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Copy number variations (CNVs) significantly influence the diversity of the

human genome and the occurrence of many complex diseases. The next-

generation sequencing (NGS) technology provides rich data for detecting

CNVs, and the read depth (RD)-based approach is widely used. However,

low CN (copy number of 3–4) duplication events are challenging to identify

with existingmethods, especially when the size of CNVs is small. In addition, the

RD-based approach can only obtain rough breakpoints. We propose a new

method, CNV-PCC (detection of CNVs based on Principal Component

Classifier), to identify CNVs in whole genome sequencing data. CNV-PPC

first uses the split read signal to search for potential breakpoints. A two-

stage segmentation strategy is then implemented to enhance the

identification capabilities of low CN duplications and small CNVs. Next, the

outlier scores are calculated for each segment by PCC (Principal Component

Classifier). Finally, theOTSU algorithm calculates the threshold to determine the

CNVs regions. The analysis of simulated data results indicates that CNV-PCC

outperforms the other methods for sensitivity and F1-score and improves

breakpoint accuracy. Furthermore, CNV-PCC shows high consistency on

real sequencing samples with other methods. This study demonstrates that

CNV-PCC is an effective method for detecting CNVs, even for low CN

duplications and small CNVs.
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Introduction

Genetic variation is prevalent across the human genome and can be classified into

various types by different lengths. It should be noted that the heterochromatic parts of the

genome are still an issue and are not well covered by next-generation sequencing (NGS).

Commonly, small-length variation events fall into two categories: single nucleotide

variations (SNVs) and short insertions/deletions (Indels) (Lin et al., 2015). Structure
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variations (SVs) (Ho et al., 2020) represent large-length variation

events. Copy number variations (CNVs), as a type of

intermediate-scale SVs (ranges from 1 kb to several Mb), refer

to copy number gains or losses over large regions of the genome

(Redon et al., 2006). CNVs play a significant role in human

genome diversity. Statistically, about 12% of the human genome

is impacted by copy number change (Zhao et al., 2013). In terms

of the copy number (CN) state of CNVs, low CN (CN of 3–4)

duplication events show high numbers in all populations

(Veerappa et al., 2015). Meanwhile, multiple studies have

shown that CNVs are closely associated with certain diseases

(Pös et al., 2021). For instance, CNVs of 1q21.1 is associated with

multiple pathologies, including autism, learning disabilities, and

schizophrenia (Goh et al., 2018). Symptoms of

3q29 microduplication syndrome are intellectual disability,

speech impairment, microcephaly, and dental malformations

(Wu et al., 2018). In addition, CNVs have important effects

on cancer (Li et al., 2020), Alzheimer’s, and Parkinson’s diseases

(Gentile et al., 2021). Therefore, the effective detection of CNVs

in the genome holds great importance in both biology and

biomedicine.

Traditional detection of CNVs relies mainly on microarray

technology. But the microarray technology is limited to the

number of probes, and it can only detect the CNVs existed in

the reference assembly that designed the probes (Alkan et al.,

2011). In recent years, NGS (Goodwin et al., 2016; Zhao et al.,

2020) technology has developed rapidly and is widely used for

genomic variant detection and clinical genetic diagnosis (Butz

et al., 2021). It produces short reads with high resolution and

coverage, enabling more accurate identification of breakpoints

and discovering new variation events than microarray

technology. NGS sequence-based detection methods can be

divided into four strategies: pair-end mapping (PEM), split

read (SR), read depth (RD), and assembly (AS). The RD-

based approach is mainly used to detect CNVs. Its basic idea

is that the regions with copy number gains will get a higher read

depth compared to the normal regions, while the losses will have

a lower read depth. There are lots of methods implemented based

on this approach, such as CNVnator (Abyzov et al., 2011),

FREEC (Boeva et al., 2011), ReadDepth (Miller et al., 2011),

GROM-RD (Smith et al., 2015), and recently released iCopyDAV

(Dharanipragada et al., 2018), CNV-LOF (Yuan et al., 2021a),

and CNV_IFTV (Yuan et al., 2021b). However, the RD-based

approach can only detect rough breakpoints. In contrast, the SR-

based approach can reach the resolution of a single base. But the

SR-based approach relies heavily on the length of the reads (Zhao

et al., 2013). Due to the read length of NGS data being short, split

reads may match multiple breakpoints, and it is not suitable for

detecting segmental duplication regions (Liu et al., 2020).

