
DPED: Bio-inspired
dual-pathway network for edge
detection

Yongliang Chen, Chuan Lin*† and Yakun Qiao

School of Automation, Guangxi University of Science and Technology, Liuzhou, China

Edge detection is significant as the basis of high-level visual tasks. Most

encoder-decoder edge detection methods used convolutional neural

networks, such as VGG16 or Resnet, as the encoding network. Studies on

designing decoding networks have achieved good results. Swin Transformer

(Swin) has recently attracted much attention in various visual tasks as a possible

alternative to convolutional neural networks. Physiological studies have shown

that there are two visual pathways that converge in the visual cortex in the

biological vision system, and that complex information transmission and

communication is widespread. Inspired by the research on Swin and the

biological vision pathway, we have designed a two-pathway encoding

network. The first pathway network is the fine-tuned Swin; the second

pathway network mainly comprises deep separable convolution. To simulate

attention transmission and feature fusion between the first and second pathway

networks, we have designed a second-pathway attention module and a

pathways fusion module. Our proposed method outperforms the CNN-

based SOTA method BDCN on BSDS500 datasets. Moreover, our proposed

method and the Transformer-based SOTA method EDTER have their own

performance advantages. In terms of FLOPs and FPS, our method has more

benefits than EDTER.
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1 Introduction

Edge detection is a low-level task in computer vision which is used in much computer

vision processing (e.g., Image segmentation (Arbelaez et al., 2010; Mandal et al., 2014;

Weng and Dong 2021), object recognition and detection (Ferrari et al., 2007; Girshick

et al., 2014), optical flow (Demarcq et al., 2011; Chen and Wu 2015; Revaud et al., 2015;

Liu et al., 2019), and sketch abstraction (Yu et al., 2017; Xie et al., 2019; Xu et al., 2022)].

Much excellent work has emerged in this field, from traditional edge detection methods

(Canny 1986; Dollár and Zitnick 2014; Zhang et al., 2016) to the recently proposed deep

CNN-based edge detection methods (Xie and Tu 2015; Liu et al., 2017; Wang et al., 2018;

He et al., 2020). Edge detection is still a relatively open problem and new contributions are

still to be made.
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Transformer (Vaswani et al., 2017) has been introduced into

the computational vision (CV) field due to its success in NLP and

was soon widely used in CV in, for example, classification

(Ramachandran et al., 2019; Dosovitskiy et al., 2020; Liu et al.,

2021), detection (Carion et al., 2020; Liu et al., 2020; Touvron

et al., 2021), and segmentation (Zheng et al., 2021). Recently, Pu

et al. (Pu et al., 2022) used the Transformer architecture to build a

new edge detection method called EDTER, which broke the

dominance of CNN in the new computer vision field and

became a new state-of-the-art edge detection method.

The field of biology has also done much research on edge

perception. Numerous studies (Hubel and Wiesel 1962; Hess

et al., 2003; Loffler 2008) have shown that the visual cortex plays a

crucial role in edge detection and processing. Many studies have

proposed bio-inspired edge detection algorithms (Li 1998; Yen

and Finkel 1998; Grigorescu et al., 2003; La Cara and Ursino

2008; Yang et al., 2014; Tang et al., 2016) by simulating the neural

cell response pattern in the visual cortex. The dual-pathway structure

of the biological visual system promotes information processing and

information exchange in the visual cortex. The information from the

retina is divided into two flows, which undergo different processing

and finally merge in the visual cortex. As shown in Figure 1, part of

the information from the retina is processed by the lateral geniculate

nucleus (LGN) and transferred to the visual cortex; other

information from the retina is processed by the superior

colliculus cells and then passed through the thalamus-occipital

transmutation. These two pathways are called the first visual

pathway and the second visual pathway, respectively.

Most of the information entering the visual cortex comes from

the first visual pathway, which forms the visual backbone. However,

the residual visual phenomenon (Pöppel et al., 1973) shows that the

second visual pathway can also transmit information to the visual

cortex, thereby triggering visual perception. Luck et al. (Luck et al.,

1997) found that attention exists in the visual cortex. Yan et al. (Yan

et al., 2018) found that attention in the visual cortex can be divided

into early attention and late attention according to the occurrence

time. White et al. (White et al., 2017a; White et al., 2017b) have

shown that cells in the superior colliculus in the second visual

pathway can generate attentional information. It is earlier than

attention in the visual cortex and may be transmitted to the visual

cortex through connections.

Inspired by these studies, we propose a dual-pathway edge

detection method (DPED), consisting of a two-pathway

encoding network and a decoding network (DN), like the

biological vision system. The two-pathway encoding network

consists of a first-pathway network (FPN) and a second-pathway

network (SPN). As the information backbone network, FPN

undertakes the function of extracting multi-scale features and

is deeper and more complex. SPN is a shallow network with a

simple structure. To simulate the attention transmission and

feature fusion between two visual pathways, we designed a

second-pathway attention module (SPAM) and pathways

fusion module (FPM), which are placed between the FPN and

SPN. To make full use of the features extracted by the encoding

network, we designed a feature fusion module (FFM) as the basic

module for constructing the decoding network.

Our contributions can be summarized as follows. 1) We propose

an edge detection method, the dual-pathway edge detection method

(DPED, based on Swin Transformer and depth-wise separable

convolution. 2) Inspired by biological visual pathways, we designed

a second-pathway network (SPN). We designed an SPAM and a

pathways fusion module (PFM) to simulate the information exchange

between the first and the second visual pathways. Experiments show

that SPN combined with SPAM and PFM can also improve the

performance of other edge detection methods. 3) Without adding an

additional dataset for training, ourmethod can achieve better results on

the BSDS500 dataset. We have made a reasonable explanation for this

phenomenon.

Extensive experiments indicate that our proposed method

outperforms previous CNN-based edge detection methods on

three well-known datasets. Compared with the state-of-the-art

method EDTER, our method—while some performance is slightly

lower—has a lower computational cost and faster inference speed.

2 Related work

For original research articles, please note that the Material

and Methods section can be placed in any of the following ways:

before Results, before Discussion, or after Discussion.

