of MSC-

derived exosomes in GC progression. Exosomes may be a novel

mediator of the role of MSCs in GC promotion, and MSC-

derived exosomes may become a novel therapeutic target for GC

treatment.

MSC-derived exosomes are also expected to be efficient

nanocarriers to effectively hinder gastric carcinogenesis. Their

cargoes like miR-1228 negatively regulate NF-κB activity in

GC cells while inhibiting EMT (Jia et al., 2013). Chang et al.

(Chang et al., 2021)transfected MSC with lentiviral vectors

carrying overexpressed and disrupted sequences of miR-1228

and its downstream target MMP-14, and subsequently extracted

exosomes. It was found that BMSC-derived exosomes

overexpressing miR-1228 inhibited the growth of GC cells by

down-regulating the expression of MMP-14. The same could be

demonstrated in another study where L-PGDS served as a

potential drug to inhibit the proliferation of GC cells through

the PPARγ signalling pathway (Fukuoka et al., 2015). You (You

TABLE 2 The role of MSC-derived exosomal miRNAs in GI cancer.

Cancer
types

Exo-
miRNA

Study
model

Source of
exosomes

Function Mechanism Reference

Gastric
cancer

miR-1228 In vitro hucMSCs Inhibit GC growth Inhibit MMP-14 upregulation-induced invasion
and migration of gastric cancer cells

Chang et al.
(2021)

miR-
301b-3p

In vitro and
in vivo

N/A Induce drug resistance,
proliferation and migration of GC
cells

Promote multidrug resistance of gastric cancer cells
by inhibiting TXNIP

Zhu et al. (2022)

Colorectal
cancer

miR-431-5p In vitro and
in vivo

hucMSCs Inhibit CRC growth Inhibit CRC progression by suppressing PRDX1 Qu et al. (2022)

miR-16-5p In vitro and
in vivo

hBM-MSCs Inhibit CRC cell proliferation,
migration and invasion

Stimulates apoptosis in CRC cells by
downregulating ITGA2

Xu et al. (2019a)

miR-22-3p In vitro hBM-MSCs Inhibit CRC cell proliferation,
migration and invasion

Inhibit CRC cells proliferation and invasion by
mediating the RAP2B/PI3K/AKT pathway

Wang and Lin,
(2021)

miR-424 In vitro and
in vivo

hBM-MSCs Promote CRC cell proliferation and
migration

Suppress tumour growth in CRC by upregulating
TGFBR

Zhang et al.
(2021a)

miR-30a In vitro and
in vivo

hCC-MSCs Promote the tumourigenicity of
colon cancer

Promote CRC cells proliferation, migration and
metastasis by inhibiting MIA3 expression

Du et al. (2021)

Liver cancer miR-199a/
b-3p

In vitro and
in vivo

AMSCs Improve the sensitivity of liver
cancer cells to chemotherapeutic
drugs

Suppresses HCC growth by inhibiting the PAK4/
Raf/MEK/ERK pathway

Hou et al.
(2011)

miR -122 In vitro and
in vivo

AMSCs Improve the antitumour efficacy of
chemotherapeutic agents in HCC

Enhance HCC cells sensitivity to
chemotherapeutics by altering the expression of
miR-122 target genes in HCC cells

Lou et al. (2015)

Pancreatic
Cancer

miR-124 In vitro and
in vivo

hBM-MSCs Inhibit tumour growth Inhibit the proliferation, invasion, migration, and
EMT of pancreatic tumour cells

Xu et al. (2020)

miR-1231 In vitro and
in vivo

hBM-MSCs Inhibit the activity of PC Inhibit PC cell proliferation, migration, invasion
and adhesion to the matrix

Shang et al.
(2019)

miR-128-3p In vitro hucMSCs Inhibit PC growth Suppress the proliferation, invasion, and migration
of PANC-1 cells

Xie et al. (2022)

miR-100-5p In vitro and
in vivo

hucMSCs Promote the growth of pancreatic
ductal adenocarcinoma

Promote Panc-1 and BxPC3 cell growth by
increasing proliferation and migration

Ding et al.
(2021a)