Combining SR signals with other strategies to accurately

identify CNVs is feasible. Delly (Rausch et al., 2012) combines

SR and RP strategies, and Lumpy (Layer et al., 2014) uses PEM,

SR, and RD signals. All of them achieve more accurate results.

The first step of the RD-based approach is to align the reads

in genomic coordinates, then the read depth (RD) signals are

obtained by calculating the average read counts in the genomic

bin. But the read depth signals have a bias (GC-bias) in regions

with higher or lower GC content, so it needs to be normalized

according to the GC content in the bin. Segmentation is

performed after removing GC-bias. The goal is to cluster

adjacent bins with similar RD signals into the same segment.

The popular segmentation algorithms include circular binary

segmentation (CBS) (Venkatraman and Olshen, 2007), Mean-

shift (Comaniciu and Meer, 2002), Hidden Markov model

(HMM), and LASSO regression. For example, CNVnator

performs segmentation with Mean-shift. It calculates a mean-

shift vector for each bin based on the RD signals in the adjacent

bins and determines segment breakpoints according to the

direction of the vector (Abyzov et al., 2011). This method has

high sensitivity and localization accuracy. The segmentation of

FREEC is accomplished with LASSO regression. After that,

genomic gains and losses are predicted by choosing the allelic

content that corresponds to the maximal log-likelihood (Boeva

et al., 2011). It can estimate the tumor purity of sequenced

samples and can estimate the absolute copy numbers (CN) for

the predicted CNVs. iCopyDAV combines CBS and total

variation minimization (TVM) algorithms for segmentation,

which compensates for the deficiency of CBS in segmenting

low-coverage sequences, allowing it to detect a larger range of

CNVs with high sensitivity and precision (Dharanipragada et al.,

2018).

However, the above segmentation processes are performed

on the entire genome (global segmentation) and do not consider

local read count variability. The fundamental assumption of the

RD-based approach is that the read depth is proportional to the

number of copies in the region (Simpson et al., 2010; Yuan et al.,

2021b). Restricted by the sequence coverage and interfered from

the mapping error, the signal intensities of low CN duplications

vary less. In tumor cells, normal tissue contamination further

weakens the signal intensity, resulting in low CN duplications

being masked by normal regions during segmentation. This

scenario is more severe in small CNV events (<10 kb). To

avoid this problem, CNV-LOF starts the segmentation from a

local perspective. It first divides the target genome into multiple

contiguous and non-overlapping regions with the same length,

then uses the CBS algorithm to segment each subregion. Finally,

each genomic segment is assigned an outlier factor to identify

CNV regions (Yuan et al., 2021a). This method shows high

sensitivity for low-amplitude CNVs and performs well on low

tumor purity data. However, focusing only on localized regions

can limit its performance on sequencing data with high tumor

purity.

Therefore, it is necessary to develop a new CNVs detection

method to address: 1) Affected by limited sequence coverage and

mapping errors, the signal intensities of low CN duplications

fluctuate less, especially in tumor data. This type of signal is easily
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smoothed out in global segmentation. Many existing methods

cannot detect such CNVs, resulting in lower sensitivity. 2)

Compared to larger CNVs, small CNVs (<10 kb) show

inconspicuous signals and are more easily to be smoothed by

large segments. Although most methods perform well in

detecting larger CNVs, identifying small CNVs events is more

challenging. 3) The RD-based method has a low breakpoint

resolution.

For this, we propose a new CNVs detection method called

CNV-PCC (Detection of Copy Number Variations based on

Principal Component Classifier). It is a single-sample method,

and no control sample is required. Unlike the above

segmentation strategies, CNV-PCC operates a two-stage

segmentation strategy, that is, a combination of global and local

segmentation. First, CNV-PCC uses the CBS algorithm to segment

the entire genome. Then, the large-length segments resulting from

the CBS algorithm are re-segmented into multiple contiguous

subsegments with the specified length. It enhances the ability to

identify low CN duplications and small CNVs. Besides the read

depth, CNV-PCC introduces SR signals to determine breakpoints,

improving the breakpoint resolution. RD signal, GC content, and

mapping quality are used as PCC’s inputs to calculate outlier scores.

