
PPy@Fe3O4 nanoparticles inhibit
the proliferation and metastasis
of CRC via suppressing the NF-κB
signaling pathway and promoting
ferroptosis

Zhilong Yu1†, Shanshi Tong2†, Chenyi Wang1, Zizhen Wu1,
Yingjiang Ye1, Shan Wang1 and Kewei Jiang1*
1Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory
of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing,
China, 2State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji
Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Colorectal cancer (CRC) is one of the most common cancers of the digestive

tract, and patients with advanced-stage cancer have poor survival despite the

use of multidrug conventional chemotherapy regimens. Intra-tumor

heterogeneity of cancerous cells is the main obstacle in the way to effective

cancer treatments. Therefore, we are looking for novel approaches to eliminate

just cancer cells including nanoparticles (NPs). PPy@Fe3O4 NPs were

successfully synthesized through a portable method. The characterization of

transmission electron microscopy (TEM), Fourier-Transformed infrared

spectrometer, and X-ray powder diffraction have further proved successful

preparation of PPy@Fe3O4 NPs. NIR irradiation was used to test the

photothermal properties of NPs and an infrared camera was used to record

their temperature. The direct effects of PPy@Fe3O4 NPs on colorectal cancer

cell DLD1 were assessed using CCK8, plate clone, transwell, flow cytometry,

and western blotting in CRC cell. The effect of PPy@Fe3O4 NPs on neoplasm

growth in nude mice was evaluated in vivo. This study demonstrated that PPy@

Fe3O4 NPs significantly inhibit the growth, migration, and invasion and promote

ferroptosis to the untreated controls in colorectal cancer cells. Mechanical

exploration revealed that PPy@Fe3O4 NPs inhibit the multiplication, migration,

and invasion of CRC cells in vitro by modulating the NF-κB signaling pathway.

Importantly, Ferroptosis inhibitors Fer-1 can reverse the changes in metastasis-

associated proteins caused by NPs treatment. Collectively, our observations

revealed that PPy@Fe3O4 NPs were blockers of tumor progression and

metastasis in CRC. This study brought new insights into bioactive NPs, with

application potential in curing CRC or other human disorders.
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Introduction

Colorectal cancer (CRC) ranks among themost common and

devastating diseases of the digestive system globally (Bray et al.,

2018; Siegel et al., 2021). There is no effective regime against this

aggressive malignancy besides early surgical resection (Brenner

et al., 2014). When patients are diagnosed with colorectal cancer,

15%–25% have liver metastases, and another 15%–25% develop

them after radical resection of the primary tumor (Engstrand

et al., 2018). However, radical resection of liver metastases is not

possible in 80%–90% of cases (Modest et al., 2019). Among the

reasons for this grim prognosis are the lack of obvious symptoms

and reliable biomarkers for early diagnosis, as well as aggressive

metastatic spread that leads to a poor response to treatment.

Metastatic disease occurs in approximately 50% of diagnosed

patients (Xu et al., 2019; Rebersek, 2020). Patients with advanced

and metastatic cancer are generally treated with chemotherapy

(Fan et al., 2021). The combination of radiation with

chemotherapy is another option for treating unresectable,

metastatic cancers (Koppe et al., 2005). Even so, both

approaches are mainly aimed at improving survival rates and

reducing symptoms of cancer (Aggarwal et al., 2013; Biller and

Schrag, 2021).

With the rapid development of nanotechnology,

nanoparticles (NPs) have provided a new approach for

studying tumor therapies in recent years (Guan et al., 2022a;

Zheng et al., 2021; Guan et al., 2022b). Nanomaterials refer to

materials with at least one dimension ranging from 1 to 100 nm

(Zheng et al., 2022). Due to their special dimensions, they have

different optical, electromagnetic, biological, and thermal

properties than general materials, making them more plastic

(Sun et al., 2014; Enriquez-Navas et al., 2015; Duan et al., 2019; Li

et al., 2021). The field has broad application prospects. Currently,

nanomaterials treatment for cancer is mainly aimed at direct

destruction of tumors, but in clinical treatment, high mortality

rates of cancer are caused by the proliferation and metastasis of

tumors, not the primary tumor site (Jiang et al., 2015; El-Toni

et al., 2016). At present, the killing of tumors by nanoparticles

mainly revolves around the photothermal properties and

chemodynamic therapy of nanomaterials (Baek et al., 2016;

Zhu et al., 2016; Tang et al., 2019), and nanoparticles’ direct

effect on tumor cells has been little studied. Revealing the specific

mechanism of nanoparticles’ effects on tumor cells is beneficial to

promote the further application of nanoparticles in the

human body.

