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Intravital microscopy (IVM) study approach offers several advantages over in vitro,
ex vivo, and 3D models. IVM provides real-time imaging of cellular events, which
provides us a comprehensive picture of dynamic processes. Rapid improvement in
microscopy techniques has permitted deep tissue imaging at a higher resolution.
Advances in fluorescence tagging methods enable tracking of specific cell types.
Moreover, IVM can serve as an important tool to study different stages of tissue
regeneration processes. Furthermore, the compatibility of different tissue engineered
constructs can be analyzed. IVM is also a promising approach to investigate host
reactions on implanted biomaterials. IVM can provide instant feedback for improvising
tissue engineering strategies. In this review, we aim to provide an overview of the
requirements and applications of different IVM approaches. First, we will discuss the
history of IVM development, and then we will provide an overview of available optical
modalities including the pros and cons. Later, we will summarize different fluorescence
labeling methods. In the final section, we will discuss well-established chronic and acute
IVM models for different organs.

Keywords: tissue engineering, intravital microscopy, leukocyte recruitment, biomaterial, fluorescence, in vivo

INTRODUCTION

In vitro study models have immensely endorsed our knowledge of cellular physiology. In vitro
study models hold many advantages over in vivo study models. Cells can be isolated from the
particular organ, manipulated and propagated as per the requirement of the study (Kapałczyńska
et al., 2018; Chen et al., 2019). Simplicity and low-cost maintenance requirements make 2D
culture the first choice for researchers to understand cell biology, tissue development, disease
mechanisms, and drug development. 2D culture studies are been used for better understanding
of cancer biology, vascular development, cell secretomes and their influences on the immediate
environment (Kapałczyńska et al., 2018; Al-Abboodi et al., 2019; Kengelbach-Weigand et al.,
2019; Ahmadzadeh et al., 2020). However, in vitro 2D models fail to mimic the native tissue
environment which is important to study tissue physiology (Weigand et al., 2016; Duval et al.,
2017; Kapałczyńska et al., 2018). Therefore, 3D models were designed to propagate the cells in a
more native tissue environment (Witt et al., 2017; Tong et al., 2018; Kengelbach-Weigand et al.,
2019). Many researchers are shifting from traditional 3D models to biofabricated 3D models which
facilitates replication of the complex tissue architecture in a more precise and controlled manner
(Horch et al., 2018). Though, most 3D models lack other influencing factors of native tissue, such
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as the presence of other cell types as well as signal molecules from
the immediate and distant environment (Weigand et al., 2016;
Kapałczyńska et al., 2018). Hence, conducting in vivo studies
is required to overcome above-mentioned limitations. A typical
in vivo study ends with the killing of the animal followed by
a collection of an organ of interest. The histological analysis
provides information at one static point which fails to describe
the dynamics of ongoing cellular processes (Steiner et al., 2019).

At this point, IVM studies excel in vitro, ex vivo and
3D models. IVM provides imaging of cellular events in its
native tissue environment as well as in real-time setting. It
can be used to examine proliferation, migration, differentiation
of cells as well as their specific interactions and behavior
(such as leukocyte–endothelial, tumor cell–cell, and bacterial-
cell interaction). IVM enables acute and/or chronic as well
as repetitive imaging in the same animal, which provides a
comprehensive picture of the overall complex dynamic processes.
IVM provides an opportunity to analyze different stages of tissue
regeneration simultaneously.

Various optical modalities, ranging from wide field to
multiphoton microscopy, are available for imaging of the targeted
organ (Wang et al., 2005; Wang H. et al., 2018; Jonkman and
Cm, 2015). The conventional wide-field microscope is adequate
for semitransparent tissue structures such as cremaster muscle
and skin (Lemaster et al., 2017). Confocal microscopy can
further increase the resolution. Additional deep imaging of
complex organs can be achieved with improved optic modalities
such as multiphoton microscopy (Theer et al., 2003; Horton
et al., 2013; Weigert et al., 2013; Ouzounov et al., 2017).
Combination of appropriate microscopic modality and genetic
tools or contrast agents can be applied to understand specific
organ physiology via IVM.