The mapping quality indicates the confidence of a read alignment to

this position on the reference sequence, which presents lower levels

in the mapping error regions (Li et al., 2008; Dong et al., 2020). In

CNV-PCC, data points with a lower mapping quality will receive a

high outlier score, which can effectively exclude the interference of

mapping errors. We apply CNV-PCC to simulated data and real

sequencing samples as well as compare it with several popular

methods. The results show that CNV-PCC demonstrates excellent

performance in simulated data, and proves its reliability in real

samples.

Methods

Workflow of CNV-PCC

The workflow of the CNN-PCC method is displayed in

Figure 1. The alignment file in BAM format is the main

input. It is generated with the alignment of sequencing

samples (in Fastq format) and reference sequences (e.g.,

hg38). BWA-MEM approach (Li and Durbin, 2009) completes

alignment and is then sorted by SAMTools software (Li et al.,

2009). In the preprocessing stage, read counts and mapping

qualities are extracted as feature signals. The SR signal is used

to locate potential breakpoints. Based on the found breakpoints,

the genome is divided into fixed-size bins, and the informative

profile is calculated based on the read information in each bin.

FIGURE 1
Diagram showing the workflow of the CNV-PCC method.
CNV-PCC is composed of four primary parts, including input of
BAM files, preprocessing of the informative profile, segmentation,
and detection by PCC.
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The RD signals require further normalization to eliminate GC-

bias. In the segmentation stage, CNV-PCC implements a two-

stage segmentation strategy. It performs segmentation globally

and locally, where the global segmentation is achieved using CBS.

The local segmentation further subdivides the segments of the

CBS division into more subsegments. Meanwhile, the RD signals

in the segments are smoothed using the TV algorithm (Condat,

2013) to reduce the noise. In the detection phase, the PCC

calculates the outliers for all segments. And the regions of

CNVs are identified after the OTSU algorithm determines the

threshold. In the following subsections, the principles and

implementation of each step are described in detail.

Preprocessing

The informative profile extracted from the bam file consists

of read counts and mapping qualities. The read counts are

calculated based on the alignment results, while the mapping

qualities can be extracted directly from the bam file. The

informative profile requires further preprocessing and includes

searching breakpoints, dividing the bins, calculating the feature

signals, and correcting the GC-bias.

Searching breakpoints and binning
Before dividing the bins, CNV-PCC first searches for

breakpoints using SR signals. The split reads may contain

boundary information of mutation events. For example, in

Figure 2A, there are pair-end reads R1 and R2. R1 can match

the reference sequence exactly. R2 is located in the boundary

region and can only partially match the reference sequence,

and this type of read is called split read. The boundary of

CNVs can be determined by searching for the breakpoint

information in the split read. It can be calculated from the pos

field in the BAM file. However, sample sequences usually

contain many variation events, and not all split reads are

caused by CNVs. Further analysis reveals that reads located at

CNVs boundaries can be matched to multiple positions. For

example, in the duplication event (Figure 2A), R2 and

R3 match both positions A and B. When aligned with the

reference sequence, they match two positions: A and B. In the

deletion event (Figure 2B), R2 and R3 also match positions A

and B. Other mutation events, such as translocation events,

may also produce split reads. However, such balance mutation

events do not cause fluctuations in the RD signal. Therefore,

there is no need to exclude such breakpoints.

Based on the found breakpoints, the entire genome is binned.

Bin size (e.g., 1 kb) is first specified. If the distance between two

breakpoints is greater than twice the size of the bin, then binning

is performed on this region. It is divided into multiple

contiguous, non-overlapping bins. After the completion of

binning, some smaller bins (<500 bp) will not be favorable for

the computation of the RD signal. Therefore, the smaller bins will

be merged with adjacent bins (into the previous bin by default)

until the size is larger than 500 bp.

