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A growing number of studies apply Principal Component Analysis (PCA) on

whole-body kinematic data to facilitate an analysis of posture changes in

human movement. An unanswered question is, how much the PCA

outcomes depend on the chosen measurement device. This study aimed to

assess the internal consistency of PCA outcomes from treadmill walkingmotion

capture data simultaneously collected through laboratory-grade opticalmotion

capture and field-suitable inertial-based motion tracking. Data was

simultaneously collected using VICON (whole-body plug-in gait marker

positions) and Xsens (body segment positions) from 20 participants during

2-min treadmill walking. Using PCA, Principal Movements (PMs) were

determined using two commonly used practices: on an individual and a

grouped basis. For both, correlation matrices were used to determine

internal consistency between outcomes from either measurement system

for each PM. Both individual and grouped approach showed excellent

internal consistency between outcomes from the two systems among the

lower order PMs. For the individual analysis, high correlations were only

found along the diagonal of the correlation matrix while the grouped

analysis also showed high off-diagonal correlations. These results have

important implications for future application of PCA in terms of the

independence of the resulting PM data, the way group-differences are

expressed in higher-order PMs and the interpretation of movement

complexity. Concluding, while PCA-outcomes from the two systems start to

deviate in the higher order PMs, excellent internal consistency was found in the

lower order PMs which already represent about 98% of the variance in the

dataset.
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1 Introduction

Human movement emerges through the coordination of our

vastly complex motor system. It is one of the main problems in

biomechanics and motor control research to determine how this

complex system, with an abundance of degrees of freedom, is

coordinated and controlled (Bernstein, 1967). Traditionally,

researchers have taken the approach to determine measures

that summarize the workings of this system by looking at

single outcome variables like the Center of Mass or Center of

Pressure (Quijoux et al., 2020; Mehdizadeh et al., 2021;

Richmond et al., 2021). However, this approach has also been

criticized as such a low-dimensional variable inherently cannot

contain all information available within a complex (multi-

dimensional) system (Federolf et al., 2021). As an alternative

to this low-dimensional approach, the use of Principal

Component Analysis (PCA) has been gaining traction in the

study of whole-body movement control (Troje, 2002;

Daffertshofer et al., 2004; Federolf et al., 2012; Federolf, 2016).

Using PCA, one decomposes the variance in high-

dimensional, complex signals into a set of principal

component (PC) vectors, each explaining a portion of the

total variance. As input for a PCA on human movement,

many recent studies have been using body-segment locations

represented by marker positions (Federolf et al., 2012; Ross et al.,

2018; Armstrong et al., 2021; Mohr et al., 2021). For example,

when collecting movement data using a 39-marker full-body

marker set, this results in a 117-dimensional input matrix for the

PCA (39 markers with an x, y and z dimension). By determining

linear relations within this high-dimensional matrix, PCA

determines PC vectors, which are orthogonal to each other.

The first PC (i.e., PC1) constitutes the vector that can explain

the most variance, followed by PC2, PC3 and so on. In this way,

the lower-ranked PCs cover the main movement components,

sometimes interpreted as main movement strategies (Federolf

et al., 2013b). For instance in bipedal postural control, these have

been shown to closely approximate whole-body movements such

as the ankle and hip strategy (Federolf et al., 2013b). These PC-

vectors and the component of the movement they represent are

known as “Principal Movements” (PMs; Federolf, 2016).

In gait, PCA has been frequently applied to decompose

whole-body movement patterns into separate PMs (Ó′ Reilly,
2021; Promsri, 2022; Stetter et al., 2020; Zago et al., 2022). For

example, in treadmill walking, it is typically seen that only a few

PMs are needed to explain most of the variance in the movement

(Andel et al., 2022; Malloggi et al., 2021; Ó’Reilly & Federolf,

2021). Federolf et al. (2012) determined that already 84.2% of

variance could be explained by PM1, representing anterior-

posterior arm and leg movement and only one other PM was

required to reach more than 90% explained variance (i.e., PM2;

6.6%, representing knee flexion-extension and vertical body

movement).