2.1 Bio-inspired edge detection

Numerous studies (Hubel and Wiesel 1962; Hess et al., 2003;

Loffler 2008) have shown that the visual cortex plays a crucial

FIGURE 1
The dual-pathway structure from the retina to the visual
cortex in the biological visual system.
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role in edge detection and processing. Many bio-inspired edge

detection methods started from studies on the visual cortex.

Hubel and Wiesel et al. (Hubel and Wiesel 1962) show that

V1 visual cortex neurons are sensitive to lines and edges in the

classical receptive field (CRF) and that areas beyond CRF

produce an inhibitory effect—nonclassical receptive field

(non-CRF) inhibition. Grigorescu et al. (Grigorescu et al.,

2003) proposed an anisotropic model and an isotropic model.

They used the two-dimensional Gabor function to model the

CRF of a central cell, while using the difference of Gaussian

functions to model the non-CRF inhibitory. Compared to

traditional detection methods, this model dramatically

improves the accuracy of contour detection but suppresses the

contours of local regions. Tang et al. (Tang et al., 2007) proposed

a butterfly suppression model, which divides a circular

suppression area into two suppressor sub-regions and two

facilitator sub-regions. This model selectively preserves the

edge part while suppressing its texture. Lin et al. (Lin et al.,

2018) proposed a nonlinear inhibition model that partitions

multiple subunits within a circular inhibition region. In terms

of large-scale computing, the model effectively reduces the

computational cost and somewhat improves performance.

Yang et al. (Yang et al. (2013) proposed a color-opponent

(CO) model based on color cues which uses an opponent

mechanism to detect brightness edges. Yang et al. (Yang et al.,

2015) then proposed the SCO model to suppress the texture

information, which merged the spatial sparsity constraint with

the CO model. Akbarinia et al. (Akbarinia et al., 2017) proposed

the ASMmodel in which the relationship between the center and

the surround of the receptive field is adjusted according to the

intensity of the stimulus. Tang et al. (Tang et al., 2019) proposed

an edge detection method that combines bio-inspired methods

and deep learning frameworks and provides a new approach to

integrating brain cognition research into neural networks.

2.2 CNN-based edge detection

With the development of deep learning, the end-to-end edge

detection method has gradually replaced traditional hand-

designed edge detection methods. Xie et al. (Xie and Tu 2015)

proposed holistically-nested edge detection (HED), which can

achieve end-to-end training and prediction through VGG16.

After convolution processing, all the side outputs are

interpolated into the same size to predict the final edge

map. Wang et al. (Wang et al., 2018) then found that the

edge image of HED is too thick and hope to solve the

problem of the rough edge of HED network output by

designing an exemplary decoding module for the top-down

fusion of features. Liu et al. (Liu et al., 2017) argued that edge

detection needs richer feature information, which fuses the

multi-layer feature information of the VGG16 network and

proposed RCF. He et al. (He et al., 2020) found that the edge

thickness of different locations in the dataset differs, and

proposed the BDCN, which allows each stage to predict

different scales of edge information through a two-way

connection. Cao et al. (Cao et al., 2020) proposed the deep

refinement network (DRC) by designing a refinement module

FIGURE 2
The overall structure of the network.
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to build a decoding network to achieve the fusion of features with

different scales. Lin et al. (Lin et al., 2020) proposed a new edge

detection method (lateral reinforcement network for contour

detection—LRC). They used the decoding module to design a

deeper decoding network to fuse multi-scale features. Deng et al.

(Deng and Liu 2020) proposed deep structure contour detection

(DSCD). Differing from previous work, they proposed adding a

new module between the encoding network and the decoding

network and proposed a new loss function, achieving good

results.

2.3 Vision transformer

Recently, as an alternative to CNN, Transformer (Vaswani

et al., 2017) has been introduced to the field of computer vision

for image classification (Ramachandran et al., 2019; Kolesnikov

et al., 2021; Liu et al., 2021), object detection (Carion et al., 2020;

Touvron et al., 2021), and segmentation (Zheng et al., 2021).

Transformer architecture has been used to explore the

relationship between different regions of an image in learning

to focus on important regions. Vision Transformers handle the

input image by usually cutting it into fixed-size patches (e.g.,

16*16). This method is acceptable for the coarse-grained task of

image classification; however, it is not very suitable for fine-

grained tasks such as edge detection and semantic segmentation

at the pixel level. Liu et al. (Liu et al., 2021) established Swin

Transformer by introducing the shift window attention, thus

solving the high complexity of self-attention computing. The

excellent performance of Transformer quickly attracted the

attention of researchers in the field of edge detection, and

Transformer-based methods began to appear. Recently, Pu

et al. (Pu et al., 2022) proposed edge detection with

Transformer (EDTER), which extracts features in two stages.

The first stage captures the long-range global context on coarse-

grained image patches. Then, in the second stage, short-range

local cues are mined in fine-grained patches.

In summary, we find that the current Transformer, as a

possible alternative to CNN, is gradually proving its performance

in various vision tasks. In this study, we try to build a new edge

detection method based on Swin Transformer. Inspired by the

research on biological visual pathways and previous CNN-based

edge detection methods, we designed a dual-pathway edge

detection method (DPED).

3 Methods

In this section, we describe the specific details of our

proposed method. We firstly introduce the research on

biological visual pathways, and then introduce the architecture

of our network.

3.1 Biological vision system

According to the neuroanatomy of the visual system, the flow

of information in the human visual system is not a straight line.

The information encoded from the retina goes through different

processing which finally flows into the visual cortex. As shown in

Figure 1, part of the information encoded by the retina is

transmitted to the visual cortex through the lateral geniculate

nucleus, which is called the first visual pathway. The other part of

the information from the retina is processed by the superior

colliculus cells and then transferred to the visual cortex through

the thalamic occipital—this pathway is called the second visual

pathway.

In neuroscience, it is generally believed that the first visual

pathway is the backbone of visual information. However, the

phenomenon of residual visual function (Pöppel et al., 1973)

shows that the second visual pathway also transmits information

that can produce visual perception to the visual cortex. Luck et al.

(Luck et al., 1997) found selective attention in the visual cortex.