Earlier IVM studies were restricted to acute duration.
However, the advent of window and chamber models helped
to elongate the experimental period. IVM window models
provide further benefits such as elimination of repeated surgical
preparation and observation of the same region for multiple
times in the same animal (Hackl et al., 2013; Reichel et al., 2015;
Hessenauer et al., 2018). Apart from that, biomaterials play an
important role in modern tissue engineering. Tissue engineered
scaffolds serve to replace, repair, and maintain structural integrity
of tissue. Scaffolds should be biocompatible and promote cell
growth and differentiation to support regeneration (Patel and
Fisher, 2008). IVM is a promising and fast approach to study
interactions of different tissue engineered constructs for tissue
development. Overall, it enables tracking of the entire dynamic
process. Above mentioned advantages reduce the inter-animal
variation and overall requirement of the number of animals
(Prunier et al., 2017).

Considering all the advantages of IVM, it is indispensable
to discuss various aspects of IVM. It is a need of an hour to
combine advanced optical modalities and fluorescence tagging
methodologies and apply them in IVM for an in-depth analysis
of the healthy and diseased state of the tissue, tissue development,
repair and biocompatibility as well as host reactions on implanted
biomaterials. Therefore, in this review, we aim to begin with
a short history of IVM development, followed by an overview

of available optical modalities and contrast agents. In the final
section of the review, we will discuss well-established IVM
models for different organs.

HISTORY

In the early 19th century, Rudolf Wagner for the first time
reported rolling leukocytes in the blood vessel of a grass frog. This
was one of the earliest report involving real-time observation of
vascular physiology in the alive animal. But the roots of IVM are
even deeper. The Italian scientist Marcello Malpighi attempted
IVM to observe the lung in mammals as well as amphibians for
the very first time in the 16th century. In the late 19th century,
Elie Metchnikoff studied phagocytosis and diapedesis using IVM
in frog. The earliest IVM movies were created in the early 20th
century by Ries and Vles. Before that, drawing was the only tool
to describe the observation. Until then, IVM imaging was limited
to vasculature observation employing bright-field microscopic
setup. Moreover, observation and documentation were difficult
due to the lack of contrast agents (Secklehner et al., 2017).

Intravital microscopy became a more practical tool for
physiological studies after the introduction of the first
fluorescence microscope by Heimstadt in 1911 (Secklehner et al.,
2017) and after the development of exogenous fluorophores.
In 1955, the confocal scanning microscope was developed
by Minsky (1988). It was designed to eliminate out-of-focus
emission light with the help of pinhole. Confocal microscopy
also enhances contrast and improves Z-resolution (Wang et al.,
2005; Jonkman and Cm, 2015).

Physicist Maria Göppert-Mayer in 1931 introduced the
idea of multiphoton microscopy. However, the application
of multiphoton microscopy became only possible after
the development of the required excitation lasers in 1976.
Multiphoton microscopy works on the principle of simultaneous
absorption of two or more photons. Advantages of multiphoton
microscopy include deeper tissue penetration and lower
phototoxicity. Advanced optical modalities along with newly
developed window or chamber models open the door for
longitudinal deep-tissue imaging (Schießl and Castrop, 2016).

The advent of fluorescent protein and fluorescent probes has
played an important role in imaging. In 1994, Green fluorescent
protein (GFP) originally isolated from Aequorea victoria, was
successfully introduced into Caenorhabditis elegans as a genetic
marker. 3 years later, first strains of GFP transgenic mice was
reported. Later on, different fluorescent proteins such as red,
yellow, and cyan fluorescent proteins (RFP, YFP, and CFP) were
discovered (Hadjantonakis et al., 2003). On the other hand,
application of the first fluorescently labeled antibody was already
reported in 1942 by Albert Coons (Zanacchi et al., 2014).

Transgenic reporter animals, fluorescent probes, window
models and advanced microscopic modalities have emerged as
essential IVM tools to study target tissues at a cellular level.
The development of window models is particularly useful for
chronic experiments. In 1924, Sandison first used a transparent
chamber in the rabbit’s ear. Currently, organs such as skin,
liver, kidney, lung, cremaster muscle and brain have been
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studied using window models. Since the mid-20th century,
researchers are actively using this tool for physiological research
(Secklehner et al., 2017).