Calculating the RD and MQ signals of bins
The RD and MQ signals are computed on non-overlapping

bins of appropriate size. It can reduce the random fluctuations of

read depth caused by noisy signals. For convenience, we use bi
(i = 1, 2, 3, ...,m) to denote the ith bin, andm represents the total

number of bins. The RD signal for each bin can be calculated via

Eq. 1.

rdi �
∑size bi

j�1 rcj

size bi
(1)

where rdi denotes the RD value of bi , rcj denotes the read count

of the jth position in this bin, and size bi denotes the size of the bi
and is set to 1 kb.

The MQ signals reflect the mean mapping quality level of the

reads contained in a bin. The regions with mapping errors

present lower values (Lee and Schatz, 2012). In particular, the

associated mapping quality is zero when a read is not uniquely

mapped to a location (Abyzov et al., 2011). Consequently, a

higher MQ value indicates a more confident alignment. The MQ

signal of a bin can be calculated by Eq. 2.

mqi �
∑size bi

j�1 mapqj

size bi · ri (2)

where mqi denotes the MQ value of bi , mapqj denotes the

mapping quality of the jth position in this bin.

FIGURE 2
Two examples illustrate the breakpoint information of CNVs
contained in split read. (A,B) denote duplication and deletion
events, respectively. R2 and R3 can be aligned to two positions:
position A and position B. The blue part indicates thematched
region, and the red part indicates the unmatched region.
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Correcting the GC-bias
GC-bias is one of the primary reasons for the inconsistency

between the RD signals and sequence coverage (Benjamini and

Speed, 2012). The RD values will be biased in regions with low or

high GC content. To get representative and accurate RD signals, a

common method (Dharanipragada et al., 2018; Liu et al., 2020) is

used for correction and the equation below.

~ri � ravg
rgc

rdi. (3)

Here, ~r and rdi denote the corrected and original RD value of the

ith bin bi , separately; ravg denotes the average RD value over all

bins, rgc denotes the average RD value for all bins with similar

GC content as the bi .

Segmentation

Segmentation is performed based on the RD profile after GC-

bias correction. It consists of two stages: global segmentation, in

which the entire genomic region is divided into segments with

similar RD values using the CBS, and local segmentation, in

which the large segments are re-segmented into contiguous

subsegments of the same length. These two phases are briefly

analyzed below.

Global segmentation with CBS
CBS is a popular segmentation algorithm that is widely used

for the detection of CNVs. Its process can be considered as a

change point detection problem, whereby finding the location of

the bins where the RD value has changed (Venkatraman and

Olshen, 2007). CBS performs segmentation on the entire

genome, which divides the bins b1, . . . , bm into many

segments. In each step, it determines a set of consecutive bins

bi, bi+1, ..., bj (1≤ i < j≤m). Then utilizing the maximal t-statistic,

the mean of the RD values from bi to bj is compared with the

mean of the remaining bins. If the p-value is smaller than the

threshold (usually 0.01), it indicates that bi and bj (j < m) can

maximize the test statistic and are viewed as the location of the

change point. In other words, the region of bi to bj is divided into

a segment. The process is applied recursively to the entire

genome and divides it into multiple segments.

Local segmentation
Once the global segmentation is completed, the local

segmentation is further performed on the divided segments.

This process can effectively identify CNVs that are smoothed

in the large segment, such as low CN duplications and small

CNVs. First, the length (Ls) of subsegments is specified. Then the

segments with a length greater than Ls are divided into multiple

consecutive and non-overlapping subsegments. Each

subsegment has the same length Ls, and the last one may be

larger than Ls. The size of Ls correlates with the resolution of

CNV. Typically, a small Ls will give higher detection resolution

and sensitivity but will cause lots of false-positive events. While

larger Ls will provide higher precision, the false negatives are

hard to control. Users can set the size of Ls according to actual

requirements. In our study, the size of Ls is set to 10 kb. After the

local segmentation is finished, all segments (both subsegments

generated by local segmentation and segments not locally

segmented) are arranged sequentially and represented by Eq. 4.

RS � rs1, rs2, rs3, ..., rsn{ }, (4)
where rsi denotes the ith segment, and n denotes the total

number of segments.