Yan et al. (Yan et al., 2018) found that the attention in the visual

cortex can be divided into the early attention components and

the late attention components according to the occurrence time.

White et al. (White et al., 2017a; White et al., 2017b) showed that

the superficial cells of the superior colliculus in the second visual

pathway can generate meaningful information to measure the

importance of external information. The information generated

by the second visual pathway is earlier than that in the visual

FIGURE 3
Modules used in the first-pathway network.
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cortex. The visual information produced by the second visual

pathway may be projected to the other visual cortex through rich

connections.

Inspired by these biological vision studies, the second-

pathway network (SPN) is designed outside the backbone

network (first-pathway network—FPN). On the one hand,

SPN can provide early attention to the backbone network

(FPN) and the early attention can work with late attention in

FPN to improve coding efficiency; on the other hand, the features

extracted by SPN and FPN are fused to obtain the dual-pathway

feature.

3.2 Network architecture

According to Figure 2, the DPED network consists of three

parts: the FPN (green dotted frame), the SPN (brown dashed

frame) and the decoding network (DN—orange dotted frame).

We can briefly introduce the flow of feature information in the

network. When the image enters the network, it will be encoded

by FPN and SPN into two feature flows: the feature flow of FPN

(blue arrow) and that of SPN (black arrow). The feature flow of

SPN through the SPAM can generate early attention information

(orange arrow) to guide FPN to extract features. Then, the feature

flow of FPN and the feature flow of SPN are fused to achieve the

dual-pathway feature flow (green arrow) through the pathways

fusion module (PFM) and is sent to DN for decoding. Finally, it is

compressed by a 1 × 1 conv to generate the edge probability map.

3.2.1 The first-pathway network (FPN)
FPN consists of three first-pathway blocks (FPB). The

specific structure of a FPB is shown in Figure 3A. Each is

composed of a Swin Transformer layer (ST layer) (Liu et al.,

2021). The number of ST layers in three FPBs is 2, 2 and

18 respectively. The structure of the ST layer is shown in

Figure 3B, which is described later.

Research (Hubel and Wiesel 1962; Hess et al., 2003; Loffler

2008) has shown that the lateral connection of primary cortex

neurons in the first visual pathway plays a crucial role in edge

detection and that selective attention mechanism exists in V1.

Using these insights, we use the ST layer as the foundation of our

first-pathway block. The specific structure of the ST layer is

shown in Figure 3B. In contrast to convolution, Lin (Lin et al.,

2021) demonstrated that, in Transformer, the convolution kernel

dynamically changes according to the input. It can simulate the

lateral connections of the visual cortex. Inspired by the fact that

the occurrence of attention in the second visual pathway is earlier

than that in the visual cortex, FPN will be guided by the early

attention (EA) generated from SPN. Given the input image

I ∈ R3×H×W (H, W represents the height and width of the

image, respectively, and 3 represents the number of channels

of the image), the first-pathway featureF1 is calculated as follows:

FIGURE 4
Modules used in the second-pathway network.
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F1,0 � PE(I),
F1,i � PM(FPBi (EAip F2,i−1)) (1)

where, F1,0 ∈ R(4*C)×H
4×

W
4 , F1,i ∈ R(4*i*C)× H

2i+1×
W
2i+1 , i � 1, 2, 3. This

represents the features extracted by the i-th stage of FPN. The

specific calculation of EA is shown in Eq. 6. PE is a patch

embedding operation, which projects each bit of patch

information of a picture into a high-dimensional space to

transform token information. PM is a patch merging

operation, which can down-sample the feature information

consistent with PE and PM in Swin (Liu et al., 2021).

The Swin Transformer Layer (ST layer) (Liu et al., 2021) solves

the high complexity of the original standard in the Transformer

layer (Vaswani et al., 2017) by introducing the self-attention of local

windows and the mechanism of moving windows. The concrete

structure of the ST layer is shown in Figure 3B. At the same time,

long-distance relationships can still be modeled by hierarchical

stacking. Given the input image I ∈ R3×H×W, the specific

operation of Swin Transformer is to divide the input into several

non-overlapping K×K local windows. For the feature X in each K×K

window, the query, key, and value are calculated as follows:

Q � WqX, K � WkX, V � WvX (2)

where Wq,Wk,Wvrepresent different mapping matrices. The

mapped features Q, K and V are used to calculate the self-

attention matrix as follows:

Attention(Q,K,V) � softmax(QKT��
d

√ + B)V (3)
FIGURE 5
Modules used by the second-pathway network to generate
attention.

FIGURE 6
Modules used to fuse features extracted by FPN and features extracted by SPN.
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where B is a relative position bias that can be learned; the original

Transformer layer will calculate the self-attention several times in

parallel—called multi-head self-attention (MSA). The feature

information of each window is better extracted by MSA and a

multi-layer perceptron (MLP) with a GELU activation function.

Before entering MSA and MLP, layer norm (LN) and residuals

connect are required. The specific operation is as follows:

X � MSA(LN(X)) +X,
X � MLP(LN(X)) +X

(4)

In Swin, the MSA is changed to window multi-head self-

attention (W-MSA) and shift window multi-head self-attention

(SW-MSA). There is no cross-window connection in a ST layer.

To establish the long-term relationship of feature information,

W-MSA and SW-MSA are used interchangeably in constructing

the network—see the original study (Liu et al., 2021) for details.

3.2.2 The second-pathway network (SPN)
The SPN consists of three the second-pathway blocks (SPB).

The structure of a SPB is shown in Figure 4A. Each SPB consists

of a basic 3 × 3 ordinary convolution and two 3 × 3 depth-wise

separable convolutions (Chollet 2017) with residual structure.

The structure of the DC layer is shown in Figure 4B. Considering

the center-surround receptive field of the superficial cells, we take

the residual shortcut and 3 × 3 depth-wise separable convolution

as the central feature and the peripheral feature, respectively. At

the same time, 3 × 3 depth-wise separable convolution has fewer

parameters.

When an input image I ∈ R3×H×W is given, the multi-scale

features can be obtained after each stage of SPB in SPN and the

second-pathway feature F2 is calculated explicitly as follows:

F2,1 � SPB1( I ),
F2,i � SPBi(AP(F2,i−1)) (5)

where F2,i ∈ R(i*C)× H
2(i−1)×

W
2(i−1) , i � 1, 2, 3. This represents the

features extracted by the i-th SPB in SPN. AP represents

average pooling.