MICROSCOPY TECHNIQUES

The journey of IVM started with bright field transillumination
microscopy where the image is formed by the light transmitted
through the sample (Pittet and Weissleder, 2011). However,
transillumination is not suitable for relatively dense and thick
tissues. Therefore nowadays, IVM is largely based on the epi-
fluorescence principle where the image is generated from the
fluorescence emitted from the object (Weigert et al., 2013).
Several microscopic modalities are available for performing
IVM such as wide-field fluorescence, confocal and multiphoton
microscopy (Table 1). When light is absorbed by the fluorophore,
electrons are excited from the ground state to the excited
state. While returning to the ground state, electrons emit
light which has a longer wavelength. This emitted light is
collected in a detection system and generates fluorescence
image. In wide-field microscopy, the entire field of view
is illuminated. Here, the detection of out of focus light
compromises the resolution of an image (Swedlow et al., 2002;
Weigert et al., 2013).

This problem is resolved in confocal microscopy (White et al.,
1987; Minsky, 1988). In laser confocal scanning microscopy
(LCSM), the focus light is removed by the introduction of a
pinhole in front of the photomultiplier detector. The specimen
is scanned point-by-point. Scanned images of each depth can
be combined to form a 3D image. However, scanning of all
the focal plane makes the image acquisition slower and poses
a phototoxicity issue. Image acquisition speed can be increased
using multiple pinholes in spinning disk confocal microscopy
(SDCM). Therefore, SDCM reduces phototoxicity (Wang et al.,
2005; Jonkman and Cm, 2015; Bai et al., 2020).

In multiphoton microscopy (MPM) two or more photons
having near-infrared wavelength are absorbed simultaneously.
Fluorophore excitation takes place only at the in-focus plane,
which reduces its phototoxicity and eliminates the requirement
of pinholes. MPM is preferred when the imaging area is
located more than 50–100 µm deep in the tissue (Weigert
et al., 2013). Two photon microscopy (2 PM) can reach up
to superficial cortical layers of the rodent brain (Miller et al.,
2017). Light scattering and absorption of the tissue limit the
penetration depth of 2 PM. Scattering and absorption both
are dependent on excitation wavelength (Miller et al., 2017).
However, recent developments in Three PM (3 PM) have
demonstrated substantial improvement in penetration depth.
Horton et al. (2013) first used 3 PM at the long-wavelength
window of 1,700 nm for mouse brain imaging. 3 PM has
emerged as a powerful game-changer in high-resolution, deep
tissue intravital imaging. 3 PM enables imaging of vascular and
neuronal structures at the depth of approximately 1.3 mm in the
mouse brain (Horton et al., 2013).

Other available MPM variations include second and third
harmonic generations (SHG and THG). SHG and THG provide
label-free visualization of structures, such as collagen, myosin,

and lipids (Reichel et al., 2015; Vielreicher et al., 2017). The signal
is generated when two or more photons combine and form single
photon without energy loss. SHG and THG enable 200–400 µm
of imaging depth (Weigert et al., 2013).

Reflected light oblique transillumination (RLOT) microscopy
works on the principle of oblique transillumination. It was
developed by installing reflector directly below the specimen. The
tilted reflector allows only a specific diffracted sideband of light
to reach the objective lens. It can be incorporated with a wide-
field epi-fluorescence microscope. RLOT can be used for imaging
fast dynamic activity in the absence of specific fluorophores
(Mempel et al., 2003).

STAININGS/PROBES USED IN
INTRAVITAL MICROSCOPY

Most tissues are complex structures made up of different
function-specific cells. Therefore, it is very important to study
all cell types discretely. Using IVM alone, it can be difficult
to differentiate between different tissue-specific cell types. It is
important to distinguish the target via tagging or injection of
contrasting dye in the animal. This can be achieved by application
of fluorescence dyes, cell-specific labeling using antibodies,
nanotechnology-based probes and use of genetic reporters. Some
of the dyes are already being used for clinical purpose (Dunn and
Ryan, 2017; Ludolph et al., 2019).