Applying PCA in human movement analysis holds some

considerable advantages: 1) the method allows a non-

reductionist approach to biomechanical analysis. Previous

studies have criticized traditional biomechanical approaches

for their reductionist focus (Federolf et al., 2013a, Federolf

et al., 2021); trying to understand phenomena such as sports

performance or injury risk by focusing on a limited number of

variables. Recently, it has been reasoned that movement can only

be fully understood as a whole-body system interacting within a

surrounding environment (Pinder et al., 2011; Seifert et al., 2013;

Andel et al., 2021; Bolt et al., 2021). PCA is very well suited for

this purpose, since it provides a coordinate system for complex

movements aligned with the variance created through the

movement. In this coordinate system, each coordinate axis/

basis vector/PC vector/PM explains a known fraction of the

variance in the data (eigenvalue). Thus, the complexity of the

system can be resembled as precise as required by the research

question. 2) PCA is a data-driven method: no a priori decisions

have to be taken by the researcher, all available information about

the system can enter the analysis, thus reducing the investigator

bias and the risk of missing an important variable that would

have been essential for understanding an underlying mechanism.

As introduced above, PCA provides a non-biased, holistic

approach to humanmovement analysis. However, to fully benefit

from these advantages, it is important to also foster the ecological

validity and design experiments as close to the performance

situation as possible. Here lies one of the limitations in current

applications of PCA. That is, while our ability to collect data in

the field has increased drastically in recent years through the

development of wearable sensors, these wearables have so far

found little application in on-field whole-body motion analysis.

As such, it is currently unclear whether the results established

using laboratory-grade motion capture technology can be

generalized or compared with data collected in the field. It is

currently unknown whether PCA outcomes determined using

different systems are still comparable. Inherent differences

should be expected between outcomes, because of the different

numbers of markers or measured segments in the analysis, but to

what extend this influences the information within the PMs and

the outcomes of the analysis is so far unknown.

This study aims to assess the comparability between Principal

Movement outcomes, simultaneously collected from the same

movement using two different measurement systems. Thereto,

we collect kinematic movement data from the same movement

(walking on a treadmill) with two independent measurement

systems, then independently perform PCAs on the respective
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datasets, and finally correlate the resultant time series. If the

independently obtained PMs represent the same movement

pattern, then they carry the same information and correlation

coefficients should be close to 1 (±1) for PMs of the same order

(hypothesis H1) and close to 0 otherwise (hypothesis H2). We

expect that particularly the lower-order PMs, i.e., the main

movement patterns, should show this result, while for higher-

order movement patterns, the two PCA systems might start to

deviate in how the movement information is represented in the

PMs. Therefore, for higher-order PMs, we expect to find

increasing deviations from 1 on the diagonal of the

correlation matrix and increasing deviations from 0 outside

the diagonal (hypothesis H3). Finally, PCAs can be calculated

separately for each individual, with the disadvantage that

resultant PMs cannot be compared between individual

volunteers or–after an appropriate normalization (Federolf,

2016; Gløersen et al., 2018)—a single PCA can be calculated

on the normalized and concatenated data of all subjects. The

latter approach has the advantage of direct comparability of PMs

between different participants, but has the disadvantage that the

overall PMs are less precisely aligned with individual movement

characteristics. Therefore, we conducted our analysis twice, once

by calculating the PCAs separately for each individual

(individualPCA) and once for the whole group (groupPCA). We

hypothesize (hypothesis H4) that the predicted deviations for

higher-order PMs (according to hypothesis H3) will occur earlier

(at lower PM order) in the groupPMs compared to the individualPMs

due to the individual differences in movement strategy

(hypothesis H4).

2 Methods

2.1 Participants

Twenty-three participants (13 females) were recruited from

the University of Innsbruck student body to be part of this study

(average age ± SD: 25.7 ± 4 years; average height ± SD: 175 ±

9 cm; average leg length ± SD: 92 ± 5 cm). All participants were

healthy and free of lower limb injuries for at least 6 months

before the measurements. Data from three participants had to be

excluded from the analysis due to measurement errors, leading to

a final sample of N = 20 participants. The protocol of the study

was approved by the institutional ethics board (reference number

40/2020) and all volunteers provided written informed consent

prior to participation in the study.