3.2.3 Feature transmission and fusion between
FPN and SPN

Attention can be generated in the second visual pathway of

the biological visual system; its occurrence time is earlier than in

the visual cortex. Inspired by these studies, we transform the

featuresF2,i extracted from SPN into early attention (EA) to FPN

through the SPAM. Inspired by the phenomenon of residual

visual function, we fuse the feature F1,i, F2,i , i � 1, 2, 3. extracted

by FPN and SPN through the pathways fusion module PFM to

get the dual-pathway feature Di.

The second-pathway attention module. The structure of

SPAM is shown in Figure 5, consisting of a convolution with a

stride of four convolution kernels of 4 × 4 and a sigmoid

activation function. The features of every 32 channels in FPN

share the same attention. Hence, we need to repeat the attention

to keep the dimension of EAi and F1,i consistent. The attention

map EA is calculated as follows:

EAi � SPAMi(F2,i) (6)

where EAi ∈ R(4*i*C)× H
2i+1×

W
2i+1 , i � 1, 2, 3, representing the early

attention generated by i-th stage of SPN.

The pathways fusion module (PFM). The function of PFM

is to fuse the feature information extracted by FPN and SPN. The

specific structure of PFM is shown in Figure 6A, which consists of a

conv layer (C layer) and up-sampling layer (US layer). The specific

structure of the C layer is shown in Figure 6B, which consists of a

1 × 1 convolution, group normal and GELU activation functions.

The structure of the US layer is shown in Figure 6C. Compared

with the current popular methods (Liu et al., 2017; Cao et al., 2020;

He et al., 2020; Lin et al., 2020), we do not use the deconvolution

for up-sampling but choose the sub-pixel convolution method to

build the US layer. Considering the down-sampling of patch

merging, which increases the number of channels and decreases

the resolution, we use the sub-pixel convolution for up-sampling.

Group normalization is adopted after the pixel shuffle.

PFM accepts the features extracted by FPN and SPN. With

the help of PFM, we fuse the multi-scale feature extracted by FPN

and SPN (F1,i, F2,i , i � 1, 2, 3),

Di � PFMi(F1,i, F2,i) (7)

where Di ∈ R(i*C)× H
2(i−1)×

W
2(i−1) , i � 1, 2, 3 is dual-pathway feature Di,

which is the fusion of the features extracted by FPN and SPN.

FIGURE 7
Decode modules used in the network.
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3.2.4 Decoding network
Recently, an excellent edge detection method (Wang et al.,

2018; Cao et al., 2020; Lin et al., 2020) obtained richer feature

information by fusing the multi-scale features extracted by the

backbone. LRC (Lin et al., 2020) shows that hierarchical fusion

through a fusion module is beneficial for achieving more

abundant features. In this study, the design of a decoding

network refers to the hierarchical fusion method.

The decoding network of our method consists of the feature

fusion module (FFM). The role of the FFM is to fuse features of

different sizes together to obtain richer edge features. FFM

accepts both high-channel low-resolution feature and low-

channel high-resolution feature. The low-channel high-

resolution feature is processed by the C layer mentioned

earlier. The low-channel high-resolution feature is first

processed by the C layer and then unsampled by the US layer

to obtain a high-resolution feature. Finally, two features with the

same resolution are connected according to the direction of the

channel, and the number of channels of the feature is then

compressed by a C layer. The specific structure of FFM is

shown in Figure 7.FFMl,i fuses the two adjacent features to

obtain the next level of features, and l is iteratively calculated

as follows:

Dl,i � FFMl,i(Dl−1,i , Dl−1,i+1),
l � 1, 2, i � 1 . . . (3 − l) (8)

where Dl,i ∈ R(i*C)× H
2(i−1)×

W
2(i−1) , D0, i � Di. l represents l-th level

fusion, and i represents thei-th feature of l-th level fusion.

The fusion feature of the last level D2, 1 passes through a 1 ×

1 convolution and sigmoid to obtain the probability map of the

final output, which is formulated as,

E � Sigmoid(Conv(D2, 1)) (9)

where E ∈ R1×H×W represents the final output of DPED.

4 Experiments

In this section, we will verify the effectiveness of our

proposed method through ablation experiments. At the same

time, we explore the generalization of our proposed method in

TABLE 1 Validity of SPAM and PFM in DPED. W/o-SPAM means the
removal of the SPAMmodule from the DPED. W/o-PFMmeans the
removal of the PFMmodule from DPED. SSmeans single-scale testing
and MS means for multi-scale testing. In bold are the best results of
experiments.

Method ODS OIS AP

DPED-w/o-SPAM-w/o-PFM SS 0.827 0.845 0.880

DPED-w/o-SPAM-w/o-PFM MS 0.840 0.861 0.831

DPED-w/o-PFM SS 0.829 0.845 0.883

DPED-w/o-PFM MS 0.842 0.858 0.857

DPED-w/o-SPAM SS 0.832 0.848 0.877

DPED-w/o-SPAM MS 0.845 0.861 0.792

DPED SS 0.834 0.850 0.884

DPED MS 0.846 0.861 0.838

TABLE 2 Generalization of SPN in other networks. SS stands for single-
scale. MS stands formulti-scale.√ indicates that SPN is connected
to the backbone through SPAM and PFM. × indicates that no changes
are made. In bold are the best results of experiments.

Method SPN ODS OIS AP

HED-SS Xie and Tu. (2015) × 0.782 0.804 0.833

HED-SS Xie and Tu. (2015) √ 0.791 0.809 0.813

LPCB-SS Deng et al. (2018) × 0.800 0.816 -

LPCB-SS Deng et al. (2018) √ 0.803 0.823 0.856

LPCB-MS Deng et al. (2018) × 0.808 0.824 -

LPCB-MS Deng et al. (2018) √ 0.815 0.836 0.867

LRC-SS Lin et al. (2020) × 0.792 0.813 0.808

LRC-SS Lin et al. (2020) √ 0.803 0.824 0.836

LRC-MS Lin et al. (2020) × 0.808 0.830 0.849

LRC-MS Lin et al. (2020) √ 0.815 0.835 0.863

TABLE 3 Validity of FFM in DPED. SS stands for single-scale. MS stands
for multi-scale, × represents the replacement of the FFM with a
refine block, √ represents the use of FFM. In bold are the best results
of experiments.