AMSCs, adipose tissue-derived MSCs; CRC, colorectal cancer; EMT, epithelial-mesenchymal transformation; hBM-MSCs, human bone marrow-derived MSC; HCC, hepatocellular

carcinoma; hCC-MSCs, human CRC-derived MSCs; hucMSCs, human umbilical cord-derived MSCs; GC, gastric cancer; MMP, matrixmetalloproteinases; PANC, pancreatic cancer; PC,

pancreatic cancer; PRDX1, peroxiredoxin 1.
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et al., 2022) and others found that MSC-derived extracellular

vesicles overexpressing L-PGDS could inhibit GC progression by

regulating GC cell stemness and inhibiting

STAT3 phosphorylation. This suggests that MSC-derived

exosomes could be an effective vehicle for GC therapy.

MSCs play an important role in chemotherapy resistance

(Roodhart et al., 2011). There is now evidence that MSCs are

associated with microenvironment-mediated drug resistance

through the production of multiple factors, circulating

macromolecules, and activation of certain signalling cascades

to protect tumour cells from chemotherapeutic agents

(Houthuijzen et al., 2012; Castells et al., 2013; Kucerova et al.,

2013). A growing number of studies also suggest the involvement

of MSC-derived exosomes in mediating chemoresistance in GC.

Ji et al. (Houthuijzen et al., 2012)first reported that MSC-derived

exosomes protect GC cells from chemotherapy-induced

apoptosis by upregulating multidrug resistance-associated

proteins mainly through their protein activation of the CaM-

Ks/Raf/MEK/ERK signalling cascade. Another study (Ji et al.,

2015) also showed that miR-301b-3p in exosomes from MSCs

promotes multi-drug resistance in GC cells by inhibiting

thioredoxin interacting protein (TXNIP). This suggests that

MSC-derived exosomes are one of the key regulators of drug

resistance in GC cells. Targeting the interaction of MSC-derived

exosomes with cancer cells may help to improve the efficacy of

GC chemotherapy.

Colorectal cancer

Colorectal cancer (CRC) is the third and second most

common cancer in terms of diagnosis and mortality

respectively (Kishore and Bhadra, 2021). Globally, 1.8 million

cases of CRC were reported in 2018 and 88,100 CRC-related

deaths occurred the same year (Bray et al., 2018). Metastatic

disease is seen in 20% of patients with newly diagnosed CRC and

in a further 25% of patients who develop metastases after

presenting with localised lesions (Biller and Schrag, 2021).

Conventional treatment options include surgery,

chemotherapy, radiotherapy, and immunotherapy (Johdi and

Sukor, 2020). Depending on the specific site of the disease and its

progression, these treatments can be used in combination (Van

Cutsem et al., 2014; Van Cutsem et al., 2016; Yoshino et al.,

2018). Epidemiological studies have identified a range of risk

factors associated with CRC, including a family history of CRC or

associated genetic disorders (e.g. Lynch syndrome, familial

adenomatous polyposis), personal medical history (e.g. IBD

and diabetes), lifestyle and dietary habits (e.g. smoking,

FIGURE 3
The role of MSC-derived exosomes in CRC initiation and progression, including tumour cell proliferation, invasion, metastasis, angiogenesis,
and EMT.
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alcohol consumption, consumption of processed meat), and

bacterial infections (e.g. Bacteroides fragilis, Escherichia coli)

(Handel et al., 2020; Kim et al., 2020; McNabb et al., 2020).

As mentioned earlier, disease progression, metastasis, and drug

resistance in a number of patients with CRC have been associated

with exosomal cargo (Cheshomi and Matin, 2018; Kletukhina

et al., 2019) (Figure 3).