2.2 Materials and protocol

Participants were equipped for data collection with two

separate motion capture systems. First, participants donned a

lycra full-body Xsens Link suit with 17 inertial measurement

units recording at 240 Hz, distributed over the body (Xsens

Technologies, the Netherlands). Second, participants’

movements were recorded using 10 Vicon Bonita infrared

cameras at 250 Hz, from 39 reflective markers positioned on

top of the lycra suit according to the full-body plugin gait marker

position scheme (Vicon Motion Systems, United Kingdom). The

x-axis of the Vicon global coordinate system was aligned with the

walking direction on the treadmill.

The measurement protocol started with completing a

calibration following manufacturer guidelines (Xsens: N-pose

and walk protocol, Vicon Nexus: range of motion protocol).

After starting data collection in both systems, the participants

clapped their hands together to create a recognizable timepoint in

both data streams used for an initial synchronization (a precise

synchronization was achieved through cross-correlation, as

described later). Then, the participant stepped onto a

treadmill, which was moving at 4 km/h. Once the participant

settled into a steady gait pattern, data was recorded for 2 min.

2.2.1 Data processing
The analysis was aimed at assessing correlations between the

data resulting from the two measurement systems, recorded

simultaneously during a single bout of activity. To this end,

the following data processing steps were implemented.

Data resulting from the Xsens system was processed using

MVNAnalyze software (Xsens Technologies, the Netherlands) in

the “High Definition” mode and “No-level” processing scenario

and exported to be further analyzed in Matlab (2019a, the

Mathworks, United States). The resulting raw Xsens data

presents with the pelvis segment as origin and the x axis in

accordance with the orientation of the feet at calibration. To

make this consistent across participants and comparable to the

VICON system, data was rotated using a custom Matlab

algorithm to align the x axis with the direction of walking.

Furthermore, Xsens data was resampled from 240 Hz to

250 Hz for consistency between systems. Using the

synchronization event that was identifiable in both data

streams, data was cut to a portion of 110s of steady state

walking to mitigate the effects of stepping on and off the

treadmill.

Vicon data were gap-filled using Vicon Nexus software

(Vicon Motion Systems, United Kingdom) and exported for

further analysis in Matlab. The origin of the data was reset to

a position between the two posterior superior iliac spine markers

to create a local refence system similar to the pelvis-centered

Xsens data. Identification of the synchronization event was used

to identify the same 110s of data, which were then exported for

further analysis.

As a result of this procedure, for each participant we obtained

two independently measured datasets from the same movement,

one available as Vicon marker position data and one available as

body segment position data exported from XSens. The data

processing steps explained in the next paragraphs were
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executed in parallel on both of these datasets to obtain 2 sets of

PMs; ViconPMk and
XsensPMk; where k indicates the order), whose

correlation provided a measure of internal consistency of PMs

originating from differing measurements.

Further analysis was performed in two common forms of

applying PCA to human movement data: an individual as well as

a group-level analysis. For both, the PMs were calculated using a

Matlab-based software application named PMAnalyzer (Haid

et al., 2019) following the normalization and analysis steps

outlined in the next sections.

2.2.2 Individual-level analysis
Performing separate PCAs for the data of each participant

has the advantage that the PC-eigenvectors are optimally aligned

with the variance in the specific dataset, i.e., the PMs are

optimally aligned with the specific movements of this

individual person. A disadvantage is that for every participant

a unique coordinate system is created, which means that the PMs

are not comparable between individuals, which limits

quantitative analyses of differences between individuals or

groups.

For the individual-level analysis, each of the 20 participants

provided a 27500-by-117 ViconData matrix [110 s* 250fps x 39 3D

marker coordinates] and a 27,500-by-69 XsensData matrix [110 s*

250fps x 23 3D segment position coordinates]. For each

participant, both of these matrices were each submitted to a

PCA computation to obtain Vicon
individualPMk and Xsens

individualPMk,

which were then correlated to obtain 20 correlation matrices

individualR. Specifically, the first-order PMs, ViconPM1 and
XsensPM1

were cross-correlated to obtain best possible time

synchronization and the obtained time lag was then applied to

all other correlation calculations.