The discovery of fluorophores in conjugation with
biologically active substances (peptides, antibody fragments,
and nanoparticles) led to major advancements in IVM.
Depending on the requirement of the study, fluorophores
such as TRITC or FITCs can be conjugated to high or low
molecular weight molecules such as Dextran or Albumin. TRITC
or FITCs in conjugation with high molecular weight Dextran
is commonly used for contrast enhancement of intravascular
blood plasma. FITC conjugated to lower molecular weight
Albumin easily leaks out from the endothelium, therefore it is
used in plasma extravasation studies. Injectable fluorophores
have played important role in studying biological processes
such as leukocyte trafficking, cell–cell interaction, including
inflammation, angiogenesis, apoptosis, oxidative stress, and
calcium dynamics (Dunn et al., 2002; Taqueti and Jaffer, 2013;
Kawakami, 2016).

Genetically encoded fluorescent proteins (FPs) are one of the
most preferred approach amongst researches for in vivo imaging.
Genetic integration and exemption of substrates or cofactors
for fluorescence make FPs an ideal tool for IVM. Available FPs
enable cell tracking and in vivo proliferation during development,
tumors metastasis and in stem cells therapy models. Far-Red
fluorescent proteins (RFPs) are preferred over GFPs due to lower
light absorption by hemoglobin which allows efficient photon
transmission and less autofluorescence (Taqueti and Jaffer, 2013).
Taqueti and Jaffer (2013) used ApoE−/−/Lysozyme EGFP/EGFP

mice containing encoded GFP neutrophils and monocytes to
study leukocyte trafficking. Looney et al. (2011) used c-fms EGFP
transgenic mice for lung immune surveillance. Lee et al. (2014)
used Cxcr6gfp/+mice to study NK T cells in the liver vasculature
during Borrelia burgdorferi infection. Fuhrmann et al. (2010)
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TABLE 1 | Imaging techniques (Mempel et al., 2003; Masedunskas et al., 2012; Weigert et al., 2013; Marques et al., 2015b; Vielreicher et al., 2017).

Excitation Technique Microscopy Light source Detection Advantages Disadvantages

Single-photon Widefield Mercury lamp/LED CCD • Fast acquisition
• Low cost

• Limited depth
• Phototoxicity

RLOT Xenon lamp CCD • Detection of fast dynamic
activity in the absence of
specific fluorophores

• Limited to translucent tissue

Confocal LCSM Lasers PMT • High spatial resolution
• 3D sectioning

• Limited depth
• Slow acquisition
• Phototoxicity
• Relatively high cost and smaller

field of view

SDCM Lasers CCD • Fast acquisition
• Low phototoxicity
• 3D sectioning

• Limited depth
• Faster acquisition
• Pinhole crosstalk reduces the

resolution

Two or more photon Multiphoton Two-photon Lasers PMT • Extended depth
• No off-focus emissions

• High cost
• Slow acquisition

Three-photon Lasers PMT • Deep tissue imaging
• Improved signal to background

ratio

• High cost
• Slow acquisition

SHG and THG Lasers PMT • No energy absorption
• Label-free imaging of collagen,

myosins, myelin, and lipids

LED, light-emitting diode; RLOT, reflected light oblique transillumination; CCD, charge-coupled device; LCSM, laser confocal scanning microscopy; PMT, photomultiplier
tube; SDCM, spinning disk confocal microscopy; SHG, second-harmonic generation; THG, third-harmonic generation.

studied Alzheimer’s disease-linked neuron loss in microglial
Cx3cr1 knockout mice (Kawakami, 2016). Similarly, RFP and
YFP have been used to study various immune as well as
organ-specific cells (Table 2). Genetic cell labeling enables
discrimination between metastatic and non-metastatic tumors
cells (Condeelis and Weissleder, 2010; Taqueti and Jaffer,
2013; Kawakami, 2016). However, the considerable size of FPs
(∼25–30 kDa), can interfere with protein function. Moreover.
FPs exhibit low brightness and photostability (Toseland, 2013;
Yan and Mp, 2015).

