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Mobile robots have an important role in material handling in manufacturing and can be
used for a variety of automated tasks. The accuracy of the robot’s moving trajectory has
become a key issue affecting its work efficiency. This paper presents a method for
optimizing the trajectory of the mobile robot based on the digital twin of the robot. The
digital twin of the mobile robot is created by Unity, and the trajectory of the mobile robot is
trained in the virtual environment and applied to the physical space. The simulation training
in the virtual environment provides schemes for the actual movement of the robot. Based
on the actual movement data returned by the physical robot, the preset trajectory of the
virtual robot is dynamically adjusted, which in turn enables the correction of the movement
trajectory of the physical robot. The contribution of this work is the use of genetic
algorithms for path planning of robots, which enables trajectory optimization of mobile
robots by reducing the error in the movement trajectory of physical robots through the
interaction of virtual and real data. It provides a method to map learning in the virtual
domain to the physical robot.
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1 INTRODUCTION

Mobile robots are an important branch of the industrial robot family, and their demand accounts for
about 30% of the demand for industrial robots (Niloy et al., 2021). Mobile robots integrate the
comprehensive application technology of mechanical, computer, artificial intelligence and other
disciplines, which can effectively improve the efficiency of industrial production, reduce the labor
intensity of workers, and increase economic benefits (Duan et al., 2021). Mobile robots use sensors to
sense the environment and achieve autonomous movement in complex environments according to
rational algorithms (He et al., 2019; Chen et al., 2021a). Path planning is the planning of a collision-
free path from the current position to the target position under the constraints using the relevant
algorithms (Hu et al., 2019; Huang et al., 2021). Path planning algorithms include genetic algorithms,
ant colony algorithms, etc. These algorithms are used in different situations due to different
computational principles (Li et al., 2019a; Jiang et al., 2021a). Most of the current research on
mobile robots uses improved algorithms to reduce their optimal path length or the number of
iterations, and there is a lack of research on error control during the actual motion of the robot (Li
et al., 2019b; Bai et al., 2021). In practice, the robot cannot follow the planned path to the target
position during the movement due to the influence of environmental factors or the error in the
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coordination of various parts of the robot (Chen et al., 2021b;
Chen et al., 2021c). At the same time, the lack of data feedback
from most robots during movement makes it impossible to
determine where errors occur and to correct the robot’s work
path, making it impossible for the robot to work in workplaces
with high operational accuracy (Yu et al., 2019; Luo et al., 2020).

With the introduction of national-level manufacturing
development strategies such as the U.S. Industrial Internet,
Germany’s Industry 4.0 and Made in China 2025, smart
manufacturing has become a common trend and goal for
global manufacturing development (Jiang et al., 2019a; Cheng
et al., 2021). As a key technology to realize the concept and goal of
smart manufacturing, digital twin has received wide attention
from academia and is being applied in more and more industrial
fields (Hao et al., 2021; Jiang et al., 2021b). Digital twin is a
technical means to realize the information interaction between
the physical world and the virtual world, which creates virtual
models of physical entities digitally, simulates the operation of
physical entities in the real environment with the help of actual
data, and dynamically optimizes the working state of physical
entities (Tao et al., 2019; Lu et al., 2020; Jiang et al., 2021a). As a
technology that makes full use of models and data and integrates
multiple disciplines, the digital twin is oriented to the whole
product lifecycle process, playing the role of a bridge and link
between the physical world and the information world to provide
more real-time, efficient and intelligent services (Jiang et al.,
2019c; Huang et al., 2020; Liao et al., 2021). Digital twin-based
precision distribution for production logistics is a combined
application of digital twin technology and mobile robots (Li
et al., 2019c; Li et al., 2020). Production logistics, including
internal logistics and external logistics, is the key to ensure
normal production, improve production efficiency and reduce
product costs (Liu J et al., 2021; Yang et al., 2021). Digital twin
production logistics refers to a new production logistics operation
mode driven by twin data, through real mapping of physical
entities and virtual models, real-time interaction and closed-loop
control, to achieve task combination optimization, transportation
path planning and transportation process control of production
logistics, so as to achieve seamless and intelligent production
process logistics (Sun et al., 2020b; Liu et al., 2021b).