2.2.3 Group-level analysis
After appropriate normalization, data matrices of all

participants can be concatenated and submitted together to

one common PCA analysis (Federolf, 2016). The advantage of

this approach is that the resultant PMs are universal to all

participants; consequently, quantitative comparisons of the

movement patterns between individuals or between groups of

participants become possible. One disadvantage is that these

general coordinate axes are now not perfectly aligned with the

variance (i.e., the movement structure) within each individual.

Mean Euclidian distances (Federolf et al., 2013b) were used to

normalize both data matrices from each individual. Then the

data matrices from all volunteers were concatenated to form one

single 550000-by-117 input ViconData matrix and one single

550000-by-69 input XsensData matrix. After calculating the

PCA and projecting the data onto the eigenvectors, the

resultant scores were split into separate PMs for each

participant: Vicon
groupPMk and Xsens

groupPMk. Correlating these PMs,

using the same time lags as in the individual-level analysis,

yielded the group-level correlation matrices groupR.

2.2.4 Correlation analysis
To assess the hypotheses stated for the current paper,

correlation matrices for the first 16 PMs [k = 1...16] were

calculated in both analyses. Note, that the “correlation

matrices” individualR and groupR are not symmetrical since they

represent correlations of not the same variables, but correlations

between corresponding variables in the other PM matrix; for

example, position 2,1 in individualR is the correlation between
ViconPM1 and XsensPM2, whereas position 1,2 is the correlation

coefficient of ViconPM2 with XsensPM1. Matrices presenting the

mean of the absolute values for the individual correlation

coefficientmatrices (averaged over the 20 participants) are

presented in the results.

3 Results

Figures 1, 2 show the averaged matrices individualR and groupR,

respectively, where the cell background is colored to provide a

visual impression of the correlation results. Figure 1 shows that

for the individual analysis, there is a near perfect correlation in

the first PC-pair (r greater than 0.999) and still a good agreement

in the next four PC-pairs (r greater than 0.67). From the fifth PC-

pair on, information appears differently distributed, i.e., the

information represented in one PM in the one system is

distributed over multiple PMs in the other system.

Figure 2 shows that for the group PCA approach correlations

appear more distributed. That is, higher correlations (up to about

0.6) appear more often further away from the diagonal. However,

the agreement on the diagonal also appears very good, with the

first four PC-pairs correlating greater than 0.95 and the first

6 being correlated greater than 0.78.

4 Discussion

The current study investigated internal consistency of PM

variables when they are obtained from different measurement

systems: a lab-based optical marker tracking system and a

wearable IMU system suitable for any environment. Our results

demonstrate near perfect internal consistency of the first PM.

Correlations of r = 0.999 indicate that PM1 derived from either

measurement system contain the same information about the

participants’ movements. This was true for both approaches to

calculating the PCA. Further, for PMs 2 to 4 in the individual-

level analysis and for PMs 2 to 6 in the group-level analysis very good

internal consistency was observed within PMs of the same order (r >
0.78), confirming hypothesis H1. It should be noted, that these 4 and

6 PMs already represented about 98% of the totalmovement variance

in both PCA types, suggesting that together they provide very close

approximations of the analyzed movements.

In the individual-level analysis we also find hypotheses H2 and

H3 largely confirmed. Correlation coefficients off the diagonal were
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close to zero (H2) and for PMs of higher order we find moderate

correlation coefficients distributed around the diagonal, suggesting

that information represented in one specific PM in one coordinate

system is expressed in several PMs in the other coordinate system

(H3). Several explanations can be given for H3 and for the

observation that the off-diagonal correlation coefficients were not

exactly zero. An obvious explanation is that the coordinate systems

are not based on the same data in thefirst place: one data set consisted

of reference markers placed on the volunteers’ bodies and one

consisted of body segments centers obtained as output of a

biomechanical model. Another explanation likely playing a role is

that it is impossible to perfectly align the coordinate systems in which

the PCA input data were expressed. Particularly the fact that the

origins of these coordinate systems are not identical–and probably

suffer from relative movements between them–is likely a source for

the H3 observation and for the discrepancies to H2.

FIGURE 1
Matrix individualR of the correlation coefficients between Vicon

individualPMk and Xsens
individualPMk . The correlation coefficients shown here represent themean

absolute correlation coefficients averaged over the subject group.