Another way to detect specific cell types in IVM is by
using fluorescently labeled antibody against specific cell receptor.
Several types of antibody-based markers are developed to
specific tagging of cells. Fluorescently labeled antibody human
epidermal growth factor receptor type 2 (HER2)/neu, epidermal
growth factor receptor (EGFR) and c-MET have been used
to study tumor growth (Tanaka et al., 2014). Endothelial
cells can be targeted using an anti CD31 antibody. During
migration endothelial cells and leukocytes express Intracellular
adhesion molecule (ICAM)-1 and endothelial cells express
vascular cell adhesion molecule (VCAM)-1. Antibodies against
such adhesion molecule can be used to study vascular cell
migration. Apart from using full antibodies, Fluorophore-
conjugated antibody fragments (Fab, Diabody, and Mini body)
can also be used for IVM (Condeelis and Weissleder, 2010;
Taqueti and Jaffer, 2013).

Conventional fluorescent organic dyes and FPs have
limitations of photobleaching, low signal intensity, and spectral
overlapping (Wang H. et al., 2018). These limitations can
be overcome via the application of nanotechnology-based
probes known as Quantum dots (QDs). QDs show unique

properties such as size-tunable light emission, high signal
brightness, extended photostability and resistance against
metabolic degradation, simultaneous multi-color excitation, and
spectral multiplexing (Resch-Genger et al., 2008; Jin et al., 2011;
Shao et al., 2011). Megens et al. (2010) used collagen-binding
protein labeled with green-fluorescent quantum dots (CNA35-
QD525) to study subendothelial collagen. Wang H. et al. (2018)
developed mercapto succinic acid (MSA) capped cadmium
telluride/cadmium sulfide (CdTe/CdS) QDs for long-term
vascular IVM. Ripplinger et al. (2012) used magnetofluorescent
nanoparticles (MFNP) such as cross-linked iron oxide (CLIO)
AF555, CLIO-VT680 to illuminate macrophages during
inflammation. Montet et al. (2006) used cRGD-CLIO(Cy5.5) and
scrRGD-CLIO(Cy3.5) for imaging tumor cells. Similarly, Mulder
et al. (2009) used RGD-pQDs for targeted imaging of tumor
angiogenesis. Biocompatibility and specificity of QDs can be
modulated by surface coating modification. However, potential
toxicity poses uncertainty for the in vivo application of QDs.
Cytotoxicity of QDs depends on factors such as charge, size,
coating ligands, oxidative, photolytic, and mechanical stability
(Resch-Genger et al., 2008; Jin et al., 2011; Shao et al., 2011;
Progatzky et al., 2013).

MODELS/OPERATION TECHNIQUES

Over the past decades, different window and chamber models
have been developed according to the location of the organ of
interest. Most models required surgical procedures to expose the
organ of interest and installation of window or chamber. In this
section, we will discuss various IVM models. Depending on study
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TABLE 2 | Fluorescence probes for intravital microscopy (Condeelis and
Weissleder, 2010; Jin et al., 2011; Taqueti and Jaffer, 2013; Toseland, 2013;
Caravagna et al., 2016; Kawakami, 2016; Wang H. et al., 2018).

Class Subtypes Examples/target

Fluorescence dyes

TRITC-dextran,
FITC-dextran
Texas red-dextran

Vascular contrast
enhancement, plasma
extravasation

FITC-albumin Plasma extravasation

Rhodamine 6G, Acridine
orange

Leukocyte trafficking

Hoechst 33342 DNA staining

CMTMR, Calcein-AM,
CFSE, CMAC

Ex vivo cell labeling

Genetic tags GFP

Lysozyme-EGFP Neutrophils and monocytes

c-CSF1R-GFP Neutrophils, monocytes
macrophages

CX3CR1-GFP Monocytes, macrophages,
microglia

CXCR6-GFP NK T cells

RFP

CX3CL1-Cherry Macrophages

CD2-RFP T cells

IL17f-RFP Th17 cells

NG2-RFP Pericytes

tdTomato HA-CTLs

YFP

CD11c-EYFP Dendritic cells

Thy1-YFP Neuron

Antibodies IgG

EGFR, Her2/neu, c-MET Tumor cells

CD31/PECAM-1 Endothelial junctions

ICAM-1 Endothelial cells, leukocytes

VCAM-1 Endothelium

CD45 Pan-leukocyte

CD11b Myeloid leukocytes

Ly-6G Neutrophils

F4/80 Monocytes, macrophages

GPIbβ Platelets

Fragments Fab, diabody, minibody

Nanotechnology Q-dot

CNA35-QD525 Inflammation

CdTe/CdS Vascular imaging

Magnetic nanoparticles

CLIO-AF555, CLIO-VT750 Macrophages

cRGD-CLIO(Cy5.5),
scrRGD-CLIO(Cy3.5)