In this paper, we develop a mobile robot based on digital twin
technology, build a virtual environment in Unity, and complete
the path planning of the virtual model using genetic algorithm. A
communication architecture between the virtual model and the
physical robot is proposed to complete the data interaction
between the robot and the virtual model via Bluetooth, which
achieves dynamic optimization of the physical robot movement
process and improve the accuracy of the robot’s movement
trajectory. In contrast to the work done by others, the focus of
our work is to emphasize the real-time mastery and correction of
errors generated during robot movement, and to achieve the
reduction of errors in physical entities through the interaction of
virtual models and physical entities. There are three contributions
of this paper.

1) A robot that can move autonomously was developed.
2) A digital twin of the mobile robot was built in Unity.

3) The path planning of the robot was implemented in a virtual
environment based on genetic algorithm.

4) A trajectory optimization method for a mobile robot was
proposed. The trajectory error of the robot is gradually
reduced by virtual-real interaction.

The rest of this paper is organized as follows. Reviewed some
of the research done by domestic and international scholars on
mobile robots and digital twins in Section 2. Section 3 describes
the virtual environment of the robot and the genetic algorithm-
based path planning in the virtual environment. Section 4
presents the experiments of digital twin-based mobile robot
trajectory optimization and summarizes the experimental
results. Section 5 concludes the paper with summary and
future research directions.

2 RELATED WORK

Mobile robots have the characteristics of high efficiency, wide
working range and convenient operation, etc. With the
continuous enrichment of computer control theory and deep
learning and other related theories, the requirements for the
movement accuracy of robots have gradually increased Material
and Methods (Huang et al., 2019; Miao et al., 2021). Robots with
high motion accuracy can improve efficiency and avoid wasting
resources when moving with high accuracy requirements,
especially when completing transportation tasks in high-risk
production areas (Ma et al., 2020; Sun et al., 2020a; Liu et al.,
2021a). HUR Sung Wook et al. propose a new approach to
efficient trajectory optimization that exploits the fact that the
dynamics of a deterministic system is uniquely determined by the
initial state and control over the time horizon of interest (Hur
et al., 2021). Hu proposed a method based on content image
retrieval to identify obstacles on the robot’s running path (Hu,
2021). Fu et al. analyzed the local minima problem and the target
unreachability problem which are easy to occur in the artificial
potential field method, and solved the local minima problem of
the artificial potential field method better by introducing the
virtual obstacle model (Fu et al., 2021). Huo et al. proposed an
optimal fuzzy logic obstacle avoidance algorithm for
implementing motion obstacle avoidance of mobile robots
(Huo and Wang 2021). Zheng et al. proposed a laser-based
person detection and obstacle avoidance algorithm for
differential drive robots applied to a handling robot to
transport materials along a reference path in the hospital field
(Zheng et al., 2021). Luka Petrović et al. proposed a new trajectory
planning algorithm using stochastic optimization in order to find
a continuous-time Gaussian process for collision-free trajectory
generation (Petrović et al., 2020). Deng et al. proposed a multi-
obstacle path planning and optimizationmethod that uses convex
packages to optimize the base obstacles and obtain the
corresponding set of base obstacle points, and uses cubic
bezier curves to smooth the path to fit the kinematic model of
the robot (Deng et al., 2021).

The concept of digital twin was proposed by Prof. Michael
Grieves, who showed in his paper that virtual models and related
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subsystems are constructed to represent physical entities in a
virtual information space and establish two-way dynamic
connections through data from physical devices in real space,
but due to technical limitations at that time, the concept of digital
twin did not gain much attention (Tan et al., 2020; Sun et al.,
2021). In 2011, NASA applied the digital twin concept to the
Apollo project to construct virtual bodies of space vehicles in
virtual information space, and through the observation and
analysis of the virtual bodies, the prediction and maintenance
of the flight status of space vehicles were realized, and then the
digital twin technology began to attract attention (Tao et al., 2018;
Liu Y et al., 2021a). Many internationally renowned companies
have already started to explore the application of digital twin
technology in product design, manufacturing and service (Sun
et al., 2020c; Tao et al., 2021). In product design, for the
innovative design of complex products, Dassault has
established a 3D experience platform based on the digital twin,
which uses the information from user interaction to continuously
improve the product design model in the information world and
to implement it into the physical product improvement (Sun et
al., 2020d; Fu et al., 2021). In manufacturing, Siemens has built a
production system model that integrates manufacturing
processes based on the digital twin concept, formed a virtual
enterprise based on the model and an enterprise mirror based on
automation technology, and carried out application validation in
the production process of Siemens industrial equipment:
Nanobox PC. In terms of product service, PTC has made
digital twin a key aspect of intelligent and connected products
and is committed to establishing a real-time connection between
the virtual world and the real world, enabling predictive
maintenance of products and providing customers with
efficient product after-sales service and support.