Method FFM ODS OIS AP

DPED-SS × 0.829 0.845 0.861

DPED-SS √ 0.834 0.850 0.884

DPED-MS × 0.841 0.857 0.863

DPED-MS √ 0.846 0.861 0.838

TABLE 4 The impact of adding the VOC dataset to the
BSDS500 dataset on our proposed method. SS stands for single-
scale. MS stands for multi-scale. √ indicates that the PASCAL VOC
context dataset is added to the training set. × indicates that no
changes are made. In bold are the best results of experiments.

Method VOC ODS OIS AP

DPED-SS × 0.834 0.850 0.884

DPED-SS √ 0.823 0.840 0.832

DPED-MS × 0.846 0.861 0.838

DPED-MS √ 0.843 0.860 0.775
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FIGURE 8
Comparison of the output edge map of DPEDwith VOC training and without VOC training. (A) are pictures and edge labels in BSDS500, and (B)
are pictures and edge labels in the VOC dataset. It can be clearly seen that the two labels are very different and even ambiguous. In (C), VOC
represents adding additional VOC datasets for training. It can be found that adding the VOC dataset for training will cause network output far from
ground truth.
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other methods. Finally, our method is compared with other

methods on different public datasets.

For comparison, we use three evaluation metrics to measure

the performance of edge detection methods. The evaluation

metrics include the F-score with the thresholds of optimal

dataset scale (ODS), F-score with the thresholds of optimal

image scale (OIS), and average precision (AP). According to

previous work (Xie and Tu 2015; Liu et al., 2017; He et al.,

2020), the maximum allowable distance between the

positioning tolerance control edge result and ground truth is

set to 0.0075 for BSDS500 and Multicue and to 0.011 for

NYUDv2.

4.1 Experimental dataset

We evaluated our method on three public datasets in the field

of edge detection, including BSDS500 (Arbelaez et al., 2010),

NYUD-v2 (Silberman et al., 2012), and Multicue (Mély et al.,

2016). BSDS500 is the most classic dataset in edge detection,

containing 200 training images, 100 validation images, and

200 testing images. Each image is annotated by multiple people.

Following previous work (Xie and Tu 2015; Deng et al., 2018;

Wang et al., 2018; Tang et al., 2019; Cao et al., 2020; He et al., 2020),

we used the same method for the augmentation training set and

validation set as the training set.We added an extra PASCALVOC

Context dataset to BSDS500 as a training dataset in some

experiments. NYUDv2 contains 1,449 depth aligned RGB

images, which are split into 381 training, 414 validation, and

654 testing images. To facilitate comparative experiments, we also

augmented the dataset with the data methods used previously (Xie

and Tu 2015; Liu et al., 2017; Lin et al., 2020). Multicue contains

100 natural scenes, each with a sequence of two frames from

different angles. The last frame in the left view is marked with

edges and boundaries. Consistent with previous work (Xie and Tu

2015; Liu et al., 2017; He et al., 2020), we randomly divided

100 annotation frames into 80 and 20 frames for the training and

testing.

TABLE 5 The quantitative results on the BSDS500 dataset. SS represents the test results under single-scale conditions, and MS represents the test
results undermulti-scale conditions. VOC indicates that the PASCAL VOCcontext dataset is added to the training set. The first two best effects are
marked with red and blue, respectively.

Method ODS OIS AP

Human 0.803 0.803 -

Traditional method Canny Canny. (1986) 0.611 0.611 0.611

SCO Yang et al. (2015) 0.670 0.670 0.670

SED Akbarinia and Parraga. (2018) 0.710 0.710 0.710

gPb Arbelaez et al. (2010) 0.729 0.729 0.729

OEF Hallman and Fowlkes (2015) 0.746 0.746 0.746

SE Dollár and Zitnick (2014) 0.743 0.743 0.743

CNN-based method COB Maninis et al. (2016) 0.793 0.793 0.793

HED Xie and Tu (2015) 0.782 0.804 0.833

RCF-MS-VOC Liu et al. (2017) 0.811 0.830 -

CED-MS Wang et al. (2018) 0.803 0.820 0.871

CED-MS-VOC Wang et al. (2018) 0.815 0.833 0.889

LPCB-MS-VOC Deng et al. (2018) 0.815 0.834 -

LRC-MS-VOC Lin et al. (2020) 0.816 0.843 0.864

BDCN-SS He et al. (2020) 0.806 0.826 0.847

BDCN-SS-VOC He et al. (2020) 0.820 0.838 0.888

BDCN-MS-VOC He et al. (2020) 0.828 0.844 0.890

Transformer-based method EDTER-SSPu et al. (2022) 0.824 0.841 0.880

EDTER-MSPu et al. (2022) 0.840 0.858 0.896

EDTER-SS-VOCPu et al. (2022) 0.832 0.847 0.886

EDTER-MS-VOCPu et al. (2022) 0.848 0.865 0.903

DPED-SS(Ours) 0.834 0.850 0.884

DPED-MS(Ours) 0.846 0.861 0.838

DPED-SS-VOC(Ours) 0.823 0.840 0.832

DPED-MS-VOC(Ours) 0.843 0.860 0.775
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4.2 Implementation details

Life Science Identifiers. We implemented our network using

Pytorch, a well-known platform in the community. The first-

pathway network (FPN) is initialized by a partial weight of the

Swin Transformer model pre-trained in the ImageNet dataset. The

other part is initialized randomly. We changed the window size of

W-MSA and SW-MSA from 7 to 8 because we wanted to keep the

receptive field larger when there are only three stages in the network.

To enable the network to process images of any size, the resolution

of the input image was padded to a size divisible by 128 and these

padding elements were removed from the network output.