Just like in other cancers, MSC-derived exosomes have both

inhibitory and promotive effects on CRC. A recent study showed

that the upregulation of hucMSC-derived miR-431-5p inhibits

CRC progression by suppressing PRDX1, with a predictive effect

on the prognosis of CRC patients (Qu et al., 2022). The mRNA

expression level of ITGA2 has been found to be significantly

higher in gastric cancer tissues compared to normal tissues

(Chuang et al., 2018), is closely associated with other cancers

such as pancreatic cancer and CRC, and therefore could be a

potential therapeutic target for these cancers

(Sakthianandeswaren et al., 2011; Ferraro et al., 2014; Li et al.,

2021a). Moreover, ITGA2 is highly expressed in CRC tissues and

is a target gene for miR-16-5p (Xu et al., 2019a). Further studies

in vivo and in vitro reveal that BMSC-derived exosomes

overexpressing miR-16-5p inhibit the proliferation, migration,

and invasion of CRC cells while stimulating CRC cell apoptosis

through the downregulation of ITGA2. Similarly, Wang et al.

(Wang and Lin, 2021) reported that miR-22-3p in MSC-derived

exosomes also inhibits the development of CRC. miR-22-3p’s

downstream target gene is RAP2B, located on 3q25.2, an

oncogene that is highly expressed in a variety of tumours and

plays an important role in promoting tumour cell proliferation

and metastasis (Zhu et al., 2020a; Li et al., 2022a). MSC-derived

exosomal miR-22-3p inhibits CRC cell proliferation and invasion

by regulating the RAP2B and PI3K/AKT pathways, leading to the

inhibition of CRC. Notably, MSC-derived exosomal miRNA-

3940-5p can also inhibit CRC metastasis by targeting integrin α6
(Li et al., 2021b). The miR-146a/SUMO1 axis is also a pathway

for MSC-derived exosomes to mitigate the progression of colitis

and inhibit CRC progression (Wang et al., 2022).

However, a number of studies have also shown that in

tumour tissues, MSC-derived exosomes regulate tumour cells

by delivering unique miRNAs to neighbouring cells and promote

proliferation, migration, and invasion of tumour cells (Sharma,

2018). Recently, Zhang et al. (Zhang et al., 2021a) showed that

BMSC-derived exosomes promote CRC cell proliferation and

enhances CRC cell migration and invasion through miR-424,

while the inhibition of miR-424 and elevation of TGFBR3 repress

CRC cell proliferation and induce their apoptosis. Notably, they

also found that miR-424 and TGFBR3 expression correlated with

the degree of tumour differentiation, depth of tumour

infiltration, TNM stage, vascular infiltration, lymphatic node

metastasis (LNM), and distant metastasis in CRC patients.

Studies also report that colon cancer stem cells (CCSCs) play

an important role in cancer recurrence and chemotherapy

resistance (Ricci-Vitiani et al., 2008; Gupta et al., 2019;

Shiokawa et al., 2020). It is known that BMSC-derived

exosomes increase the number of CSCs through the delivery

of miR-142-3p, promoting a stem cell-like phenotype in CRC

cells and thus worsening the progression of the disease (Li and Li,

2018). Several other studies further confirm the key role of MSC-

derived exosomes in cancer progression by carrying microRNAs

(miRNAs) and other types of molecules (Xu et al., 2019b; Jing

et al., 2020). To this effect, a variety of miRNAs in MSC-derived

exosomes could be potential therapeutic targets and their

modulation may provide a new strategy for the treatment

of CRC.

Liver cancer

Liver cancer remains one of the most common and deadly

malignancies worldwide, and its incidence is increasing every

year (Llovet et al., 2021). It is estimated that more than 1 million

people will die from liver cancer by 2030 (Villanueva, 2019).

Globally, hepatocellular carcinoma (HCC) is the leading type of

liver cancer, accounting for approximately 75% of the total

incidence (Petrick et al., 2020). HCC mostly occurs in patients

with cirrhosis (Forner et al., 2018), and the incidence of HCC is

declining in some high prevalence areas, but increasing in many

low prevalence areas (McGlynn et al., 2021). There are many

clinical strategies for the treatment of HCC, including hepatic

resection, liver transplantation, and transarterial

chemoembolisation (TACE) (Liu et al., 2015). Among them,

chemotherapy and immunotherapy are the better treatment

options (Anwanwan et al., 2020). It is documented that MSC-

derived exosomes have tissue repair effects, while drug-loaded

exosomes have the potential to be used in the clinical treatment of

liver cancer (Borrelli et al., 2018). As the specific mechanisms of

MSC-derived exosome action in tissue repair and cancer

continue to be explored, exosome-based therapies will become

an alternative option for the clinical management of liver cancer.

