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Determination of left ventricular (LV) end-systolic elastance (Ees) is of utmost importance for
assessing the cardiac systolic function and hemodynamical state in humans. Yet, the
clinical use of Ees is not established due to the invasive nature and high costs of the existing
measuring techniques. The objective of this study is to introduce a method to assess
cardiac contractility, using as a sole measurement an arterial blood pressure (BP)
waveform. Particularly, we aim to provide evidence on the potential in using the
morphology of the brachial BP waveform and its time derivative for predicting LV Ees
via convolution neural networks (CNNs). The requirement of a broad training dataset is
addressed by the use of an in silico dataset (n � 3,748) which is generated by a validated
one-dimensional mathematical model of the cardiovasculature. We evaluated two CNN
configurations: 1) a one-channel CNN (CNN1) with only the raw brachial BP signal as an
input, and 2) a two-channel CNN (CNN2) using as inputs both the brachial BP wave and its
time derivative. Accurate predictions were yielded using both CNN configurations. For
CNN1, Pearson’s correlation coefficient (r) and RMSE were equal to 0.86 and 0.27 mmHg/
ml, respectively. The performancewas found to be greatly improved for CNN2 (r � 0.97 and
RMSE � 0.13 mmHg/ml). Moreover, all absolute errors from CNN2 were found to be less
than 0.5 mmHg/ml. Importantly, the brachial BP wave appeared to be a promising source
of information for estimating Ees. Predictions were found to be in good agreement with the
reference Ees values over an extensive range of LV contractility values and loading
conditions. Therefore, the proposed methodology could be easily transferred to the
bedside and potentially facilitate the clinical use of Ees for monitoring the contractile
state of the heart in the real-life setting.
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1 INTRODUCTION

Left ventricular (LV) contractility is a major determinant of the cardiac systolic function, ventricular-
arterial interaction (Suga et al., 1973; Sagawa et al., 1977) as well as hemodynamical state (Cecconi
et al., 2014). Currently, the gold standard method for evaluating LV systolic function is the invasive
measurement of LV pressure-volume loops under varying load conditions, whereby the end-systolic
pressure-volume relation (ESPVR) is derived (Suga et al., 1973; Suga and Sagawa, 1974; Sagawa et al.,
1977). The ESPVR, described by its slope, i.e., the end-systolic elastance (Ees), and its intercept,
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i.e., the dead volume (Vd), has been proved to be less load
sensitive than other indices of ventricular contractility (Paley
et al., 1971). For an increased value of Ees, the left ventricle is able
to eject a higher blood volume against the same afterload, which is
indicative of increased contractility (Suga and Sagawa, 1974).
Evaluation of Ees is of utmost significance in clinical practice. The
age-induced vascular stiffening (Chen et al., 1998) and
hypertension (Borlaug et al., 2009) are strongly associated to
the stiffening of the left ventricle, which is followed by an increase
in Ees. Furthermore, continuous and reliable monitoring of Ees is
critical in patients with heart failure or septic cardiomyopathy
(Cecconi et al., 2014). Yet, the bedside use of Ees is not established
due to the invasive nature and high costs of the existing
measuring techniques (Sagawa, 1981). Such limitations create
an inescapable need for a new method that will permit the Ees
derivation in a fast, simple, non-invasive manner using easily
obtained measurements (such as applanation tonometry).