The loss function is consistent with recent work. The

threshold γ and weight coefficient λ in the loss function are

set to 0.17 and 5 on the multi-person labeled dataset BSDS500,

respectively. There is no need to set the threshold for the binary

annotated dataset NYUDv2. Because the scaling and rotation in

the data augmentation will bring additional edge annotations, we

used threshold and weight coefficients consistent with those in

BSDS500. Due to the Multicue dataset including high-resolution

images, we randomly cropped 500 × 500 patches from each

image. We set γ and λ as 0.17 and 5, respectively.

The hyperparameter of all experiments is set as follows: batch

size (1), learning rate (1e−6) momentum (0.9), snf weight decay

FIGURE 9
The PR curve of the proposed method and other methods on BSDS500.

TABLE 6 The comparison of the ODS and FPS of various methods.
Among them, the best ODS results obtained by each method are
recorded. The FPS is the inference speed on the BSDS500 test set. The
FPS of table EDTER are quoted from the original study and calculated
on V100 GPU. Due to the limitation of equipment conditions, the
FPS data of other methods are calculated on P100 GPU (which is a
worse GPU than V100).

Method ODS FPS

HED (Xie and Tu 2015) 0.782 93

RCF Liu et al. (2017) 0.811 54

LRC Lin et al. (2020) 0.816 17

BDCN He et al. (2020) 0.828 40

EDTER Pu et al. (2022) 0.848 2.2

DPED (Ours) 0.846 16
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TABLE 7 Effects of zero-mean Gaussians with different variances on the performance of deep learning methods. The best ODS results obtained by all
methods under different σ are shown in bold. σ � − means the test result without adding Gaussian noise.

Method σ - 0.1 0.2 0.3 0.4 0.5 0.6

PSNR - 20.38 14.87 12.00 10.27 9.15 8.39

HED Xie and Tu (2015) 0.782 0.716 0.608 0.516 0.414 0.263 0.130

RCF Liu et al. (2017) 0.811 0.739 0.662 0.591 0.520 0.451 0.376

DRC Cao et al. (2020) 0.806 0.650 0.578 0.505 0.421 0.352 0.297

DPED (Ours) 0.834 0.732 0.674 0.612 0.559 0.512 0.471

FIGURE 10
The effect of Gaussian noise with different variances.
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(2e−4). We used the SGD optimizer to train four epochs on the

BSDS500 dataset. The learning rate is adjusted from the second

epoch and is then divided by 10 at each completed epoch. For the

training on NYUD-v2 data sets, we used an SGD optimizer for

45 epochs. The learning rate decreases from 20 epochs and then is

divided by 10 at each completed epoch. We train 200 epochs on

the Multicue dataset. The learning rate is adjusted from the

100 epoch and is then divided by 10 at each completed epoch.

To ensure the accuracy and reproducibility of the

experiment, the random seed in all experiments is fixed at 78.

4.3 Ablation experiment

In this section, we firstly used the BSDS500 training and

validation set for training and evaluated our method on the

test set. The first group of experiments explored the validity

of SPAM and PFM. The second group of experiments verified

the generalization of SPN in other methods. The third group

of experiments verified the effectiveness of our designed

FFM. The fourth group of experiments explored the

impact of adding additional PASCAL VOC Context data

sets (VOC) to the BSDS500 dataset for training in our

method.

Experiment 1: We explored the validity of SPAM and PFM.

SPN works with SPAM and PFM. If both are removed, SPN is

removed. The experimental results are summarized in

Table 1.We found that SPAM can slightly improve ODS and

AP, and OIS is flat or down. PFM can significantly improve ODS

and OIS, but AP is down. We believe that the addition of PFM

can make the feature extracted from the SPN participate in the

generation of the final edge map. Due to the simple structure and

small parameters of SPN, the extracted features not only contain

meaningful and detailed edge information but also much textural

information, which leads to a significant decrease in AP while

ODS and OIS are improved. Using SPAM and PFM together, the

single-scale ODS performance is improved by 0.007 and the

multi-scale ODS performance is improved by 0.006. The OIS and

the AP metrics are improved to varying degrees.

Experiment 2: To verify the generalization of SPN, we

selected HED (Xie and Tu 2015), LPCB(Deng, Shen, Liu,

Wang and Liu 2018), and LRC (Lin, Cui, Li and Cao 2020) as

TABLE 8 The quantization result on the NYUD-v2 dataset. RGB represents the test results of the input RGB images, HHA represents the test results of
the input HHA images, and RGB-HHA represents the test results of the average RGB and HHA output. The first two best effects are marked with
red and blue, respectively.

Method ODS OIS AP

Traditional SE Dollár and Zitnick. (2014) 0.695 0.708 0.719

SE + NG+ Gupta et al. (2014) 0.706 0.734 0.738

OEF Hallman and Fowlkes. (2015) 0.651 0.667 0.653

SemiContour Zhang et al. (2016) 0.680 0.700 0.690

CNN-based HED-RGB Xie and Tu. (2015) 0.717 0.732 0.704

HED-HHA Xie and Tu. (2015) 0.681 0.695 0.674

HED-RGB-HHA Xie and Tu. (2015) 0.741 0.757 0.749

RCF-RGB Liu et al. (2017) 0.729 0.742 0.693

RCF-HHA Liu et al. (2017) 0.705 0.715 0.650

RCF-RGB-HHA Liu et al. (2017) 0.757 0.771 0.749

LRC-RGB Lin et al. (2020) 0.743 0.757 0.719

LRC-HHA Lin et al. (2020) 0.692 0.706 0.668

LRC-RGB-HHA Lin et al. (2020) 0.761 0.775 0.762

BDCN-RGB He et al. (2020) 0.748 0.763 0.770

BDCN-HHA He et al. (2020) 0.707 0.719 0.731

BDCN-RGB-HHA He et al. (2020) 0.765 0.781 0.813

Transformer-based EDTER-RGB Pu et al. (2022) 0.774 0.789 0.797

EDTER-HHA Pu et al. (2022) 0.703 0.718 0.727

EDTER-RGB-HHA Pu et al. (2022) 0.780 0.797 0.814

DPED-RGB (Ours) 0.761 0.774 0.727

DPED-HHA (Ours) 0.709 0.722 0.696

DPED-RGB-HHA (Ours) 0.778 0.793 0.791
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experimental networks and connected SPN to these for

experimentation through SPAM and PFM. The experimental

summary is shown in Table 2. The experiments show that our

proposed SPN can improve the ODS, OIS, and AP of LPCB and

LRC networks to varying degrees. However, SPN can improve

the ODS and OIS of HED, but AP decreases a lot. We think that

the decoder of HED is too simple. The fusion feature of SPN

cannot be well-processed. In the LRC network with a more

complex decoding network, the SPN has greatly improved the

three evaluation indicators.