Polypyrrole (PPy) is a kind of organic photothermal agent

and photosensitizer, which can not only ablate cancer cells under

infrared irradiation, and improve the effect of chemotherapy, but

also has good biocompatibility, which can regulate cell adhesion,

migration, protein secretion, and DNA synthesis as well as other

processes under electric stimulation (Zhou et al., 2017; Liang

et al., 2021; Miar et al., 2021). Human bodies require iron (Fe) as

an essential trace element. Early studies found that the

concentration of Fe in the body is negatively correlated with

colorectal cancer. Therefore, people have high hopes for Fe

treatment of tumors (Torti et al., 2018; Torti and Torti, 2020).

There are also numerous studies that prove Fe supplementation

can inhibit colorectal cancer development (Aksan et al., 2021;

Phipps et al., 2021; Ploug et al., 2021). Whereas, some scholars

believe that excess iron contributes to oxidative stress-induced

colon damage and amplifies oncogenic signals. Therefore, the

clinical application of Fe-containing drugs is limited

(Padmanabhan et al., 2015; Wilson et al., 2018). It is possible

to deliver nanoparticles to tumors through enhanced

permeability and retention effect (EPR), and decompose iron

ions directly in the tumor-specific microenvironment, which can

avoid harming the normal colon.

Our study design and manufacture a novel composite

nanomaterial PPy@Fe3O4 and demonstrate that it can directly

kill tumors through photothermal therapy (PPT) and

chemodynamic therapy (CDT). As well as evaluating the basic

properties and biosafety of PPy@ Fe3O4 NPs, we observed their

effects on colorectal cancer cell proliferation, migration and

invasion in vivo and in vitro (Figure 1).

Materials and methods

Synthesis of PPy@Fe3O4 NPs

Dissolve 0.75 g of polyvinyl alcohol (PVA) in 10 ml of

deionized water. Heated to 95°C, after dissolving PVA, 0.373g

ferric chloride powder (FeCl3 2.30 mmol) was added to the above

solution and stirred magnetically for an hour. Then the mixed

solution was kept at 4°C and 69.2 μl pyrrole monomer

(0.9970 mmol) was added slowly. After 4 h of stirring, the

mixture was poured into a bowl. A dark green solution was

produced, which indicated the successful synthesis of polypyrrole

NPs. Then, 2.5 ml of the reaction solution was directly removed

from the above steps, and then 15 ml of deionized water and 2 ml

of ethanol were evenly mixed. Under the condition of full

agitation, the temperature was rapidly heated to 70°C, and

1 ml of 1.0wt% ammonia solution was immediately dropped.

After 30 min, inject another 1 ml 1.0wt% ammonia solution and

keep the mixture at the same temperature for another 30 min.

Centrifugation by separation (11,000 RPM; 50 min) PPy@Fe3O4

nanoparticles were collected and centrifuged (11,000 RPM;

50 min), washed three times with deionized water to remove

impurities, and collected and dispersed in deionized water.

Characterization of PPy@ Fe3O4 NPs and
photothermal effect evaluation

The morphologies of NPs were evaluated via transmission

electron microscopy (TEM). In order to determine the
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characteristics of NPs and their crystal structures, Fourier-

Transformed Infrared (FTIR) spectrometers and X-ray powder

diffraction methods were used. We then irradiated PPy@

Fe3O4 NPs with NIR lasers at different wavelengths (100, 200,

and 400 μg/ml) at different concentrations. A thermal imaging

camera was used to monitor and record the temperature changes

of the solution during the heating and cooling process to calculate

the photothermal conversion efficiency (η).