Exosomes can promote liver regeneration, modulate

inflammation and fibrosis, or inhibit tumour growth and

metastasis in specific ways, and hold a promise as a novel

therapeutic tool in a variety of liver diseases, including viral-

associated liver disease, alcoholic liver disease (ALD), non-

alcoholic fatty liver disease (NAFLD), and liver cancer

(Borrelli et al., 2018; Balaphas et al., 2019; He et al., 2019;

Ding et al., 2021b). The use of exosomes to control the

progression of liver disease has therefore received increasing

attention. Glutathione peroxidase 1 (GPX1) is an important

antioxidant in the human body and is widely present in all

cells (Deponte, 2013). GPX1 is closely associated with

tumourigenesis and disease progression (Brigelius-Flohe and

Kipp, 2009)and can be used as a biomarker for the clinical

diagnosis and prognosis of certain malignancies (Cheng et al.,

2019; Wei et al., 2020). Yan et al. (Yan et al., 2017)found that

hucMSC-exosome promotes recovery from oxidative liver injury
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through the delivery of GPX1. In a mouse model of CCL4-

induced liver injury, hucMSC-exosome reduced serum MDA,

proinflammatory cytokine secretion, hepatic 8-OHdG

expression, and apoptosis, exerting antioxidant and anti-

apoptotic effects, thereby promoting liver injury repair and

rescuing liver failure. Oxidative stress is often considered to

be a key factor in the progression of chronic liver disease and

hepatocarcinogenesis (Yu et al., 2014; Takaki and Yamamoto,

2015). Data from Jiang et al. (Jiang et al., 2018a) show that

hucMSC-derived exosomes have a role in inhibiting liver tumour

growth and that the specific mechanism of action is likely to be

that hucMSC-Ex reduces oxidative stress in liver tumours and

exhibits hepatoprotective functions through the antioxidant

defense. Evidence has emerged that MSC-derived exosomes

play an important tumour suppressive role in

hepatocarcinogenesis via their molecular cargoes. For

example, C5orf66-AS1 in MSC-derived exosomes enhances

DUSP1 expression and inhibits ERK phosphorylation, thereby

inhibiting HCC in vivo (Gu et al., 2021). This shows that MSC-

derived exosomes and their cargoes have great potential for

clinical applications in the treatment of liver disease and liver

cancer.

MSC-derived exosomes have great potential as drug carriers

with specific functions in combination with anti-cancer drugs for

the treatment of HCC. Norethindrone (NCTD), a demethylated

derivative of zebularine with enhanced anticancer activity and

reduced toxicity of zebularine, has been used as a combination

chemotherapeutic agent for liver cancer in clinical oncology

treatment (Jiang et al., 2018b; Chi et al., 2019). NCTD is

combined with 2-deoxy-glucose to inhibit the proliferation

and migration of HCC cells. Currently, combining NCTD

with biomaterials and anti-cancer drugs can greatly enhance

the therapeutic effect of various HCCs and is a promising strategy

(Li et al., 2021c; Gao et al., 2021; Yan et al., 2022). Liang et al.

(Liang et al., 2021b)combined NCTD with purified BMSCs-

derived exosomes by electroporation and found that the

BMSC-Exos-NCTD drug delivery system could provide a

sustained and slow drug release process that could effectively

promote cell uptake, induce cell cycle arrest, reduce tumour cell

proliferation, and increase apoptosis. The BMSC-Exos-NCTD

exhibited stronger in vivo antitumour effects than NCTD alone,

and the BMSC-derived exosomes not only function as good drug

carriers but also inhibit the growth of HCC cells, acting as a dual

therapeutic agent in combination with NCTD drugs.