Smoothing the RD profile by total variation
When the segmentation is completed, the RD signals in the

segments need to be smoothed and denoised. The noisy data

during sorting and segmentation may lead to new errors. The

Total Variation (TV) algorithm implements the smoothing

process, where the RD signal containing noise shows a high

total variance (Condat, 2013). The TV recovers the original

signals by reducing the total variance between adjacent

segments while preserving the edge information well. The

smoothing equation for RD signals is as follows.

min
r
�

1
2
∑n
i�1

r̃si| − rs
�

i

∣∣∣∣2 − λ∑n−1
i�1

rs
�

i+1 − rs
�

i

∣∣∣∣ ∣∣∣∣ (5)

where r̃si and rs
�

i denote the original RD value and the denoised

RD value in the rsi, respectively; n denotes the number of

segments; the former item of the equation represents the

fitting error between the original RD value and the denoised

RD value, and the latter term is the L1 norm of total variance. λ is
the penalty parameter of this term and is used to adjust the

constraint size of the total variance. the larger the value of λ, the
stronger the penalty. When it tends to infinity, all RD values

converge to the same value. When the λ is 0, the original signals

are retained. The user can specify the value of λ.

Calling CNVs with CNV-PCC
After segmentation, the new signals (RD, GC content, and

MQ, in segment units) serve as three features of the PCC for

calculating outlier scores. The three features are represented with

matrix N, where row vector r = [r1, r2, ..., rn], g = [g1, g2, ..., gn], and

m = [m1,m2, ...,mn] denotes the RD, GC content, andMQ signal,

respectively; ri and mi denote the RD value and MQ value of the

ith segment, respectively, and they are the mean values of the

corresponding signals in the segment. Each column vector (ri,mi,

gi)
T can be viewed as a sample in PCC.

N �
r1
m1

g1

r2
m2

g2

. . .

. . .

. . .

rn
mn

gn

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (6)

Principal component classifier (PCC) (Shyu et al., 2003) is

built on principal component analysis (PCA). PCA is an
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algorithm commonly used for dimensionality reduction of high-

dimensional data. The main principle of PCA is to project the

original high-dimensional data onto some low-dimensional

space by linear transformation and make its variance as large

as possible, so that the valid information of the data can be

retained to the maximum. PCA has been applied to the CNV

detection problem as a data correction technique (Chen et al.,

2011) rather than as the main method for identifying CNVs.

Algorithm 1 describes the steps of PCC detection. Its primary

objective is to project the three-dimensional matrix N onto the

one-dimensional vector V and find the abnormal samples

according to the projection distance.

1: Standardized matrix N and denoted by matrix X;

2: Calculate the covariance matrix: � 1
m−1XXT ;

3: Solve the eigenvalue-eigenvector pairs of C: (λ1 , e1),

(λ2 , e2) and (λ3 , e3), λ1 ≥ λ2 ≥ λ3;

4: Calculate the projected distance d of each data sample

xi on e1 as an outlier score: (xi) � di �
����������
(xi−e1)T ·(xi−e1)

√
λ1

, i = 1,

2, 3, ..., n;

5: Set the threshold t with OTSU algorithm; the samples

with outlier scores greater than t (score(xi)≥ t) are

judged as anomalous;

6: Determine the baseline based on the mean RD value and

call CNVs.

Algorithm 1 Detection of CNVs with PCC.

In step 1, the three features r, m, and g are normalized to the

same scale. This is because the value of MQ is generally larger

than the value of RD and GC content, and when projected into

the low-dimensional space, the variable MQ will receive a larger

weight in the principal component. The two features can be

standardized using the following equation:

r′ � r − �r( )/rsd (7)
m′ � m − �m( )/msd (8)
g′ � g − �g( )/gsd (9)

In Eq. 7, r′ represents the standardized RD, �r and rsd represents

the mean value and standard deviation of RD, respectively.

The normalization process of MQ and GC content is the same

as RD and is shown in Eq. 8 and Eq. 9. After standardization,

the mean value in each feature turns to 0 and the standard

deviation to 1. This ensures that all features have the same

influence on the principal component variables. In step 3, the

covariance matrix C can be decomposed into orthogonal

vectors, called eigenvectors, associated with eigenvalues.