Arterial pulse waves contain a wealth of information for
assessing the cardiovascular health in humans. Importantly,
the morphology of the arterial pulse is affected by the
mechanical and structural properties of the heart and the
arterial network (Charlton et al., 2019). Clinical studies have
investigated the arterial hemodynamics in normal and diseased
human hearts under varying loading conditions and inotropic
states, showing that the shape of the arterial BP waveform is
highly sensitive to changes in LV Ees (Mikulic et al., 1977).
Interestingly, Ostadal et al. have presented data verifying that
continuous monitoring of dP/dtmax (where BP time-signal is
measured via arterial line) enables the assessment of the LV
function in patients with acute heart failure (Ostadal et al., 2019).
In particular, the dP/dtmax can be calculated from a BP waveform,
obtained either minimally invasively from a peripheral arterial
line (De Hert et al., 2006; Morimont et al., 2012; Garcia et al.,
2018) or non-invasively using, for instance, a tonometry-based
device (Tartiere et al., 2007). Nonetheless, there is no current
study to investigate the importance of exploiting the entire BP
waveform (time sequence and its time derivative) for further
facilitating the non-invasive monitoring of LV contractility.

Recent advancements in the field of artificial intelligence have
introduced novel methods towards the predictive modelling for
clinical use, creating a promising opportunity for further
methodological advancements (Ramesh et al., 2004). Yet, only
few studies have leveraged machine learning and deep learning
techniques for cardiac monitoring (Huttunen et al., 2020; Bikia
et al., 2020, 2021). Motivated by the evidence provided by the
current state of knowledge, the present study aims to explore the
opportunity in using the entire brachial BP wave for predicting
LV Ees via convolution neural networks (CNNs). The
requirement of a broad training dataset is addressed by the
use of an in silico cohort, which was generated by a validated
one-dimensional (1-D) cardiovascular simulator (Reymond et al.,
2009). In silico models permit studying and understanding of
various pathophysiological conditions, whereas they provide
additional hemodynamic insights, which would be difficult to
obtain in vivo. Concurrently, accurate measurement of Ees is
challenging in a human cohort and thus a preliminary in silico
verification of the proposed concept would benefit the future in

vivo validation. Our aim was to propose an original conceptual
methodology for continuous monitoring of the cardiac
performance and to evaluate its feasibility in silico. The result
of the in silico experiments can be considered as preliminary
implications for the accuracy of the predictions under ideal
conditions.

2 MATERIALS AND METHODS

2.1 Brief Description of the 1-D
Cardiovascular Model
We adopted a 1-D mathematical model of the cardiovasculature
(Figure 1) which has been previously described in (Reymond
et al., 2009). The arterial tree network includes all major vessels of
the systemic circulation, as well as the cerebral circulation and the
coronary circulation. The governing equations of the model are
derived by integrating the longitudinal momentum and
continuity of the Navier-Stokes equations over the arterial
cross-section. The models solves the governing equations with
proper boundary conditions and provides flow and pressure at
every arterial location of the network. Every arterial segment is
modelled as a long, tapered tube, and its compliance is defined as
a non-linear function of pressure and location (Langewouters,
1984). Terminal vessels are coupled with three-element
Windkessel models (Westerhof et al., 2009) and intimal shear
is modelled following theWitzig-Womersley theory (Womersley,
1957). At the proximal end (at the root of the aorta), the arterial
tree is coupled with a time-varying elastance model (VEM) of the
left ventricle (Suga and Sagawa, 1974; Sagawa et al., 1977).
Specifically, the VEM simulates the relationship between the
LV pressure (PLV) and LV volume (VLV), namely:

E(t) � PLV

VLV − Vd
(1)

where Vd is the LV dead volume. Table 1 summarizes all the
inputs and outputs of the 1-D cardiovascular model. A detailed
description of the 1-D simulator can be found in the original
publications (Reymond et al., 2009, Reymond et al., 2011).

2.2 Description of the in Silico Dataset
For generating various hemodynamic cases, the 1-D
cardiovascular simulator ran using different combinations of
arbitrary input model parameters. The distributions of the
input model parameters were based on literature data, by
identifying the normal values and ranges of the parameters.
Given that the literature data are only provided in terms of
mean and standard deviation or/and minimum and maximum
values, the exact distribution of each parameter was unknown. In
addition, varying the parameters while accounting for
dependencies between parameters was not feasible due to the
lack of sufficient data to inform inter-dependencies. Therefore,
the sampling was selected to be random Gaussian.