The acquisition of drug resistance is one of the main reasons

for the current suboptimal clinical outcome of liver cancer (Bao

and Wong, 2021). Therefore, there is an urgent need to identify

new targets and develop new therapeutic approaches to improve

chemosensitivity in liver cancer. Considering the critical role of

miRNAs in the progression of liver cancer and the acquisition of

multidrug resistance (Giordano and Columbano, 2013), miR-

199a-3p shows a downregulated trend in almost all HCC tissues,

and its downregulation is associated with poor prognosis (Hou

et al., 2011). MicroRNA-199a-3p has been shown to regulate

hepatocyte apoptosis and hepatocarcinogenesis (Callegari et al.,

2018; Li et al., 2020), affecting the sensitivity of human HCC cells

to adriamycin (Fornari et al., 2010). Lou et al. (Lou et al., 2020)

reported that mir-199a-modified exosomes from AMSCs could

effectively enhance the sensitivity of HCC cells to

chemotherapeutic agents by targeting the mTOR signaling

pathway. In addition, intravenous injection of AMSC-derived

exosomal miRNA-199a was further found to diffuse into tumour

tissue, effectively enhancing the sensitivity of HCC cells to

chemotherapeutic agents. In a previously established

subcutaneous tumour-loaded model, the injection of mir-122-

modified AMSC-derived exosome (AMSC-Exo-122) also

significantly improved the antitumour efficacy of

chemotherapeutic agents in HCC (Lou et al., 2015). The

export of specific miRNAs via MSC-derived exosomes

represents a novel strategy to improve the sensitivity of HCC

chemotherapy.

Pancreatic cancer

Pancreatic cancer is one of the deadliest types of human

cancer due to its often advanced stage of detection and

widespread treatment resistance (Mizrahi et al., 2020).

According to GLOBOCAN 2020, there were 495,773 new

cases worldwide and 466,003 deaths from pancreatic cancer

(Papadakos et al., 2022). Unlike other tumours, although the

incidence of pancreatic cancer continues to rise, the survival rates

have barely improved (Khalaf et al., 2021). The continued

increase in incidence is due in large part to an aging global

population and key risk factors such as smoking, obesity,

diabetes, and alcohol consumption (Klein, 2021). Of these,

smoking is most strongly associated with pancreatic ductal

adenocarcinoma (PDAC) (Park et al., 2021). Pancreatic cancer

is insidious, fast progressing, early metastatic, and highly invasive

(Zhang et al., 2021b; Cao et al., 2021; Ho et al., 2021; Yang et al.,

2021), and often many patients have developed the metastatic

disease by the time they are diagnosed (Stathis andMoore, 2010).

Surgical resection, one of the best treatment strategies for

pancreatic cancer, is not suitable for the majority of patients

and the prognosis is poor (Paulson et al., 2013). Chemotherapy

becomes one of the alternative strategies in the clinical

management of pancreatic cancer, but there is still a

possibility of local or systemic recurrence (Bednar and Pasca

di Magliano, 2020; Mallya et al., 2021). A variety of

immunotherapeutic approaches, including immune checkpoint

inhibitors, cancer vaccines, pericyte transfer, and combinations

with other immunotherapeutic agents, have been evaluated in

numerous clinical trials (Schizas et al., 2020). As a potentially

new and important tool to deliver anti-cancer drugs, MSCs and

their expressed exosomes have been shown great potential for the

treatment of pancreatic cancer (Loebinger and Janes, 2010).
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MSC-derived exosomes can act as regulators of pancreatic

cancer cell differentiation, proliferation, and apoptosis

through inclusions such as miRNAs, mRNA, and proteins.