Culture of the cancer cell lines

DLD1-1, SW480, and FHC colorectal cancer cell lines were

purchased fromATCC. DLD1 and SW480 were colorectal cancer

cells, and FHCwas a normal colorectal epithelial cell. All cell lines

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)

(Gibco, United States). All media were supplemented with 10%

fetal bovine serum (FBS) and cells were grown in an incubator at

37°C and supplied with 5% CO2.

Biosafety and flow cytometry analysis

In advance, DLD1, SW480, and FHC cells were plated in 96-

well plates at 1*104 cells per well and cultured for 24 h at 37°C

under 5% CO2. At various concentrations, PPy@Fe3O4 was

added to the culture media for 24 h, followed by 18 h of

incubation. In accordance with the manufacturer’s

instructions, relative cell viability was assessed using the Cell

Counting Kit-8 (CCK-8, Yeasen, China).

Transwell migration assay

Transwell migration assays were conducted in Corning-

Costar migration chambers with a pore size of 8 mm for

studying CRC cell migration in transfected suspensions. As

soon as possible, transfected cells were seeded into an FBS-

free medium and conditioned DMEM containing 10% FBS

was poured into the lower chamber. In the following 48 h, we

removed the cells on the upper membrane surface and fixed and

stained the cells on the bottommembrane surface with methanol

and crystal violet. We photographed cells from five random fields

(×40 magnifications) under the light microscope.

Western blotting

Equal amounts of samples were separated by 10% SDS-

PAGE and transferred to PVDF membranes. Blocking

membranes with 5% non-fat milk in TBST for 1 h, primary

antibodies were incubated overnight at 4°C, followed by

FIGURE 1
Scheme of the synthesis process and therapeutic mechanism of PPy@Fe3O4 NPs.
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secondary antibodies at room temperature for 90 min. The

immunoreactive bands were visualized using a ChemiLucent

ECL kit (Millipore) and the ImageJ program (National

Institutes of Health).

Determination of intracellular ROS

In accordance with the manufacturer’s instructions, chloro-

dihydrofluorescein diacetate (DCFH-DA) was used to determine

intracellular ROS. Briefly, DLD1 cells were incubated with NPs

(200 µg/ml−1) at pH 6.5 for 3.5 h, followed by 30 min of incubation

withH2O2 (100 mM, 200 µl). The cells were placed on an ice box at

4°C. Then the medium was replaced by 1 ml DCFH-DA (10 µM).

Animal experiments

All experiments on animals were conducted in accordance

with “China National Standards for the Care and Use of

Laboratory Animals” and were approved by the Ethics

Committee of Renji Hospital Affiliated with Shanghai Jiaotong

University School of Medicine. In order to establish colorectal

cancer xenograft model, 20 male BALB/c athymic nude mice

(4 weeks old) were randomly divided into four groups (n = 5)

and injected subcutaneously with 1.0*107 stable colorectal cells

DLD1. A variety of intravenous preparations were administered:

Control (groups 1), NIR(groups 2), NPs (200 µg/ml−1) (groups 3),

NIR + NPs (groups 4). We used an 808 nm laser (1.0 W cm−2) to

irradiate Groups 2 and 4 for 10 min respectively after 8 h and

monitored temperature change by a thermal imaging camera.

Prior to the mice being killed, tumor growth was monitored

and measured with micrometer calipers every other day. After

28 days of treatment, immediately after harvest, organs and tumors

were preserved in paraformaldehyde for further IHC testing and

hematoxylin and eosin staining (H&E-stained).

Statistics

All data are presented as mean ± SD. Statistical analyses were

performed with the χ2 test or the Student’s t-test (two-tailed

unpaired). All the data were analyzed using Origin and

Graphpad.Moreover, p< 0.05 is considered statistically significant.

Results

Construction and physical
characterization of PPy@Fe3O4

The PPy nanoparticles were firstly prepared, followed by

ammonia addition at 70°C to convert Fe ions into Fe3O4 crystals.