The selected distributions of the input model parameters are
summarized in Table 2. The parameters of arterial distensibility
and terminal compliance were altered simultaneously, while
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nonuniform aortic stiffening was considered for the elderly and
hypertensive virtual subjects, following the methodology
described in our previous work (Bikia et al., 2019;
Pagoulatou et al., 2019). Peripheral resistances were modified
uniformly in order to achieve the specific value of total
peripheral resistance in the selected range.

Furthermore, the geometry of the arterial network (namely
length, inlet diameter, and outlet diameter of the arterial
segments) was modified to simulate different body types by
adapting the length and the diameter of all arterial vessels.
The reference state of the arterial tree model corresponds to
an individual with a height equal to 180 cm. Different heights

FIGURE 1 | Schematic representation of the model of systemic circulation developed by (Reymond et al., 2009). (A) Main systemic arterial tree. (B) Detail of the
aortic arch and the coronary network. (C) Detail of the principal abdominal aorta branches. (D) Blown-up schematic of the detailed cerebral arterial tree, which is
connected via the carotids (segments 5 and 15) and the vertebrals (segments 6 and 20) to the main arterial tree shown in (A).

TABLE 1 | List of inputs and outputs of the 1-D cardiovascular model.

Corresponding variable Value

Inputs

End-systolic elastance (mmHg/ml) Ees 2.6
End-diastolic elastance (mmHg/ml) Eed 0.08
Filling pressure (mmHg) Pfill 14
Time of maximal elastance (ms) tes 340
Heart rate (bpm) HR 75
Dead volume (ml) Vd 15
Venous resistance (mmHg.s/ml) Rven 0.003
Arterial distensibility (10–3/mmHg) C (no_segments)x1 vector
Terminal compliances (ml/mmHg) Ct (no terminal segments)x1 vector
Peripheral resistances (mmHg.s/ml) Rt (no terminal segments) x1 vector
Arterial inlet diameter (cm) din (no_segments)x1 vector
Arterial outlet diameter (cm) dout (no_segments)x1 vector
Arterial length (cm) len (no_segments)x1 vector
Blood density (kg/m3) ρ 1,050
Blood viscosity [Pa.s) μ 0.004

Outputs

Pressure waves (mmHg) pressures (no segments)x(no time points)
vector

Flow waves (ml/s) flows (no segments)x(no time points)
vector
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were simulated viamultiplication of the reference arterial lengths
with a scaling factor (uniform adaptation). As per the arterial
diameters, previous studies have associated the variation of the
aortic diameter with respect to age, gender, weight, and height
(Wolak et al., 2008). However, there exist no sufficient available
data to demonstrate the diameter variation of multiple arterial
segments with respect to an individual’s demographic profile. As
a result, we modified all arterial segments following a uniform
distribution based on the variation of the aortic diameter.

In order to eliminate the likelihood of creating unrealistic
hemodynamical profiles, we examined the physiological validity
of every case and discarded any implausible generated virtual
subject. The physiological validity of each subject was evaluated
by comparing the simulated brachial and aortic BP values
[i.e., SBP, DBP, MAP, and pulse pressure (PP)] to the
reference values reported in the literature (McEniery et al.,
2005). A subject was discarded from the data if any of the BP
values did not lie within the range of mean ±2.807SD (assuming
99.5% confidence intervals). For deriving the dataset, we ran the
model 10,000 times to generate 10,000 cases. Out of the 10,000
cases, 3,748 samples were accepted after applying the above
filtering criteria.

2.3 Data Pre-processing
The brachial BP waveform was derived from the left simulated
brachial artery. The train/validation/test split was set to be 60%
(2,248 cases)/20% (750 cases)/20% (750 cases). By computing the
MSE with decreasing training size, we noticed that similar results
can be achieved with fewer samples (e.g., 1,603) and, therefore, we
may deduce that a training size of 2,248 is sufficient.