The digital twin technology mainly includes important
parts such as the creation of virtual models, the collection
of actual data, and the data interaction between physical
entities and virtual models. The determination of model
parameters, the fit constraints between components and the
accuracy of the model are the key issues and difficult problems
of the virtual model. Currently, research has been conducted in
the framework and process of digital twin modeling, and there
are many software for modeling, but there is a lack of a
complete set of modeling theory and modeling process
(Jones et al., 2020; Liu et al., 2020). Digital twin technology
requires a high level of real-time data, and in most occasions
automated data collection is used, which relies on the use of
devices with good communication conditions and various
types of sensors. Data interaction between physical entities
and virtual models is the key to the implementation of digital
twin technology, but there is little research related to the
interaction and collaboration between machines and
services (Zhuang et al., 2017; Guo et al., 2021; Ruzsa, 2021).
Verner et al. developed a system of reinforcement learning
scenarios in which humanoid robots learn the protocols
required to lift weights of unknown mass by exploring state
space. To speed up the process of physical training, these
experiments were performed in a virtual space, simulated in a
digital twin, where the parameters obtained from simulation

learning were mapped onto the physical robot (Verner et al.,
2018). Huang et al. demonstrated a linear tracking robot
trained in digital twin mode in a virtual space (Huang
et al., 2019). Matulis et al. present a method for creating
and training a digital twin robot for a robotic arm. The
project demonstrates that a trained robot can perform a
given task even if it is currently in a state it has never been
in before (Matulis and Harvey, 2021). Liu et al. proposed a
digital-driven machining quality tracking and dynamic control
method, which effectively solved the problems of low efficiency
of quality problem traceability, poor timeliness and
unpredictability of quality control in machining process
(Liu Y et al., 2021b).

The application of digital twin technology in logistics and
distribution is one of the future directions of digital twin, which
realizes the accurate distribution of goods through the control of
the distribution process of mobile robots. Currently, most of the
domestic research on mobile robots considers the robot’s
movement path planning. From the overall effect, the
improved path planning algorithm improves the movement
accuracy of the robot, but it is impossible to know the
location where the movement trajectory error occurs and lacks
feedback on the error during the robot movement (Liu et al.,
2021d). Applying digital twin technology to mobile robots and
establishing the interaction between robots and virtual models
can grasp the robot’s operation in real time and optimize the
robot’s movement trajectory (Zhao et al., 2021). Digital twin-
based mobile robots can be applied to applications where
trajectory attractions are demanding, such as power station
inspection, space exploration, etc.

3 MATERIALS AND METHODS

This section describes the general approach and workflow for
improving the trajectory accuracy of mobile robots, including
the setup of virtual environments and genetic algorithm-based
path planning. Figure 1 provides a functional overview of the
digital twin robot virtual-reality interaction method. The robot
entity is controlled by STM32 microcontroller, the orthogonal
code disk determines the spatial coordinates of the robot and
creates a virtual model of the robot in untiy. STM32 establishes
communication with Unity’s virtual serial port to achieve data
interaction between the physical entity and the virtual model.

3.1 Physical Robot
The physical entity is objective and usually consists of control
subsystems, power subsystems, actuation subsystems, etc. and
accomplishes specific tasks through collaboration among the
subsystems, and its environmental data and operational status
are monitored in real time by sensors deployed on the physical
entity (Weng et al., 2021). The robot is built from aluminum
profiles and driven by RoboMaster M2006 DC brushless
motors. The robot weighs about 13 kg and can achieve
movements such as straight line movement, lateral
movement, turning and other movements. The motors
provide a maximum speed of up to 500 rpm, a maximum
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sustained torque of 1,000 mN m, and a maximum sustained
output power of 44 W. Each motor is controlled by a 32-bit
microprocessor STM32 board. The STM32 board controls the
M2006 motor to drive the robot movement via the c610
electronic speed controller, using an orthogonal encoder
and gyroscope to determine the robot’s position
coordinates. The orthogonal encoder has two directions, X
and Y, corresponding to one coordinate on the plane. By giving
the coordinates, it can realize the fixed-point movement of the

robot, and its combination with the gyroscope can realize the
correction of the running trajectory by controlling the number
of revolutions of the motors. The L298N module controls the
electric actuators and mechanical jaws to grasp the object. The
physical entity of the robot is shown in Figure 2.