The eigenvectors reflect the different directions in which

the variance of the sample data changes. The eigenvalues

indicate the variance magnitude of the data in the

corresponding directions. The eigenvectors e1 with high

eigenvalues capture most of the data's variance and serve as

the principal component vector. In step 4, RD is the main

feature to identify CNV. Thus, only the projection distance

from the sample to e1 needs to be calculated. The outlier score
is the weighted Euclidean distance between each sample to the

eigenvector e1. Samples with larger outlier values indicate

potential CNVs or mapping error regions. In step 5, the

threshold is set to determine the anomalous samples. The

distance projected onto e1 varies widely for samples with

different sequence coverage. To accommodate data with

different sequence coverage, we use the OTSU (Goh et al.,

2018) algorithm to calculate the threshold. OTSU is a global

binary segmentation algorithm, which is mainly used for the

segmentation of grayscale maps. The best threshold obtained

maximizes the separability of the resulting gray levels. It

dynamically gets a threshold by traversing all the scores in

an interval to maximize the variance between the two classes.

In this step, we first transform the outlier score into a floating

point number with two decimal places. Then, we traverse the

outlier scores between the lower 35% quantile and the upper

85% quantile to find the optimal threshold t in increments of

0.01 each time. Samples with scores above t are considered

anomalous samples. In step 6, the baseline is defined as the

mean RD value of the remaining samples after removing the

abnormal samples. Samples with RD values above a quarter of

the baseline are considered duplication (gain), and those

below a quarter of the baseline are considered deletion

(loss) events.

Results

CNV-PCC software is implemented in python and R

languages, and it is freely available at https://github.com/

SuphandsomeB/CNV-PCC. For a reasonable performance

evaluation of CNV-PCC, we first build a comparison

experiment on simulated data. The ground truth possessed by

the simulated data guarantees the reliability of the evaluation.We

compare the CNV-PCC with five popular methods (CNVnator,

FREEC, Delly, CNV-LOF, and CNV_IFTV) concerning the

precision, sensitivity, and F1-score. After that, we compare

their boundary bias and the size distribution of the identified

CNVs. To ensure the fairness of the experiment, we adjust the bin

size of certain methods so that they can detect small CNVs. For

example, the bin size of the CNVnator is set to the recommended

value (90 bp) (Abyzov et al., 2011), and the bin size of FREEC is

set to 1 kb. The remaining methods use their default parameters.

Subsequently, the real samples are used to verify the validity of

CNV-PCC.

Simulation studies

The comprehensive simulation software SinC (Pattnaik et al.,

2014) and the sequence processing tool seqtk (https://github.
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com/lh3/seqtk) are used to generate the simulated datasets. All

simulated data are generated based on chromosome 21 in the

reference genome GRCH38/hg38 (Guo et al., 2017). The

coverage is set to 4X, 6X, and 8X. CNV detection is widely

used in the field of oncogenetic. To evaluate the performance of

each method in this realistic scenario, we simulated tumor purity.

The tumor purity is set to 0.4, 0.6, and 0.8, and 30 replicate

samples are simulated for each configuration. A total of 26 CNVs

are generated in each simulation replication, including

16 duplications and 10 deletions. The variation sizes range

from 1kb to 200 kb. To simulate the real situation better, we

also generate larger CNVs of size 1–3 Mb. There are 12 CNVs of

size 1–10 kb with a frequency of 46.2%, 11 CNVs of size

10–200 kb with a frequency of 42.3%, and three CNVs of size

1–3 Mb with a frequency of 11.5%. The CN of duplications is

three and 4. With the generated simulated datasets, CNV-PCC is

compared with the five methods. A called CNV is considered a

true positive event if there is a 50% reciprocal overlap region

between it and the true CNV. The precision, sensitivity, and F1-

score are used as metrics in the evaluation, and the results are

shown in Figure 3. In the figure, each value of the evaluation

metric is the average of 30 simulation replications over each

configuration.