The BP waveforms were up-sampled so that each wave
consists of 200 samples. This selection allowed us to ensure a
sampling frequency higher than the 100-Hz threshold suggested
for the pulse wave velocity techniques (Gaddum et al., 2013)
(which require substantially high signal resolution). This value
was considered as a fair trade-off between computational time
and high signal fidelity.

Subsequently, the data were normalized using the
MinMaxScaler () function from Sklearn library. The Min-max
normalization method is a standard normalization approach
which guarantees that all features are on the same scale, e.g.,
between zero and one. Other methods, such as the z-score or
feature clipping, are preferable when there are several outliers in
the data. Given that the filtering of the in silico population

essentially disregards the outliers, the Min-max method may
be sufficient for our learning algorithm.

2.4 Convolution Neural Networks
We evaluated two model configurations with respect to the
inputs:

1. One-channel CNN (CNN1): Using as a sole input the entire BP
waveform.

2. Two-channels CNN (CNN2): Using as inputs the entire BP
waveform and its time derivative.

The time derivative of the BP wave was calculated as the slope
of the wave using the central differences approach:

f′[n] � f[n + 1] − f[n − 1]
2τ

(2)

where f [n] is the BP function at the nth time point and τ is the
time interval between the two pressure values. The τ is computed
as the entire heart cycle duration divided by the number of
recorded pressure values (200 samples).

The CNN models were created using PyTorch library (Paszke
et al., 2019). In particular, the networks were composed of four 1-
D Convolutional layers, each of them followed by an activation
ReLU layer. Following the four convolutional layers intercalated
with the activation ReLU layers, three additional functions were
used to yield the final output results. Firstly, we employed a
MaxPooling layer which uses the MaxPool1d function from
PyTorch framework. The MaxPooling function permits to
progressively reduce the spatial size of the data for keeping
only the maximum of each window while striding (kernel_size
� 3, stride � 2). The MaxPooling layer was followed by a Flatten
function which flattened the output of the convolutional layers to
create a single long feature vector. A Linear layer was finally
applied on the output of the Flatten function, providing the final
prediction of the Ees value. The functions are further described in
the torch. nn module (Available at: https://pytorch.org/docs/
stable/generated/torch.nn).

In order to generate our different CNN models, we made use
of PyTorch Conv1D () function with different values for
in_channels and out_channels parameters. The input data size
was 200 for CNN1 and 200 × 2 for CNN2. In addition, the kernel
size of each filter was set to 5, which is a popular choice in the state
of the art. Importantly, we opted for an odd-sized filter, as all the
previous layer pixels would be symmetrically around the output
pixel. Selecting even-sized kernel filters would require us to
account for distortions across the layers. Therefore, odd-sized
kernel filters were preferred for implementation simplicity. The
value of stride and padding was kept constant throughout the
models and equal to 2.

Each of the CNN model with each own input layer was
characterized by the respective number of channels. Figure 2
illustrates the number of inputs/outputs between each
convolutional layer, and the architecture of the two models.
The number of filters per channel on each convolutional layer
is presented in Table 3. The number of filters was optimized by an

TABLE 2 | Selected distributions of the model’s input parameters based on the
literature.

Parameter mean ± SD References

End-systolic elastance (mmHg/ml) 2.3 ± 1 Chen et al. (1998)
End-diastolic elastance (mmHg/ml) 0.2 ± 0.11 Chen et al. (1998)
Filling pressure (mmHg) 15 ± 5.4 Senzaki et al. (1996)
Time of maximal elastance (ms) 327 ± 39 Starling et al. (1987)
Heart rate (bpm) 63.7 ± 9.5 Segers et al. (2008)
Aortic distensibility (10–3/mmHg) 5.86 ± 3.23 Dogui et al. (2011)
Total peripheral resistance (mmHg.s/ml) 1.28 ± 0.31 Segers et al. (2008)
Aortic diameter (cm) 33.2 ± 4.1 Wolak et al. (2008)
Height (cm) 169.2 ± 8.9 Segers et al. (2008)
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“error and trial” approach, and the optimal values were selected
for the specific type of data.