3.2 Virtual Environment Construction
The virtual model is a digital mirror of the physical entity and
mainly includes four layers of models: geometry, behavior,
interaction, and association. Geometric models mainly describe
geometric relationships such as size and shape (Xiao et al., 2021).
Behavioral models analyze expected behavior, actual behavior,
and random behavior. Interaction model refers to the data
interaction, behavior interaction, information interaction
between virtual model and physical entity (Liu Y et al., 2021c;
Yun et al., 2021). The association model describes the interactions
between the geometric model, the behavioral model, and the
interaction model.

Unity was chosen to complete the construction of the virtual
model, the motion control of the model, and the development of
the experimental scenes. In Unity, a robot movement scene is
built as shown in Figure 3, which includes a virtual model of the
robot, two cylindrical obstacles, a white goods stacking area, and
handing objects. When constructing the virtual model, it is
necessary to consider the influence of realistic factors, such as
the robot’s material, mass, and the robot’s movement speed. The
specific parameters of the experimental environment are shown
in Table 1. The requirement for the robot’s movement path is
that the robot starts from the starting position, carries the
handling objects through two obstacles, and finally reaches
the white goods stacking area. The ability of the robot to

FIGURE 1 | Framework for interaction between virtual models and physical entities.

FIGURE 2 | Physical structure of the robot.
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place the load in the stacking area is a criterion for determining
whether the robot is experiencing trajectory errors. There is a
maximum speed limit on the movement of the physical robot
and a height limit on the rise of the electric actuators, which
must be captured and applied to the virtual environment during
the experiment.

3.3 Genetic Algorithm-Based Path Planning
Genetic algorithms are stochastic global search optimization
methods that simulate the phenomena of replication, crossover,
and variation that occur in natural selection and inheritance.
Starting from an initial population, the population evolves to
increasingly better regions in the search space by random
selection, crossover and mutation operations to produce a
group of individuals better suited to the environment, and
finally converges to a group of individuals best suited to the
environment to obtain a quality solution to the problem
(Nazarahari et al., 2019; Sarkar et al., 2020). For path
planning based on genetic algorithm, the individuals suitable
for the environment are the suitable moving paths, and the one
that best satisfies the conditions is obtained by random selection
and crossover variation. The flow chart of virtual environment
robot path planning based on genetic algorithm is shown in
Figure 4.

The steps of genetic algorithm-based path planning for virtual
environment robots are as follows.

1) The raster method is used to model the robot’s walking space,
which is represented by a square. The white grid indicates the

moveable area and the black grid indicates the obstacle. In this
paper, the robot walking space is shown in Figure 5.

The Cartesian coordinate system is established with the first
grid in the lower left corner of the map as the coordinate origin, so
the coordinates of each grid can be expressed as (x, y). For
example, the first grid in the bottom left corner can be represented
as (1,1). The number in the raster represents the number n. The

FIGURE 3 | Virtual environment.

TABLE 1 | Experimental environment parameters.

Facility name Dimensional parameters

Grey base plate 3 m × 5 m
Obstacles d � 0.1 m; h � 1 m
Stacking area 0.4 m × 0.3 m
Handling objects 0.28 m × 0.16 m × 0.15 m
Distance between obstacles 1.2 m

FIGURE 4 | Genetic algorithm flow chart.
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conversion formula between number and coordinate is shown in
Equation 1. In this paper, the grid numbers of the starting and
ending points are 3 and 45, and the grid numbers of the obstacles
are 17 and 31, respectively.

{x � int(n/7) + 1
y � n%7 + 1

(1)

2) Initialize chromosomes and use floating point encoding to
form populations. The purpose of initializing the population is
to randomly generate multiple feasible paths, feasible paths
being those that do not collide with the obstacle grid.

3) To allow the dominant individual to be preserved, define the
fitness function as shown in Equation 2.

ffitvalue � exp(200/dis p μ) − 1 (2)

Where dis is the distance of each individual (path), μ is the
collision coefficient between the individual and the obstacles.
If the path collides with the obstacle, then μ take 0, if no
collision then μ take 1. Obviously, if the path collides with an
obstacle, its fitness is 0. It will not be inherited to the next
generation, and this individual is discarded. dis is calculated
using the Euclidean distance, and the calculation formula is
shown in Equation 3.

disi+1 �
���������������������
(xi+1 − xi)2 + (yi+1 − yi)2√

(3)

4) A number of individuals were selected from the population
using the roulette selection method. In this method, the
selection probability of each individual is proportional to
its fitness value, and the higher the fitness value, the higher

the probability of being selected. The specific steps are as
follows.