CNV-PCC is consistently more sensitive and has a higher F1-

score than other methods across almost all coverage levels and

tumor purity (Figure 3). In terms of precision, FREEC performs

the best among all data, followed by CNV-PCC and Delly. CNV-

PCC and Delly are the only methods suitable for detecting all

coverages and tumor purity. FREEC and CNVnator are not

applicable for detection at low tumor purity. CNV-LOF and

CNV_IFTV do not support detecting this type of CNV (They

show low metric values on all data). FREEC and CNVnator are

FIGURE 3
Comparisons of precision, sensitivity, and F1-score between CNV-PCC and five methods (CNVnator, FREEC, Delly, CNV-LOF, and CNV_IFTV).
Gray curves indicate F1-score.
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more effective in medium and high tumor purity data. CNV-

PCC’s superior sensitivity and F1-score are most notable in the

high tumor purity data. For example, the sensitivity and F1-score

of CNV-PCC at 6X and 8X coverage are 0.96 and 0.86. Compared

to 0.88 and 0.78 for Delly, 0.81 and 0.79 for FREEC, and 0.85 and

0.72 for CNVnator.

Figure 4 shows the size distribution of CNVs detected by the

six methods. The gray bars indicate the number of all CNVs in

this range. In terms of the number of small CNVs (1–10 kb)

detected, Delly detects the most on the low tumor purity data,

followed by CNV-PCC. All RD-based methods (all methods

except Delly) exhibited low performance. It is because small

CNVs have insignificant RD signal changes at low tumor purity

and are easily smoothed by adjacent segments. The performance

of all methods (except CNV-LOF and CNV_IFTV) improved as

the tumor purity increased. On the high tumor purity data, CNV-

PCC always identifies the highest number of small CNVs. It is

around 2 higher than the second-ranked Delly.

The boundary bias of each method is shown in Figure 5.

Here, we are not counting the boundary bias at larger CNVs

(1–3 Mb) because it may yield bigger values that are not favorable

for comparison. Delly performs best in the low tumor purity data.

Except for Delly, all methods exhibit large boundary bias in the

low tumor purity data. With increasing tumor purity and

FIGURE 4
Comparisons of the size distribution of CNVs between CNV-PCC and five methods (CNVnator, FREEC, Delly, CNV-LOF, and CNV_IFTV). The
gray bars indicate the number of all CNVs in this range.
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coverage, the boundary bias gradually decreased. In high tumor

purity, CNV-PCC reaches the optimal boundary bias, lower than

other RD-based methods, and lower than Delly in the 6X and 8X

coverage.

Collectively, CNV-PCC shows the highest sensitivity and F1-

score on almost all data. Regarding the size of CNVs detected,

Delly detects more at low tumor purity for small CNVs, while

CNV-PCC works well at high tumor purity. A similar situation is

observed for boundary bias. It is because the RD-based methods

mainly rely on the RD signal to identify CNVs. Small CNVs

(especially low CN duplications) have less RD signal change at

low tumor purity and are easily smoothed by adjacent segments.

Meanwhile, the SR signal is relatively less at low tumor purity

(especially at low coverage), which leads to high boundary bias

and imprecise breakpoint identification in CNV-PCC. For large

CNVs, CNV-PCC is consistently more sensitive than other

methods. Taken together, CNV-PCC is an effective method

for detecting CNVs.

Real data studies

In terms of real data, we chose sequencing samples

(HG002) from the son of the Ashkenazim Jewish (AJ) trio.

FIGURE 5
Comparisons of boundary bias between CNV-PCC and five methods (CNVnator, FREEC, Delly, CNV-LOF, and CNV_IFTV).
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There is an amount of publicly available data published by the

Genome in a Bottle (GIAB) Consortium (Zook et al., 2016).

We select a short read-based dataset to evaluate the

performance of CNV-PCC and compare it with four

existing methods (CNVnator, FREEC, CNV-LOF,

CNV_IFTV). The benchmark generated by the Genome in

a Bottle (GIAB) consortium can be used to evaluate the

performance of each method. The results of the

comparison of sensitivity, precision, and F1-score for the

five methods are shown in Figure 6.