miRNA-143 has been shown to function as a tumour

suppressor in CRC (Zhang et al., 2012; Dougherty et al.,

2021), breast cancer (Du et al., 2020), and ovarian cancer

(Shi et al., 2018). In pancreatic cancer, the inhibitory effect of

miRNA-143 has also been reported. Xu et al. (Xu et al., 2018)

found that miRNA-143 expression was significantly reduced

in pancreatic cancer tissues and could regulate the pancreatic

cancer process by inhibiting its migration and invasion and

promoting apoptosis. miR-143 could also be used to inhibit

cancer by reducing the stability and expression of COX-2

mRNA in pancreatic cancer cells (Pham et al., 2013). A recent

study found that miR-143-3p was significantly more expressed

in MSC-derived exosomes than in exosomes from a human

pancreatic cancer cell line (CFPAC-1) and could regulate

KRAS, which is a key regulator and predictor of pancreatic

cancer (Buscail et al., 2020; Wang et al., 2021b; Luo, 2021)and

synergistically promote apoptosis and inhibit cell growth,

invasion, and migration. In addition to miRNA-143,

miRNA-124 has attracted increasing attention and research

in pancreatic cancer, as its downregulation is significantly

associated with poor prognosis in PDAC patients (Sun

et al., 2016). Recently, a study conducted by Xu et al. (Xu

et al., 2020) reports that miRNA-124 carried by BMSC-derived

exosomes inhibits the proliferation, invasion, migration, and

EMT of pancreatic tumour cells and induces apoptosis

through the regulation of EZH2. In vivo and in vitro

experiments have also demonstrated that miRNA-124

carried by exosomes enhances the sensitivity of pancreatic

cancer cells to chemotherapy. In addition, miRNA-1231

(Shang et al., 2019) and miRNA-128-3p (Xie et al., 2022) in

MSC-derived exosomes possess inhibitory effects on

pancreatic cancer. In contrast, Ding and others showed that

hucMSC-derived exosomes promote the growth of pancreatic

ductal adenocarcinoma by transferring miR-100-5p, and that

this promotion may be mediated by transferring miRNAs into

PDAC cells to activate relevant signalling pathways (Ding

et al., 2021a). In summary, MSC-derived exosomes could be

considered a potential therapeutic vector for the treatment of

pancreatic cancer.

Exosomes serve as an attractive nanoscale drug delivery

platform for the treatment of pancreatic cancer as first

demonstrated by Ding et al. (Ding et al., 2019), who used

exosomes from hucMSCS to deliver exogenous miR-145-5p,

which inhibited the proliferation and invasion of PDAC cells

and increased apoptosis and cell cycle arrest while decreasing

Smad3 expression. Pascucci et al. (Pascucci et al., 2014)

merged paclitaxel with MSCs and released exosomes, which

were found to significantly inhibit tumour growth in vitro,

demonstrating for the first time that MSCs are capable of

encapsulating and delivering active drugs via their secreted

exosomes. Subsequently, various drug delivery platforms

based on MSC-derived exosomes were devised. According

to Zhou et al. (Zhou et al., 2020), by combining paclitaxel

(PTX) and gemcitabine monophosphate (GEMP) with

purified BMSC-derived exosomes to exploit the natural

PDAC selectivity, they were able to construct a novel

system for exosomal drug delivery with efficient targeting

and penetration capabilities while bypassing the tumour

ECM barrier. Similarly, Zhou et al. (Zhou et al., 2021)

demonstrated an exosome-based dual delivery biological

system was constructed from BMSC-derived exosomes,

electroporation-loaded galectin-9 siRNA, and superficially

modified with oxaliplatin (OXA). This drug delivery system

further increases the accumulation of chemotherapeutic drugs

in the tumour area while reducing systemic distribution,

avoiding to a greater extent their side effects and effectively

enhancing innate and adaptive anti-PADC immunity.

Exosomes designed with targeted ligand modifications or

genetic engineering still maintain their original properties

and deliver chemotherapeutic drugs to tumour cells with

greater efficiency, effectively enhancing tumour targeting

and having great clinical application (Tian et al., 2014;

Wang et al., 2017).