1) Calculate the fitness of each individual in the population.
2) Calculate the probability of each individual being inherited

into the next generation population, as shown in Equation 4.

P(disi) � ffitvalue(disi)∑N
j�1ffitvalue(disi)

(4)

3) Calculate the cumulative probability of each individual, as
shown in Equation 5.

qi � ∑i
j�1
P(disi) (5)

4) Generate a uniformly distributed pseudo-random number r in
the interval [0,1]. If qk-1< r ≤ qk is satisfied, select individual k.

5) A random number approach is chosen for chromosome
crossover operations to form new chromosomes, as shown
in Equation 6. where a is the generated random number, si is
the child, fati and fati−1 are the parents.

si � (1 − a)pfati + apfati−1 (6)

6) The uniform variation operator is selected for variation
operations. The original gene values at each locus in the

FIGURE 5 | Raster map.

TABLE 2 | Genetic algorithm parameter settings.

Parameters Value

Population size 50
Evolutionary algebra 100
Number of chromosomes 5
Mutation probability 0.045
Gene conversion probability 0.1
Gene crossover probability 0.9
Gene variation probability 0.07
Select Strategy Roulette

FIGURE 6 | Virtual robot movement path.
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individual coding string are replaced with a random number
that matches a uniform distribution within a certain range
with a certain small probability.

7) Formation of new individuals of the next generation.
Calculate the fitness value of the new individual.

8) Determine whether the best individuals in the new
generation population meet the expected requirements,
and if so, output the result and go to step (I), otherwise,
return to step (E).

9) Define two termination criteria: 1) Maximum number of
iterations is 100; 2) Little chromosome variation and
population stabilization. Before each genetic operation,
determine whether the termination criterion is satisfied,

and if the condition is satisfied, the optimization process
ends. The specific parameters are shown in Table 2.

According to the decoding method of genetic algorithm, the
input is the coordinates of the starting point, target point and
obstacles, and the output is the corresponding motion trajectory.
According to the actual working conditions and task
requirements of the physical robot, the motion trajectory of
the robot is determined as shown in Figure 6. point A and
point F denote the starting point and end point respectively, and
points B, C, D and E are path critical points. The physical robot
follows the dashed path from the starting point A through the
obstacles to the end point F, and then returns along the solid path.

FIGURE 7 | Virtual models control the movement of physical robots. Panel (A) indicates that the robot passes the path point C; Panel (B) shows the robot passes
an obstacle.
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4 RESULTS

4.1 Experimental Procedure
In digital twin technology, the virtual model serves as a realistic
mapping, simulation, and feedback correction. After several
simulation tests in the virtual environment, appropriate
operating parameters are determined and sent to the physical
entity to realize the control of the virtual model over the physical
entity (Liu J et al., 2021). Before the experiment starts, set the
moving speed of the physical robot and the lifting speed of the
electric actuator to constant values. Since the physical robot uses
an orthogonal encoder for global positioning, the directional
movement of the physical robot can be achieved by specifying
the location coordinates of the target point.

The specific operation process is: establish the same global
coordinate system as the virtual environment in the physical robot
control system, send the coordinates of points A, B, C, D, E and F in
Figure 5 to the physical robot STM32 board, then the robot canmove
according to the coordinates after receiving the path coordinates. The
movement process of the robot is shown in Figure 7. From the figure,
it is clear that the physical robotmoves according to the path obtained
by training in the virtual environment.

After the physical robot starts moving, the STM32 board sends
the real-time coordinates of the moving path to the virtual
environment. The virtual model moves in the virtual
environment based on the obtained real-time coordinates, and
determines the position of the robot trajectory offset by
comparing it with the predefined running trajectory. The
coordinates of the key points of the path are continuously
adjusted according to the trajectory offset, thus gradually
improving the accuracy of the actual moving trajectory of the

physical robot. The experimental procedure is shown in Figure 8,
where the red rectangular box shows the real-time data of the
physical robot movement received by the virtual environment.