The CNN parameters, namely the weights and biases, were
optimized upon training on 60% of the dataset. The resulting
model was then applied to the validation set (20% of the
whole dataset) in order to assess the loss and the accuracy. On
this validation set, we performed tuning for two
hyperparameters, namely the batch_size and the number
of epochs. This allowed us to ensure that no overfitting
occurred. The value of learning_rate was set equal to 0.001
and tuning was performed using the Adam Optimizer
(Kingma and Ba, 2017) for batch_size values (32, 64, 128)
and epochs values within the range of (1, 400). Adam is a
versatile optimization method. Given the satisfactory
performance of our trained models, we did not consider
evaluating additional algorithms.

The trained CNN models using the tuned hyperparameters
along with the weights and biases values were applied to the test
set (remaining 20% of the data) in order to evaluate the predictive
performance of the models. The tuning process was conducted
with regard to the mean square error (MSE) loss function. The
MSE loss function is considered as a fair selection under the
inference framework of maximum likelihood when the
distribution of the target variable is Gaussian-like (as in the
present study). In addition, it is preferable in comparison to
other methods which might be more computationally expensive

(e.g. the mean absolute error method which uses modulus
operator function) or might impose increased training
requirements (e.g. the uber loss which involves the
optimization of the hyperparameter δ in order to maximize
model accuracy).

2.5 Sensitivity to Errors
In order to investigate the impact of potential errors or adverse
effects in the measurements of the BP signal, the test data were
corrupted with artificial noise. White gaussian noise (WGN) was
added to the BP for each subject using the awgn () MATLAB
function (The Math Works, Inc. MATLAB. Version 2020b). The
performance of the two CNN models was tested for five values of
signal-to-noise ratio (SNR), i.e. 70, 60, 50, 40, 30 dB. The metrics
of agreement and accuracy were reported for each level of noise.
Examples of the noise effect on the BP wave are depicted in
Figure 3.

2.6 Statistical Analysis
The performance of the models in terms of agreement, bias and
accuracy, was evaluated with the use of the Pearson’s correlation
coefficient (r), the normalized root mean square error (nRMSE),
and the Bland-Altman analysis (Bland and Altman, 2010). The
computed nRMSE was based on the difference between the
minimum and maximum values of the dependent variable. A
p-value below 0.05 was considered as statistically significant.
The statistical analysis was performed in Python (Python
Software Foundation, Python Language Reference, version
3.6.8, Available at http://www.python.org).

3 RESULTS

Table 4 presents the cardiac and vascular characteristics of the
study population (3,748 cases). The CNN-derived Ees were
compared to the reference Ees values, which were provided by
the 1-D cardiovascular model.

3.1 Comparison Between the CNN
Predicted Ees and the Reference Ees Values
Table 5 summarizes the regression metrics of the statistical
comparisons between the non-invasive Ees estimates and the

FIGURE 2 | Architecture of the CNN models. The two CNN models are shown in different colors with their respective inputs listed, as well as the number of
in_channels and out_channels for each convolutional layer and the output Ees.

TABLE 3 | Number of filters per each convolutional layer for the two CNN models.

Number of filters per
channel

Total (no filters x no input
channels)

CNN1

Layer 1 2 2
Layer 2 4 8
Layer 3 8 32
Layer 4 16 128

CNN2

Layer 1 8 16
Layer 2 16 128
Layer 3 18 288
Layer 4 24 432
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reference Ees. The Bland-Altman analysis indicated a low bias
for the estimated Ees. The limits of agreement (LoA) between the
estimated and reference Ees (within which 95% of errors are
expected to lie) were found to be (−0.55, 0.49) mmHg/ml and
(−0.26, 0.23) mmHg/ml, for CNN1 and CNN2, respectively.
Figure 4 illustrates the scatterplots and the Bland-Altman plots
of the estimated Ees against the actual Ees. The absolute
difference between the estimated Ees and the real Ees values
did not exceed 0.5 mmHg/ml in 95% of the total test cases for
CNN1, while all errors were found to be smaller than 0.5 mmHg/
ml for CNN2. Furthermore, for the CNN2 configuration, the

absolute error was less than 0.05 mmHg/ml in 61% of the
test set.