Experiment 3: To explore the validity of the feature fusion

module (FFM), we used the refinement block proposed in LRC

(Lin et al., 2020) to replace our FFM. The experimental results

are summarized in Table 3. The experiments show that

our FFM has a better effect than the refine block proposed

in LRC.

Experiment 4: We explored the impact of adding

the VOC dataset to BSDS500 for experiments in our method.

The experimental results are summarized in Table 4. According

to the experiments, our method can achieve better results with

fewer data. The results of our method trained only on the

BSDS500 dataset are better than those trained on the

BSDS500 with the VOC dataset.

The previous method (Liu et al., 2017; He et al., 2020)

assumed that adding the VOC dataset to the BSDS500 dataset

for training can suppress meaningless textural information and

output a cleaner edge map to improve network performance.

Figures 8A,B shows the difference and ambiguity between the

annotation method of the VOC dataset and the annotation

method of BSDS500. The BSDS500 annotation has some

detailed information but the VOC dataset annotation ignores

all the detail. Adding these ambiguously labeled data will mislead

our method and the output results of the proposed method also

confirm our viewpoint. As shown in Figure 8C, the output edge

map of our method is far from the ground truth of the

BSDS500 dataset (full of semantic detail annotations) and

close to the ground truth of the VOC dataset (lack of detail

annotations).

4.4 Comparison with other models

BSDS500 Dataset. We conducted testing on BSDS500 and

compared it with some traditional edge detection methods and

deep learning edge detection methods, including Canny (Canny

1986), SCO (Yang et al., 2015), SED (Akbarinia and Parraga

2018), gPb(Arbelaez et al., 2010), OEF (Hallman and Fowlkes

2015), SE (Dollár and Zitnick 2014), COB (Maninis et al., 2016),

HED (Xie and Tu 2015), RCF (Liu et al., 2017), CED (Wang et al.,

2018), LRC (Lin et al., 2020), BDCN (He et al., 2020), and

EDTER (Pu et al., 2022).Wemixed training and validation sets as

training data and evaluated on the testing set.

The experimental results are summarized in Table 5. The

PR curve is shown in Figure 9. The experimental results show

that the proposed method achieves the best performance

without VOC training. Without additional VOC dataset

training, our method achieves single-scale ODS = 0.834 and

multi-scale ODS = 0.846, which is higher than the single- and

multi-scale ODS of BDCN that is the CNN-based state-of-the-

art method. At the same time, the single- and multi-scale ODS

of our method is 0.01 and 0.006 higher than the results of

EDTER that is the Transformer-based state-of-the-art method.

The single-scale OIS and AP of our method also increase in

varying degrees. With the addition of VOC dataset training, the

single- and multi-scale ODS of our proposed method still

exceeds the results of BDCN.

In our method, the ODS and OIS of multi-scale is much

better than that of single-scale, and the multi-scale AP is

significantly lower than single-scale AP. We can see from

Figure 9 that the single-scale and multi-scale PR curves of our

method can cover the PR curve of the latest method. The PR

curve of DPED-MS (solid red line) can generally cover the PR

curve of DPED-SS (solid blue line) but, at the end of the PR curve,

the rapid decline of DPED-MS without enclosing DPED-SS will

lead to the decrease of AP. ODS is a more meaningful metric in

the field of edge detection. Other research (Cao et al., 2020; He

et al., 2020) also considers ODS more important.

To further compare our method with the CNN- and

Transformer-based methods, we compared these methods

with ODS and frames-per-second (FPS), considering both

FIGURE 11
The PR curve of our proposedmethod and other methods on
the NYUD.
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performance and efficiency. We only compared the public code

concrete implementation methods that we could find. The

comparison results are summarized in Table 6, where the FPS

of EDTER (Pu et al., 2022) are quoted from the original study and

calculated on V100 GPU. Limited by equipment conditions, the

FPS of other methods is calculated on P100 GPU (worse than

V100). It can be seen from the table that the best ODS result of

our proposed method is only 0.002 lower than that of EDTER but

that our method is more than seven times faster than EDTER on

worse GPU.

The BSDS500 datasets are all high-quality photos, while some

traditional algorithms such as Canny can still obtain edge

information even when the image quality is reduced.

Therefore, we explored the performance of deep learning-

based edge algorithms for correctly detecting contours in low-

quality images. In the Gaussian function G(x) � x + 1
σ
��
2π

√ e
x−μ
2σ2 ,

where μ signifies mean and σ means variance, we add different

degrees of Gaussian noise to the test set of BSDS500 to create a

low-quality test set. We set a zero-mean Gaussian noise test set

with variances σ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 respectively. We used

the peak signal-to-noise ratio (PSNR� 20log10( 1�������∑
N

(x−x′)2
√ ),

where x and x′ mean the pixels in the original image and the
Gaussian-contaminated image. All images are normalized, N
signifying the number of picture pixels, to quantify the mean on
noise-contaminated datasets and discuss the minimum limit of
PSNR for our method. We chose HED, RCF, DRC, and our
method DPED for comparative experiments. The ODSmetrics of
all the methods on different noise datasets are summarized in
Table 7 and the visualization of all the methods is shown in
Figure 10. Table 7 shows that all methods have performance
degradation when adding Gaussian noise to the test, which is
caused by the model not seeing samples polluted by Gaussian
noise because these methods do not add Gaussian noise in the
training. The ODS result of our method is weaker than that of
RCF but is better than other methods in the case of Gaussian
noise influence with stronger variance. If the ODS result is
expected to be no lower than 0.6, our method needs to accept
pictures with PSNR ≥ 12.00.