Tumor cells

TRITC, tetramethylrhodamine; FITC, fluorescein isothiocyanate; CMTMR, 5-(and-6)
-(4-chloromethyl (benzoyl)amino) tetramethylrhodamine; CFSE, carboxyfluorescein
succinimidyl ester; CMAC, 7-amino-4-chloromethylcoumarin; EGFP, enhanced
green fluorescent protein; GFP, green fluorescent protein; CSF1, colony-stimulating
factor 1; CX3CR1, C-X3-C motif chemokine receptor 1; CX3CL1, C-X3-C
motif chemokine ligand 1; CD, cluster of differentiation; RFP, red fluorescent
protein; IL17f, interleukin 17f; NG2, neuron glia antigen-2; EYFP, enhanced yellow
fluorescent protein; Her2/neu, human epidermal growth factor receptor 2; PECAM-
1, platelet endothelial cell adhesion molecule; ICAM-1, intercellular adhesion
molecule 1; Ly6G, lymphocyte antigen 6 complex locus G6D; CNA35, collagen-
binding adhesion protein 35; CdS/CdTe, cadmium sulfide/cadmium telluride; CLIO,
crosslinked iron oxide; AF555, AlexaFluor555; VT750, VivoTag-S 750; cRGD, cyclic
arginine-glycine-aspartic acid peptide; scrRGD, scrambled RGD; Cy, cyanine.

duration, IVM models can be divided into acute imaging models
and chronic models.

Acute IVM Models
In acute models, the desired organ or tissue is surgically exposed
for a short period and the animal is sacrificed at the end of
the study. IVM is limited to a specific time point and repeated
observation is unattainable.

Cremaster Muscle
The cremaster muscle is a very thin and nearly transparent
layer of smooth muscle covering both testicles. It is easily
accessible in male rodents via a minimally invasive surgical
procedure, which allows high-resolution imaging of local the
microvasculature (Figure 1).

The cremaster muscle is surgically exposed by a longitudinal
incision of the scrotum. After freeing from the surrounding
connective tissue, the apex of the cremaster muscle is fixed on a
customized stage for superfusion. A longitudinal incision is made
through the ventral surface of the muscle followed by detachment
from epididymis and testicle. The testicle is either pushed back
into the abdominal cavity or removed by orchiectomy. The
remaining cremaster muscle is spread over the customized stage
and can be accessed for microscopy and interventions (Bagher
and Segal, 2011; Reichel et al., 2011; Donndorf et al., 2013).

This well-standardized surgical procedure can be a useful
tool for visualizing and analyzing capillary perfusion, leukocyte–
endothelial interaction, microvascular response to different
stimuli and endothelial permeability in a defined environment
(Donndorf et al., 2013; Molski et al., 2015). It can also be used
to study blood cell interactions under influence of different drugs
and chemokines (Reichel et al., 2012; Rius and Sanz, 2015)
as well as ischemia-reperfusion (IR) injury and local effects of
systemic conditions (Molski et al., 2015). Cremaster muscle is
an acute IVM model. However, Siemionow and Nanhekhan
(1999) developed a chronic cremaster chamber which allows
imaging up to 3 days.

Heart
The heart is the essential blood pumping machinery of the body.
Therefore, it is very important to understand heart physiology.