FIGURE 2
Matrix groupR of the correlation coefficients between Vicon

groupPMk and Xsens
groupPMk . The correlation coefficients shown here represent the mean

absolute correlation coefficients averaged over the subject group.
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The results from the group-level analysis were, at first glance,

more surprising. Most notable, for this approach to calculate the

PCA, H2 was not confirmed. Moderate and large correlation

coefficients were found off the diagonal in all areas of the

correlation matrix. We did expect (hypothesis H4) that

deviations from zero in the off-diagonal correlations would

occur earlier (at lower-order PMs) compared to individual-level

analysis, however, we already found such deviations in correlations

with groupPM1. In a PCA, the resultant eigenvectors are orthogonal

(correlations performed over the whole group did in fact result in

off-diagonal correlations close to zero, as expected). Therefore, the

larger off-diagonal correlation coefficients in groupR have to be a

result of separating the concatenated data back into volunteer

submatrices after projecting the data onto the groupPMs. The

correlations can be explained when considering that different

volunteers perform the “same” movement slightly differently, as

schematically explained in Figure 3. If this is the main driver

behind the larger off-diagonal correlations in the group-analysis,

then the same pattern should emerge when computing

correlations between PMs of a single measurement system, after

separating the concatenated data into separate volunteer-

submatrices. Indeed, this prediction was supported by our data

(Supplementary Figure S1), corroborating the proposed

mechanism.

This property of between-PM correlations in a group-level

PCA has important generalizable implications for future

applications of PCA. First, when performing a group-level

analysis, despite the orthogonality between PC-eigenvectors,

independence between PMs of different order cannot be

assumed. This is a relevant finding, for example with

implications for when evaluating PM data using statistical

procedures where independence is an assumption.

Furthermore, if a whole group of participants perform a

movement systematically different compared to another

group, then it is likely that differences in movement strategy

can be observed in a higher-order PM. One good example for

such opposite behavior can be found in Mohr et al. (2021), where

differences in running between the sexes were analyzed and

directly opposite behavior of the sexes was in fact found in PM8.

PCA offers the opportunity to assess the complexity of a

movement pattern, in terms of the dimensionality of the observed

movement. That is, if a movement can be accurately summarized by

only one PM (e.g., PM1 explains a high share of the variance, for

example 90%), the movement can be considered less complex than

when PM1 to PM4 are required to reach the same level of explained

variance. The current results offer important considerations for this

definition of complexity. When using the individual analysis, the

explained variance of the lower order PMs is indeed associated to

dimensionality of the data and thusmovement complexity. However,

in the group-analysis the number of PMs required to reach a certain

level of explained variance might relate to the movement complexity,

as well as to inter-individual differences (Figure 3). As such, care

should be taken when interpreting explained variance results

stemming from these separate methods.

In summary, this study aimed to assess the comparability

between PCA outcomes determined from two separate

measurement systems, from the same movement. To

conclude, the results of the suggest good internal

FIGURE 3
Schematic: (A) example datapoints of ‘Variable A’ and ‘Variable B’ from volunteers “square” and “circle”. Since they perform themovement not in
exactly the same way, the orientation of the data point clouds are slightly rotated against each other. (B) When individual-level PMs are calculated,
then each PM-coordinate system aligns with the orientation of the specific data cloud. Thus, the correlation between PM1 and PM2 will be zero for
the data of each volunteer. (C) Group-level PMs are calculated for the entire dataset. For each volunteer, groupPM1 is a close approximation of
the main movement pattern, however, a small fraction of the volunteer’s main movement pattern also gets projected onto groupPM2. Therefore, if
correlations between PM1 and PM2 are calculated for volunteers separately, non-zero correlation coefficients are obtained, specifically, here a
positive correlation results for the squares and a negative correlation for the circles.
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consistency in lower-order PMs (in fact, near perfect internal

consistency in PM1). The study also showed, that particularly

in the group-level analysis, correlations can also be found

between PMs of different order. This finding has important

implications for applications of the PMs, particularly for the

sensitivity of higher-order PM variables, PM-based measures

of complexity and for the statistical treatment of PM-based

results.
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