The computational time required for training the models was
110 and 115 s for CNN1 and CNN2, respectively. The time
required to yield the predictions for the test set was reported
to be less than 1 s.

3.2 Sensitivity to Errors
The impact of potential errors or adverse effects in the
measurements of the BP signal was quantified for the two
CNN configurations under various noise levels (Table 3). The

FIGURE 3 | Brachial blood pressure waves after adding artificial noise. The noisy data are presented in red solid lines and the original noise-free data in black
dashed lines.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 7540036

Bikia et al. CNN Elastance

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


CNN1 model appeared to be robust for an SNR value equal or
larger than 40 dB (nRMSE <15%). On the other hand, the
performance of CNN2 remained unaffected for SNR ≥60 dB
(nRMSE was doubled for higher values of SNR). However,
when the SNR reduced to 40 dB or less, the correlation and
agreement were significantly deteriorated (r < 0.6 and
nRMSE >30%).

4 DISCUSSION

In the present study, we suggested that the prediction of the cardiac
contractility index of Ees is feasible using a single brachial BP
waveform. The proposed concept was appraised using an in silico
dataset which was generated using a 1-Dmathematical model of the
cardiovascular system (Reymond et al., 2009). The results showed
that the brachial BP wave may be valuable for the characterization of
Ees. In particular, the CNN configuration combining the brachial BP
wave and its time derivative provided higher precision than the
precision achieved by the CNN that used only the BP signal
(correlation was increased from 0.86 to 0.97).

Arterial pulse wave contains a wealth of physiological
information as its morphology is influenced by the heart and
the systemic circulation (Charlton et al., 2019). Quantities such as
stroke volume as well as the arterial stiffness and wave reflections
have a prominent impact on the arterial pulse. Furthermore,
pathological changes affect the arterial pulse in different ways,
including the amplitude, shape, and frequency (Westerhof et al.,
2018). As a result, arterial pulse waves provide abundant and
reliable information about the cardiovascular function.
Importantly, physiological parameters derived from the arterial
pulse can be useful for diagnosis and clinical decision making.
Arterial waves can be easily measured using non-invasive clinical
devices, such as oscillometric or tonometric BP monitors. In
addition, arterial waves from photoplethysmography (PPG) or
other signals including the electrocardiogram (ECG), are also
routinely monitored by wearable devices (e.g. smartwatches and
fitness wristbands). Hence, the high accessibility of the arterial
pulse waves in both clinical settings and daily life encourages
further exploitation of their insights with respect to the
cardiovascular function.

With the increasing availability of clinical data, signals, and
images sourced from various avenues of medicine and healthcare,
the application of artificial intelligence for analysis and
interpretation of medical data grows rapidly. The diagnosis of
the cardiovascular disease could benefit essentially from early
prediction, prevention, and proactive management. Thus
artificial intelligence-based methodologies could essentially
contribute towards this direction. Deep learning offers a
promising potential in exploring new methods for cardiac
monitoring by deciphering key information in arterial
waveforms. Deep learning is a class of machine learning
algorithms that uses multiple layers to progressively extract
higher-level features from the raw input. In this study, we
leveraged this exact capacity of CNN models in order to
evaluate LV Ees from a single BP waveform. Such potential
can open new directives in digital health and potentially
suggest new markers for cardiac monitoring purposes.