NYUD-v2 Dataset.We used RGB, HHA, and RGB-HHA to

evaluate the network. The results of RGB-HHA are the average of

TABLE 9 The quantization result on the Multicue dataset. SS represents the test results under single-scale conditions, and MS represents the test
results undermulti-scale conditions. The data in ( ) represents the standard deviation of three independent experiments. The first two best effects
are marked with red and blue, respectively.

Cat. Method ODS OIS AP

Boundary Human Mély et al. (2016) 0.760 (0.017) - -

Multicue (Mély et al. (2016) 0.720 (0.014) - -

HED Xie and Tu. (2015) 0.814 (0.011) 0.822 (0.008) 0.869 (0.015)

RCF Liu et al. (2017) 0.817 (0.004) 0.825 (0.005) -

DRC-SS Cao et al. (2020) 0.820 (0.006) 0.820 (0.005) 0.710 (0.006)

DRC-MS Cao et al. (2020) 0.837 (0.001) 0.842 (0.002) 0.786 (0.005)

BDCN-SS He et al. (2020) 0.836(0.001) 0.846(0.003) 0.893(0.001)

BDCN-MS He et al. (2020) 0.838 (0.004) 0.853 (0.009) 0.906 (0.005)

EDTER-SS Pu et al. (2022) 0.861(0.003) 0.870(0.004) 0.919(0.003)

EDTER-MS Pu et al. (2022) - - -

DPED-SS(Ours) 0.840(0.001) 0.854(0.004) 0.899(0.001)

DPED-MS(Ours) 0.843 (0.001) 0.856 (0.004) 0.913 (0.002)

Edge Human Mély et al. (2016) 0.750 (0.024) - -

Multicue Mély et al. (2016) 0.830 (0.002) - -

HED Xie and Tu. (2015) 0.851 (0.014) 0.864 (0.011) -

RCF Liu et al. (2017) 0.857 (0.004) 0.862 (0.004) -

DRC-SS Cao et al. (2020) 0.859(0.002) 0.862(0.001) 0.768 (0.010)

DRC-MS Cao et al. (2020) 0.869 (0.002) 0.873 (0.002) 0.868 (0.002)

BDCN-SS He et al. (2020) 0.891(0.001) 0.898(0.002) 0.835 (0.002)

BDCN-MS He et al. (2020) 0.894 (0.002) 0.901 (0.004) 0.941 (0.005)

EDTER-SS Pu et al. (2022) 0.894 (0.005) 0.900 (0.003) 0.944(0.002)

EDTER-MS Pu et al. (2022) - - -

DPED-SS (Ours) 0.898 (0.003) 0.901 (0.005) 0.943 (0.006)

DPED-MS (Ours) 0.900 (0.004) 0.907 (0.004) 0.953 (0.002)
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the RGB testing results and HHA testing results. Our method is

compared with other methods, including OEF (Hallman and

Fowlkes 2015), SE (Dollár and Zitnick 2014), SE + NG+ (Gupta

et al., 2014), HED (Xie and Tu 2015), RCF (Liu et al., 2017), LRC

(Lin et al., 2020), BDCN (He et al., 2020), and EDTER (Pu et al.,

2022). The experimental results are shown in Table 8. Under the

three different inputs of RGB, HHA, and RGB-HHA, the single-

scale ODS of our proposed method achieves 0.761, 0.709, and

0.778, respectively. The single-scale ODS of our proposed

method is 0.013, 0.002, and 0.013 higher than that of BDCN,

respectively. Compared with the Transformer-based method

EDTER, the HHA ODS result of our method is higher by

0.006, and the RGB and RGB-HHA ODS results of our

method are lower by 0.013 and 0.002. The AP of our

proposed method is lower than that of BDCN and EDTER.

As shown in Figure 11, the PR curve of our proposed method can

roughly cover other methods.

Multicue dataset. Multicue contains two sub-datasets:

Multicue boundary and Multicue edge, on which we performed

experimental analysis. Our method is compared with other

methods, including HED (Xie and Tu 2015), RCF (Liu et al.,

2017), DRC (Cao et al., 2020), BDCN (He et al., 2020), and EDTER

(Pu et al., 2022). Following this work, we took the results of an

average of three independent experiments as the final results. The

experimental results are summarized in Table 9. Our method

does not perform as well as EDTER on the Multicue boundary

dataset but we perform better on the Multicue edge dataset. On

the Multicue boundary dataset, the single- and multi-scale ODS

results of our method are 0.004 and 0.005 higher than the

single- and multi-scale ODS of BDCN, respectively. The single-

scale ODS result of our method is 0.021 lower than the single-

scale ODS of EDTER. According to the standard deviation of

three independent experiments, the ODS of our method is more

stable in three independent experiments. On the Multicue edge

dataset, our method obtained the single-scale ODS of 0.898 and

the multi-scale ODS of 0.900. The single-scale ODS of our

method is 0.004 higher than that of EDTER. The single-scale

ODS and multi-scale ODS of our method are 0.007 and

0.006 higher than the single-scale ODS and multi-scale ODS

of BDCN. In three independent experiments, the stability of the

ODS of our method is a little worse than BDCN but a little

better than EDTER.

5 Conclusion

In this study, inspired by the study of biological vision, we

proposeadual-pathwayedgedetectionnetwork—DPED,consisting

of a first-pathway network (FPN) and a second-pathway network

(SPN). According to research on the attention mechanism in the

visual system, we transformed the feature information extracted by

SPN into early attention through SPAM, which can work together

with late attention (self-attention) in FPN to increase encoding

efficiency. We also fused the features extracted by FPN and SPN

through the pathways fusion module (PFM) to obtain the pathway

fusion feature. To make full use of this feature, we designed a

decoding module called FFM to build a decoding network to

decode the pathway fusion feature. We conducted experiments

on three datasets, including BSDS500 (without VOC), NYUD-v2

andMulticue.Ourmethodsurpasses therecentCNN-basedmethod

on all datasets. Compared with the recent Transformer-based

method EDTER, while some results of our methods have a little

lowerperformance, ourmethodhas a lower computational cost and

faster inference speed. Our method brings new ideas to edge

detection, combining deep learning and biological vision

research to design network architectures or modules to

improve the performance of edge detection methods.
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