Other GI cancers

Esophageal cancer (EC) is a lethal malignancy with a poor

prognosis and is the sixth leading cause of cancer-related death

worldwide (Smyth et al., 2017). Clinical treatment is mainly

based on surgery. Due to the lack of effective early detection

methods, EC patients are often diagnosed at an advanced stage

with limited therapeutic intervention and high mortality. A

number of related studies have shown that exosomes play an

important role in EC progression, microenvironment

remodeling, treatment resistance, and immunosuppression

(Jing et al., 2021). Li et al. (Li et al., 2022b) reported that

exosomal miR-200a could mediate the expression of Keap1 to

promote the proliferation, migration, and invasion of

esophageal cells, and inhibit apoptosis. In contrast, studies

have also shown that exosomes play an inhibitory role in the

occurrence and development of EC. It is documented that

exosomal long non-coding RNA UCA1, a promising

biomarker for esophageal cancer, exerts anticancer effects

by inhibiting cell proliferation, invasion and migration, and

colony formation in EC cells (Zhu et al., 2020b). The role of

MSC-derived exosomes in EC is also worthy of further

investigation. A recent study showed that BMSC-derived

exosomal miR-19b-3p promoted EC cell proliferation,

migration, invasion, and EMT by targeting SOCS1 and

induced apoptosis (Deng et al., 2021).

Gallbladder cancer (GBC) is the most common

malignancy of the biliary tract and is usually diagnosed late
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in the course of the disease, with a poor overall prognosis (Baiu

and Visser, 2018). Clinical treatment is still predominantly

surgical, but newer therapeutic modalities, such as molecular

targeted therapy, have been used to improve the prognosis of

patients with advanced disease (Kam et al., 2021; Okumura

et al., 2021). Recent studies have shown that a variety of

exosomal miRNAs, lncRNAs, miRNAs, and circRNAs can

be used as clinical diagnostic biomarkers for GBC (Xue

et al., 2020; Ren et al., 2021; Ueta et al., 2021). These

include miR-182, which has been found to be associated

with a wide range of cancers including breast,

nasopharyngeal, prostate, and glioma (Liu et al., 2020b; Bai

et al., 2021; He et al., 2021; Ma et al., 2022). Zheng et al. (Zheng

et al., 2020)found that exosomal miR-182 significantly

promoted the migration and invasion of GBC cells by

inhibiting reversion-inducing-cysteine-rich protein with

kazal motifs (RECK). Another study also documented that

leptin enriched in GBC cell-derived exosomes could promote

cell invasion and migration by regulating STAT3-mediated

polarisation of M2 macrophages (Zhao et al., 2022). These

observations show the association between exosomes and the

development and progression of GBC, thus, the role of MSC-

derived exosomes in this regard deserves to be further

investigated and explored.

Conclusion

The data presented in this study indicate that MSCs-

derived exosomes play a crucial role in the development of

GI cancers and have great potential in cancer therapy. A

similar recent review by Zhao et al. (Zhao et al., 2021)

which analyzed the effects of different MSC-derived

exosomes on the development of gastrointestinal malignant

tumours, made much the same deductions and pointed out

future research directions to include the detailed exploration

of the mechanisms by which MSC-derived exosomes regulate

the development of GI cancers. The authors elaborated on the

multiple effects of MSC-derived exosomes on most cancers

and supplemented the discussion with detailed research

progress of MSC-derived exosomes on various GI cancers,

including less studied ones such as EC and GBC. Thus, it could

be concluded that MSC-derived exosomes, as a cell-free

substance, can exert inherent beneficial therapeutic effects,

providing new therapeutic ideas for their application in cancer

therapy, particularly for GI cancers.

Current challenges include large-scale culture and

isolation techniques, optimal methods for long-term

preservation of exosomes, rapid isolation, purification,

quantification, and identification of exosomes. Therefore, in

addition to focusing on the mechanism of the effect of MSC-

derived exosomes on GI cancers, future research can also focus

on other emerging research directions such asmass production

of exosomes and preparation of engineered exosomes.

Moreover, despite the many advantages of exosome

research, there are some obstacles in their translation to

clinical applications such as low targeting efficiency, safety,

and susceptibility to phagocytosis by the immune system

(Weng et al., 2021). Some emerging technologies also

deserve attention, such as bottom-up extracellular vesicle

assembly with precise control of lipid, protein, and RNA

composition, which may stimulate the development of next-

generation improved MSCs-exosomes (Staufer et al., 2021;

Ferreira et al., 2022). Therefore, future research could focus on

these research directions to develop more effective clinical

applications.
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