Ensuring high fidelity in the signal acquisition constitutes a
critical aspect for the accurate estimation of Ees. Especially,
caution should be paid in successfully capturing the waveform,

TABLE 4 | Cardiovascular characteristics of the virtual study cohort (n � 3,748).

Parameter Mean ± SD (n = 3,748)

End-systolic elastance (mmHg/ml) 2.4 ± 0.52
End-diastolic elastance (mmHg/ml) 0.16 ± 0.04
Filling pressure (mmHg) 16.54 ± 3.19
Time of maximal elastance (ms) 328 ± 23
Heart rate (bpm) 75.96 ± 8.25
Ejection fraction (%) 47.38 ± 6.06
Stroke volume (ml) 56.68 ± 12.75
Aortic systolic blood pressure (mmHg) 110.62 ± 23.13
Aortic diastolic blood pressure (mmHg) 80.93 ± 14.79
Aortic pulse pressure (mmHg) 29.70 ± 13.04
Mean arterial pressure (mmHg) 95.71 ± 18.40
Brachial systolic blood pressure (mmHg) 121.64 ± 24.07
Brachial diastolic blood pressure (mmHg) 78.71 ± 14.44
Brachial pulse pressure (mmHg) 42.93 ± 15.05
Pulse pressure amplification 1.49 ± 0.11
Total peripheral resistance (mmHg.s/ml) 1.36 ± 0.17
Total arterial compliance (ml/mmHg) 1.27 ± 0.41

TABLE 5 | Regression statistics between model-predicted and reference elastance values.

Model SNR (dB) Slope Intercept (mmHg/ml) r p-value nRMSE (%) Bias (LoA) (mmHg/ml) Predicted Ees (mmHg/ml)

CNN1 No noise 0.75 0.56 0.86 13.4 −0.03 (−0.55, 0.49) 2.36 ± 0.45
70 0.75 0.56 0.86 13.4 −0.03 (−0.55, 0.49) 2.36 ± 0.45
60 0.75 0.56 0.86 13.4 −0.03 (−0.54, 0.49) 2.36 ± 0.45
50 0.76 0.56 0.85 13.5 −0.02 (−0.55, 0.5) 2.36 ± 0.45
40 0.75 0.57 0.83 14.7 −0.03 (−0.6, 0.55) 2.36 ± 0.46
30 0.72 0.66 0.61 25.2 0.00 (−0.98, 0.98) 2.39 ± 0.61

CNN2 No noise 0.94 0.12 0.97 <0.0001 6.4 −0.02 (−0.26, 0.23) 2.37 ± 0.5
70 0.94 0.12 0.97 6.5 −0.02 (−0.27, 0.23) 2.37 ± 0.5
60 0.94 0.11 0.96 7.3 −0.02 (−0.31, 0.26) 2.36 ± 0.5
50 0.93 0.12 0.88 13.5 −0.04 (−0.56, 0.47) 2.34 ± 0.54
40 0.88 0.47 0.59 32.9 0.2 (−1.04, 1.42) 2.57 ± 0.77
30 0.87 2.76 0.29 144 2.45 (−0.45, 5.6) 4.84 ± 1.55

SNR: signal-to-noise ratio; r: Pearson’s correlation coefficient; nRMSE: normalized root mean square error; LoA: limits of agreement.
Two-sided P-value for a hypothesis test whose null hypothesis is that the slope is zero, using Wald Test with t-distribution of the test statist
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as the measurement may be prone to errors or adverse effects
which can distort the relevant information for the deep CNN
prediction. In order to evaluate the effect of errors in the
morphology of the input brachial BP wave, we artificially
introduced simulated noise. The noise was applied only on the
test set which was subsequently fed to the trained CNN models.
The sensitivity analysis showed that subtle distortion in the wave
shape did not significantly affect the accuracy of the CNNmodels.
However, the performance was severely worsened when the SNR
approached 30 dB. The CNN1 was found to be more robust to
measurement noise when compared to the CNN2 whose
estimation relies on both the pressure wave and its time
derivative. This might be explained by the sensitivity of the
CNN2 to two input waves. Specifically, the error may
propagate through the derivative computation by directly
altering the two derivative factors (i.e., f [n-1] and f [n+1])
and, subsequently, influence to a greater extent the deep CNN
prediction.