The Fe3O4 crystals were dispersed on the surface of PPy

nanoparticles, forming PPy@Fe3O4 NPs with a size of

~70 nm, as shown in Figures 2A,B. Each PPy nanoparticle

incorporated many Fe3O4 crystals. The FTIR spectrum

confirmed the successful formation of PPy by showing the

characteristic absorption peaks (Figure 2C). Fe3O4 crystal

structures were confirmed by X-ray diffractograms (XRD) of

NPs (Figure 2D). These results illustrated that the PPy@Fe3O4

NPs have been successfully synthesized.

Since PPy was introduced to Fe3O4 NPs, they demonstrated a

strong and broad absorption spectrum from the visible to near-

infrared (Figure 2E). As the NPs concentration increase, the

temperature also increases gradually under NIR irradiation

(Figure 2F). Based on the temperature changes of the solution

during heating/cooling process, we determined the photothermal

conversion efficiency (ŋ value) of NPs (Figures 2G,H). The ŋ

value was significantly higher than that of traditional PPT agents

at 52%. The above results showed that the PPy@Fe3O4 NPs have

excellent photothermal effects, which endowed good

performance for PTT.

PPy@Fe3O4 NPs inhibited growth and
produced ROS in vitro

Biological applications of nanoparticles depend on their good

biocompatibility. To evaluate its cytotoxicity, we used standard

CCK-8 methods in DLD1, SW480, and FHC cells. As shown in

Figure 3A, NPs exhibited excellent biocompatibility, except for

NPs (400 ug/ml−1), with mildly stronger cytotoxicity due to their

chemodynamic reactions. To simulate the tumor

microenvironment in vitro, we added the appropriate amount

of hydrogen peroxide during cell treatment. Therefore, colorectal

cancer cells were divided into 4 groups: 1) Control, (b)H2O2, (C)

NPs, (d)NPs + H2O2. DLD1 cells proliferation was significantly

decreased by treatments with NPs and H2O2 in plating colony

and CCK8 assays demonstrating that PPy@Fe3O4 functions

biologically in colorectal cancer (Figures 3B,C). For cell

apoptosis assay, NPs and H2O2 treated group promoted

apoptosis in DLD1 cells (Figure 3D). To verify the ROS

production of NPs in DLD1, we observe dichloro-

dihydrofluorescein diacetate staining (DCFH-DA) under

confocal microscopic conditions, ROS levels were significantly

augmented in cells treated with NPs and H2O2, indicating a

promoting effect on ROS generation (Figure 3E).

PPy@Fe3O4 NPs suppressed metastasis
and promoted ferroptosis in CRC cells

Transwell migration and invasion assays indicated that NPs

and H2O2 treated group decreased the ability of migration and

invasion (Figure 4A). Since epithelial-mesenchymal transition
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(EMT) plays a vital role in tumorigenesis, the relationship

between NPs and EMT in CRC cells warranted further

investigation. EMT biomarkers were used to identify whether

NPs treated in CRCwere related to EMT. TheWB results showed

that NPs inhibited the expression of the mesenchymal markers

N-cadherin, Vimentin, Snail, MMP2, and MMP9, but induced

the expressions of the epithelial marker E-cadherin (Figure 4B).

Therefore, we inferred that PPy@Fe3O4 NPs inhibited tumor

metastasis through inhibiting the EMT process.

In addition, studies also shown that the role of ROS in tumor

cells is closely related to ferroptosis (Su et al., 2019; Chen et al.,

2021a), and PPy@ Fe3O4 nanomaterials not only generate ROS in

tumors, but also the constant conversion of Fe2+ and Fe3+ through

the Fenton reaction, which also affects the iron ions metabolism.

We speculated that NPs are associated with ferroptosis in tumor

cells. Our data showed that PPy@Fe3O4 induced the expression

of Xbp1, Homx1, and Keap1, but inhibited the expressions of

GPX4 and NRF2 (Figure 4C). In addition, hydrogen peroxide has

been reported to induce ferroptosis, which is consistent with our

findings. Therefore, we inferred that PPy@Fe3O4 NPs can

promote ferroptosis in CRC cells.