4.2 Analysis of Errors and Sensitivities
The physical robot cannot reach the position of the specified
coordinate point during the movement. The reasons for this
phenomenon are measurement error, physical error, virtual error
and other aspects. Measurement error refers to the dimensional
measurement error and assembly error that occurs during the
building process of the physical robot. Physical errors are the
errors between the robot and the environment and the errors in
the robot hardware, mainly the friction between the ground and the

FIGURE 8 | Virtual environments receive real-time movement data from physical robot.

FIGURE 9 | Deviations in cargo placement.
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wheels, the encoder error and the gyroscope heading angle error.
Virtual errors refer to themodel dimensional errors and virtualmodel
assembly errors that occurwhenmodeling in the virtual environment.

Sensitivity analysis is the process of finding out the most
influential factor on the experimental results among many
uncertainties and analyzing the degree of its influence on the
experimental target. Among several types of errors affecting the
accuracy of robot motion trajectory, both measurement errors
and virtual errors can be artificially controlled to reduce the
occurrence of errors. Physical errors are random in nature and
uncontrollable. Considering several factors that generate physical
errors, among them, the friction between the ground and the
wheels has the greatest influence on the experimental results, so
the influence of other errors is ignored and only the influence
brought by the friction between the ground and the wheels is
considered.

Analysis of Experimental Results
The reason for setting the stacking area is that it is difficult to
observe whether the trajectory deviation occurs during the actual
movement of the robot, and it can be judged whether the robot
shifts during the movement by whether the robot can place the
goods correctly in the stacking area. Figure 9 shows a situation
where the goods are not placed correctly, from which it can be
determined that the physical robot has shifted during the
movement. The larger the area of cargo deviation from the
stacking area, the larger the amount of robot trajectory deviation.

Center1 is used to indicate the center of the bottom surface of
the goods, and Center2 indicates the center of the stacking area.
The distance between Center1 and Center2 is used to indicate the
degree of deviation of the goods not correctly placed in the
stacking area, as shown in Figure 8. The experimental
procedure in Section 4.1 is repeated 20 times to obtain the
graph of the variation of the distance between the two center
points, as shown in Figure 10. As can be seen from Figure 10, the
distance between the two center points gradually decreases with
the increase of the number of experiments, which laterally reflects
that the offset of the robot’s moving trajectory is gradually

decreasing, thus improving the robot’s moving accuracy and
realizing the optimization of the robot’s moving trajectory.

Further, to determine the location where the robot’s trajectory
deviation occurred, the first five experimental paths were selected,
and the actual coordinates of six key points were recorded and
compared with the preset key point coordinates. The results are
shown in Figure 11, and the red pentagons are the coordinates of
the preset path key points. From the overall change, the actual
moving path gradually approximates the preset path as the
number of experiments increases; In terms of local variation,
the trajectory coordinates of points B, D, and E vary greatly. After
analysis, the reason for this phenomenon may be that the friction
force on the robot becomes larger during the lateral translation of
the robot, resulting in the robot not reaching the preset key point.

5 DISCUSSION

In this paper, the trajectory optimization of mobile robots is
achieved through digital twin technology. A mobile robot was
designed, using the STM32 to control the movement of the robot
and to receive data. A virtual model corresponding to a physical
entity as well as a virtual environment that is the same as the real
scene are created in Unity. Based on the data interaction
characteristics of the digital twin technology, the robot’s
movement path is dynamically adjusted, the robot’s movement
accuracy is improved, and the closed-loop control combining
virtual and actual is realized. The purpose of this work is not to
innovate path planning algorithms, but to apply digital twin
technology to mobile robots as an applied innovation. In
contrast to the work done by others, this work focuses on the
establishment of a digital twin of the mobile robot, the
completion of the communication between the virtual model
and the physical entity, and the realization of the trajectory
optimization of the mobile robot.

This paper provides a reference for the application of digital
twin technology in logistics and transportation industry, and

FIGURE 10 | Trend of distance between two center points.
FIGURE 11 | Comparison of coordinate changes of the first five
movement trajectories.
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provides a method to solve the connection between virtual
models and physical entities, which is beneficial to promote
the application of digital twin in other industries. However,
the movement path of the robot in this paper is relatively
simple and there are fewer obstacles on the movement path.
In future work, it is necessary to consider how to improve the
trajectory accuracy of the robot under more complex moving
paths and to consider the time complexity and computational
complexity of the algorithm. Meanwhile, the construction
method of virtual model and the real time of real and virtual
data interaction also need to be further studied.
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