Previous methods on the estimation of Ees rely mainly on
non-invasive single-beat measurements (Shishido et al.,
2000; Chen et al., 2001; Bikia et al., 2020; Pagoulatou
et al., 2021). These methods require the inclusion of cuff BP,
stroke volume, ejection fraction or other measurements. Especially,
stroke volume and ejection fraction constitute common measures
of the LV systolic function and can be obtained via several cardiac
imaging modalities, such as the magnetic resonance imaging, and
the Simpson’s method. However, these imaging techniques are
tedious and require a highly trained technician. In addition,
ejection fraction expresses the stroke volume as a fraction of
end-diastolic volume (EDV), and, therefore, correct
interpretation of ejection fraction can be achieved only with the
additional knowledge of EDV. Simplification of the Ees

approximation by using a sole BP wave recording may facilitate
cardiac monitoring while reducing costs and complexity for the
clinicians and the patients.

It is to be highlighted that this study aimed to address an unmet
clinical need by proposing a novel methodology, dissimilar to the
existing state of the art. As a result, there was not sufficient relevant
literature to guide the CNN design and architecture for the research
questionunder investigation. In particular, there did not exist previously
published studies that aimed to address a similar problem and which
could inform us about the selection of the model functions and
parameters. Therefore, we developed and suggested an original
architecture that fits best in the specific type of data.

Several limitations of the present study need to be
acknowledged. The current study was entirely based on
simulated data and thus the results should be considered as a
preliminary assessment of the theoretical concept of the proposed
approach. While synthetic data can mimic numerous properties
of the real clinical data, they do not copy the original content in an
identical way. Future work should include the use of real clinical
data that will finally verify the application of the proposed
method in the clinical setting. It is likely that the models
trained using the in silico data are not capable for adequate
predictions using real human data. Nevertheless, in silico trained
networks could be used in transfer learning as pre-trained
networks which are subsequently fine tuned with clinical
measurements. At this stage of our research, we found it
reasonable to start with an in silico validation of our research
hypothesis, instead of directly collecting measurements of Ees in
humans. The cost and the complexity of the Ees measurements
would make it difficult to incorporate them in the current study.
In addition, the variance of the simulated ejection fraction data
was reported to be low, while the average ejection fraction was

FIGURE 4 | Comparison between predicted and reference elastance data. Scatterplots and Bland–Altman plots between the predicted Ees and the reference Ees
for CNN1 (left panel) and CNN2 (right panel). The solid line of the scatterplots represents equality. In Bland–Altman plots, limits of agreement (LoA), within which 95% of
errors are expected to lie, are defined by the two horizontal dashed lines.
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equal to 47%. Such a data distribution represents more accurately
a population with heart problems. Our future in vivo studies will
include a wider range of ejection fraction values, which will
account for both diseased and healthy populations. Finally, the
evaluation of the proposed framework was done using a single
beat of each virtual subject. Next steps will also include the
in silico and the in vivo validation of a CNN method that uses
multiple heart beats from every participant. Hence, a closed-loop
cardiovascular mathematical model may be adopted for achieving
this goal.

5 CONCLUSION

We showed that the use of the brachial BP waveform in
conjunction with a deep CNN provided accurate estimates of
Ees. In particular, our findings indicated that the brachial BP
wave may be a promising source of information for assessing
Ees and its clinical utility should be emphasized. Our
prediction algorithm achieved a satisfactory performance

for an extensive range of LV contractility values and
loading conditions. Consequently, the proposed
methodological concept could be readily transferred to the
bedside and potentially enhance the clinical use of Ees for
monitoring the contractile state of the heart in the real-life
medical environment.
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