PPy@Fe3O4 NPs inhibited EMT via the NF-
κB signaling pathway

NF-κB is involved in many cancer-related processes,

including cell proliferation, apoptosis, angiogenesis, and

FIGURE 2
The characterization and photothermal properties of the PPy@Fe3O4 NPs. (A,B)High and Low TEM images of PPy@Fe3O4 NPs; (C) FTIR spectra
of PPy@Fe3O4 NPs; (D) XRD spectra of PPy@Fe3O4 NPs; (E) UV-Vis-NIR absorption spectra of PPy@Fe3O4 NPs at different concentrations; (F)
Temperature change curve with various concentrations of NPs; (G) Temperature curve of rising with irradiation and naturally cooling; (H) Linear
regression curve of cooling process (red).
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metastasis in colorectal cancer (Vaiopoulos et al., 2013; Patel

et al., 2018). A previous study reported excessive ROS can reduce

NF-κB activation by inhibiting IκB protein degradation (Morgan

and Liu, 2011). So we hypothesized whether PPy@Fe3O4 inhibits

tumor cell metastasis by inhibiting NF-κB signaling. As part of

this study, we measured the expression and activity of NF-κB in

CRC cells treated with NPs. There was a decrease in the levels of

p-IKKα and p-IKKβ in DLD1, as well as an increase in the

amounts of p-IκBα after treatment with NPs and H2O2. P65

levels did not change significantly, but phospho-p65 expression

decreased. We discovered that the expression of phosphorylated

(p)p65, p-IKKα, p-IKKβ, and IκBα, which are essential for

FIGURE 3
Effects of PPy@Fe3O4 NPs on regulating colorectal cancer cell growth, clone formation apoptosis and ROS generation. (A) Cell viability of the
DLD1, SW480 and FHC cells after co-culture with NPs at different concentrations. (B) Cell viability CCK-8 assay in different groups. (C) Colony
formation assay. Duplicated cells were subjected to the tumour cell colony formation assay in different groups. (D) Flow cytometric apoptosis assay.
Colorectal cancer cell lines DLD1 were treated with H2O2, NPs, NPs + H2O2 or control, respectively, and then subjected to flow cytometric
analysis. (E) Fluorescence images of DLD1 cells with various groups (Control, H2O2, NPs and NPs + H2O2). Scale bar: 250 µm **p < 0.01.
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activating the NF-κB signaling pathway, were downregulated by

NPs with H2O2 in DLD1 cells (Figure 5A).

Some studies have reported that there is an interaction

between EMT and ferroptosis (Chen et al., 2020; Guan D.

et al., 2022). GPX4, which is a negative regulator of

ferroptosis, knockdown can enhance tumor cell oncogenic and

metastatic activity (Huang et al., 2022). We suppose ferroptosis

was increased after PPy@Fe3O4 treatment, and the metastatic

ability of colorectal cancer cells was inhibited by increased

GPX4 expression. After inhibition of tumor cell ferroptosis

with ferroptosis inhibitors Ferrostatin-1 (Fer-1), western-blot

analysis and transwell assays revealed increased metastatic

potential of colorectal cancer cells, and the expression of

EMT-related proteins was distinctly altered, with N-cadherin,

Vimentin, Snail, MMP2 and MMP9 upregulated and E-cadherin

downregulated (Figures 5B,C). These results demonstrated that

PPy@Fe3O4 NPs inhibit CRC cells’ metastasis by promoting cell

ferroptosis and inhibiting the NF-κB signaling pathway.

In vitro cell experiment

In order to investigate the roles of PPy@Fe3O4 NPs in vivo, a

nude mouse xenograft model of colorectal cancer was constructed.