From Figure 6, it can be seen that CNV-PCC has the highest

F1-score, which is 5% higher than the next-best method

CNV_IFTV (35% versus 30%), with FREEC at 19%,

CNVnatorat at 16%, and CNV-LOF at 11%. In addition,

CNV-PCC outperforms the other methods in terms of

precision and sensitivity. However, the metric values of each

method are relatively low compared to the simulated data. This is

due to the variant distribution being more complex in the real

genome (Hyman, 2021). The read depth signal in some regions is

affected and deviates from the true value, resulting in false

positive or false negative events.

A unique advantage of CNV-PCC over other methods is its

greater sensitivity to small CNVs. To demonstrate this capability,

we show the size distribution of CNVs detected by the five

methods in Figure 7. The delineation of the size interval of

CNVs is roughly consistent with that in the simulated data, and

the gray bars indicate the number of all CNVs within this range.

The number of small CNVs (1–10 kb) is the largest, accounting

for 83.3%. Medium CNVs (10–200 kb) and large CNVs

(>200 kb) are 13.3% and 3.4%, respectively. As expected,

CNV-PCC detects the highest number of small CNVs (587),

followed by CNV_IFTV (450) and CNV-LOF (349). The number

of small CNVs detected by FREEC and CNVnator is essentially

the same (251 and 248). Concerning medium CNVs, CNV-PCC

also has the highest number of identifications (129). The rest are,

in order, CNV_IFTV (109), CNVnator (92), FREEC (63), and

CNV-LOF (60). In terms of the recognition ability of large CNVs,

except for the poor performance of CNV-LOF, the remaining

four methods recognized essentially the same number (~15).

Conclusion

In this paper, we propose CNV-PCC, a CNVs detectionmethod

applied to whole genome sequencing data from short read

sequencers. CNV-PCC takes bam files as input and extracts RD,

GC content, and MQ signals to identify the regions of CNVs.

Compared with existing methods, it has three new features as

follows: 1) CNV-PCC uses the PCC model to detect CNVs, and

the sensibility of PCC to feature signals change makes it effective in

detecting low CN duplications. 2) CNV-PCC performs

segmentation globally and locally. Compared with the strategy of

single segmentation, it effectively avoids the problem of low CN

duplications and small CNVs being smoothed. 3) CNV-PCC uses

SR signals to find breakpoints, significantly reducing boundary bias.

We first test the performance of CNV-PCC in simulation

experiments with different configurations, and compare it with

five popular methods in terms of precision, sensitivity, and F1-

score. The results show that CNV-PCC gets the highest

FIGURE 7
Comparisons of the size distribution of CNVs between CNV-
PCC and four methods (CNVnator, FREEC, CNV-LOF, and
CNV_IFTV) on HG002. The gray bars indicate the number of all
CNVs in this size.

FIGURE 6
Comparisons of precision, sensitivity, and F1-score between
CNV-PCC and four methods (CNVnator, FREEC, CNV-LOF, and
CNV_IFTV) on HG002.
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sensitivity and F1-score in almost every configuration,

demonstrating its excellent performance. From the size

distribution and boundary deviation of detected CNVs, CNV-

PCC is slightly inferior to Delly for low tumor purity data. With

increasing tumor purity, the performance of CNV-PCC

improved significantly. It surpassed Delly in the high tumor

purity data, both in terms of the number of small CNVs detected

and the breakpoint accuracy. Next, the performance of CNV-

PCC is compared with the four methods on a real sample

(HG002). The result shows that CNV-PCC has the highest

F1-score, which is better than the other four methods.

Moreover, CNV-PCC identifies the greatest number of CNVs

(including small CNVs), proving that our method is reliable.

Currently, the shortcomings of the CNV-PCC are mainly

reflected in two aspects. First, the bin size is fixed at 1 kb, which is

the maximum resolution of CNVs detected by CNV-PCC. It is

difficult to detect some smaller CNVs (<1 kb) even if the SR

signal can identify the breakpoints. Meanwhile, CNV-PCC

performs poorly in identifying small CNVs on low tumor

purity data. Second, CNV-PCC applies to WGS data and has

not been developed for identifying CNVs inWES. In future work,

we plan to enhance the role of SR signal and reformulate the

binning strategy for solving the identification problem of small

CNVs. It can reduce the effect of tumor purity. Secondly,

extending the CNV-PCC to enable its use for identifying

WES-based CNVs.
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