Tumor volume was monitored every other day throughout the

experiment. As a result of NPs treatment, tumor growth was

significantly inhibited (Figures 6A–C). There was no difference in

tumor growth between the NIR and control groups, demonstrating

that NIR alone cannot inhibit tumor growth. However, due to the

synergistic effects of PTT and CDT, the tumor growth in the NPs +

FIGURE 4
PPy@Fe3O4 NPs suppress cell migration and invasion, and promote cell ferroptosis in vitro. (A) Transwell migration and invasion assays of
DLD1 cell with different treatment groups. (B)WB assays showed that metastasis-related proteins (E-Cadherin, N-Cadherin,Snail, MMP2, MMP9 and
Vimentin) expression changed in different groups. (C) Ferroptosis-related proteins (GPX4, XBP1, NRF2, HOMX1 and Keap1) expression changed in the
control group and other treated groups.
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NIR group was significantly inhibited. NIR group mice were

irradiated with an 808 nm laser while their infrared thermal

image and temperature were recorded simultaneously. Laser

irradiation rapidly increased the temperature of the tumor in the

NPs group to 55°C. It has been reported that apoptosis and necrosis

of cancer cells can be induced when the temperature around the

tumor is above 42°C (Sun et al., 2019). In contrast, the control group

only experienced a very weak rise, less than 35°C (Figures 6D,E). In

the colorectal tumormodel, Ki-67, amarker of cell proliferation, was

significantly downregulated in NPs + NIR groups after IHC analysis

(Figure 6F). These results explicitly demonstrated that NPswithNIR

could effectively prevent tumor growth in vivo. H&E staining of

various treatment groups was carried out for the purpose of

assessing the biosafety of NPs. According to the data, neither the

control group nor other treatment groups showed obvious organ

damage (Figure 6G), which further validated the PPy@Fe3O4 NPs

were safe.

Discussion

PPy@Fe3O4 NPs were successfully synthesized by an facile

method. They exhibited an excellent photothermal effect and

could produce abundant ROS for CDT in the tumor

microenvironment. Furthermore, NPs are adequate to modulate

cellular response on their own (Setyawati and Leong, 2017; Cen

et al., 2021). First, we used CCK8 to detect the viability of normal

cells and tumor cells exposed to different concentrations of NPs to

judge the biosafety of NPs. We then demonstrated in vitro that NPs

can restrain the accretion and metastasis of CRC cells and promote

ferroptosis. Finally, we found that NPs inhibit CRC cells growth by

inducing ferroptosis and inhibiting NF-κB pathway. In vivo

experiment results further confirmed the inhibition of NPs on

tumor growth.

Our team has long been committed to the practical application

of photothermal technology. PTT and CDT of nanoparticles have

FIGURE 5
PPy@Fe3O4 NPs suppress CRC cells metastasis by promoting cell ferroptosis and inhibiting NF-κB signaling pathway. (A) Western blot.
Colorectal cancer cell line DLD1was treatedwith various groups (Control, H2O2, NPs andNPs +H2O2), and then subjected toWestern blot analysis of
the key proteins of the NF-KB signaling pathway (Ikk-β, p-Ikk-β, ikk-α, p-Ikk-α, NF-κβ, p-NF-κβ, IκB-α and p-IκB-α). (B) Effects of the ferroptosis
inhibitor Ferrostatin-1 on PPy@Fe3O4 NPs-induced metastasis-related proteins expression. (C) Transwell showed that PPy@Fe3O4 NPs-
induced cell migration and invasion were abolished after addition of the ferroptosis inhibitor Ferrostatin-1 in CRC cell.
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FIGURE 6
Anti-tumour activity of PPy@ Fe3O4 NPs in nudemouse tumour cell xenografts. (A) Images of subcutaneous xenograft tumors of DLD1 cells. (B)
The final tumor weight of DLD1 cells was shown. (C) The tumor volume and change of different groups. (D) The temperature change and (E) infrared
thermal imaging of the mice injected with PBS, NPs under laser irradiation. (F) Ki67 staining of the tumors in the control group and other treated
groups. (scale bar: 100 μm). (G) H&E staining of the main organs from the control and treatment groups. (scale bar: 250 μm). **p < 0.01.
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enormous potential in cancer treatment (Huang et al., 2019; Zheng

et al., 2021). CDT/PTT has demonstrated to be highly effective and

relatively safe, and it can directly ablate cancer cells as well.

Additionally, photothermal effects during PTT can speed up

the Fenton-based process’ reaction rate and enhance CDT (Yu

et al., 2021; Zhang et al., 2022). With the development of

nanotechnology, various targeted and multifunctional

nanoparticles have been reported, which can deliver drugs and

directly or indirectly activate the immune system to kill cancer cells

(Hooftman and O’Neill, 2022; Luo et al., 2021; Sun et al., 2021).

Although some nanomaterials have been used clinically in recent

years, most of them have not achieved ideal clinical effects. In

monotherapy, the continuing effects and biosafety of NPs on

tumor cells require further study.

There is a new type of cell death called ferroptosis that differs

from apoptosis, necrosis, and autophagy, which are all iron-

dependent cell deaths (Chen et al., 2021b; Tang et al., 2021). As a

metabolic disorder resulting from iron, ROS, and polyunsaturated

fats, ferroptosis is characterized by deranged iron metabolism. Iron,

lipid, and energy metabolism play a significant role in the sensitivity

of tumor cells to ferroptosis (Lee et al., 2020; Li and Li, 2020; Jiang

et al., 2021). Nanomedicine has become a new direction in the

application of ferroptosis. Ultra-small PEG@ SiO2 NPs induce

ferroptosis and limit tumor growth in starving cancer cells by

mediating iron overuptake (Ma et al., 2017). In addition,

p53 plasmid-coated metal-organic network NPs lead to ferroptosis

and tumor growth inhibition by blocking GSH synthesis (Zheng

et al., 2017). In our study, we found that PPy@Fe3O4 NPs restrained

CRC cells’ growth and metastasis by promoting cell ferroptosis, and

the exact mechanism needs to be further studied.

In normal physiology processes, NF-κB pathway coordinates

the inflammatory process and participates in the regulation of

various steps of the cell cycle and survival (DiDonato et al., 2012;

Zhang et al., 2017). Binding to an inhibitory protein in the

cytoplasm keeps it inactive. In response to the signal, its

inhibitor is phosphorylated and proteolytically degraded, and

NF-κB is translocated vigorously to the nucleus, where it

promotes transcription of target genes (Vaiopoulos et al.,

2013). Numerous pieces of evidence indicate that NF-κB has a

key role in the initiation and propagation of CRC. Furthermore,

the NF-κB signaling activation has been identified as a recognized

event in the EMT process (Min et al., 2008). Liu et al. found that

DCLK1 facilitates EMT via the NF-κB signaling pathway in CRC

cells (Liu et al., 2018). Moreover, previous studies have shown

that NF-κB regulates Vimentin and Snail expression directly by

binding their promoters (Wu et al., 2004), which is consistent

with our WB results. Herein, our study demonstrated that PPy@

Fe3O4 NPs inhibit CRC cell proliferation and metastasis by

blocking the NF-κB signaling pathway.

Overall, we exhibited the suppressive role of NPs in the

progression of CRC in vitro and in vivo. Furthermore, our results

revealed that PPy@Fe3O4 has an excellent photothermal effect

and photostability under NIR irradiation. PPy@Fe3O4 NPs can

not only be used for PPT and CDT but also can inhibit the

growth and metastasis of tumor cells by regulating the NF-κB
signaling pathway. Therefore, a therapeutic strategy based on

PPy@Fe3O4 NPs to attenuate tumor development may be a

potential approach for CRC treatment.

Conclusion

PPy is a common non-toxic conductive polymer that is

slightly soluble in water, other nanomaterials loaded with PPy

can significantly improve their photothermal effect. In this

study, we developed an NPs (PPy@Fe3O4) based on PPy to

enhance the effect of PTT/CDT in CRC. The NPs displayed a

high photothermal conversion efficiency of 52% because of

PPy, which was much higher than that of traditional PPT

agents. Besides, NPs were responsively decomposed in the

tumor microenvironment to release the Fe ions of different

valences, which promoted the generation of toxic OH from

H2O2 for CDT. More importantly, we discovered a direct

effect of NPs on colorectal cancer cells. PPy@Fe3O4 NPs can

inhibit the growth and metastasis of colorectal cancer cells

through the NF-κB signaling pathway, and promote cell

ferroptosis.
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