FIGURE 1 | Schematic representation of cremaster muscle model for IVM.
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Application of IVM provides more accurate information
compared to in vitro or ex vivo setting as it does not mimic
the native physiological environment (Vinegoni et al., 2015).
Similar to the lung, continuous movement is a major obstacle
in heart IVM. Physical immobilization such as a using suture,
a mechanical stabilizer or suction can be applied but they end
up in low-resolution imaging and movement artifacts (Aguirre
et al., 2014). To overcome this, a combination of approaches
such as a gated acquisition algorithm, gated sequential segmented
microscopy or active motion stabilization along with mechanical
stabilization has been used (Lee et al., 2008).

For IVM, thoracotomy in the fourth left intercostal space is
performed. Surrounding connective tissue is removed to expose
the heart. Once exposed, the heart is stabilized using one of the
above-mentioned technique (Lee et al., 2012; Aguirre et al., 2014;
Vinegoni et al., 2015).

Heart IVM can be used to study both function of the heart
muscle on single-cell level within the muscle with regard to cell
metabolism as well as cell electrophysiology under physiological
and pathophysiological conditions. In addition cell dynamics
in pathological conditions such as ischemia-reperfusion and
myocardial infarction can be closely monitored (Aguirre et al.,
2014; Vinegoni et al., 2015). Most importantly microvascular
events such as leukocyte trafficking as well as microvascular
rearrangement under many pathological conditions such as
myocardial infarction or infection can be evaluated (Ueno et al.,
2016; Matsuura et al., 2018; Bajpai et al., 2019).

Ear Pinna Model
The ear pinna model is the easiest model for in vivo imaging
as it is a non-surgical procedure (Figure 2). The ear contains
two full-thickness layers of skin separated by a thin cartilage
layer. The skin of the mouse ear contains few hair and closely
resembles human skin (Chan et al., 2013). Ease of access, minimal
preparation requirements, and less respiratory movement makes
it an ideal site for the investigation of cell migration dynamics,
cell–cell and host cell–pathogen interactions (Secklehner et al.,
2017). It is very important to remove the small number of hairs
present on the ear. Otherwise, it may cause autofluorescence
during imaging. Shaving of the ear hair can easily lead to skin
damage. Moreover, it provides only a limited area for IVM (Chan
et al., 2013; Strüder et al., 2017).

The rodent ear is a suitable to model for investigating immune
cells in the skin, tissue implantation, and in vivo tumor cell
behavior (Chan et al., 2013), IR injury, and wound healing (Chan
et al., 2013; Strüder et al., 2017).

Salivary Gland
Membrane traffic is a fundamental transport process that
encompasses the exchange and distribution of molecules such
as proteins, lipids, and polysaccharides between the cell and
the extracellular space as well as among intracellular organelles
(Ebrahim and Weigert, 2019). The salivary gland has emerged
as a revolutionary acute IVM model to study endocytosis and
regulated exocytosis. The salivary gland is situated in the neck
region which makes it less susceptible to motion artifacts created
by respiration and heart beating (Masedunskas et al., 2013b;

FIGURE 2 | Schematic illustration of the ear pinna model for IVM.

Ebrahim and Weigert, 2019). The salivary gland can be easily
accessed by removing a small circular piece of skin from the neck
(Masedunskas et al., 2013a). Relatively easy surgical access and
ease of selective manipulation make it an excellent IVM model
(Ebrahim and Weigert, 2019).

This model has been successfully applied to investigate
mitochondrial dynamics (Porat-Shliom et al., 2019), endocytosis
mediated remodeling as well as endocytosis modulation in cancer
progression (Milberg et al., 2017; Ebrahim and Weigert, 2019).

Chronic IVM Models
Chronic IVM models are primarily designed for both
longitudinal as well as acute studies. Chronic models involve
surgical preparation along with installation of a window or
chamber that enables rapid and long-term imaging.

Kidney
The kidney is a complex organ. It contains more than 20
function-specific cell types. The kidney contains several nephrons
which are responsible for glomerular filtration, active tubular
secretion as well as reabsorption of useful molecules (van den
Berg et al., 2018). The kidney is exposed by a flank incision
through the retroperitoneum. IVM is performed by placing the
kidney in a coverslip-bottomed cell culture dish or immobilizing
it by custom made holder (Dunn et al., 2007; Hato et al., 2018).
Although, kidney IVM is primarily an acute model, Hackl et al.
(2013) demonstrated the modified method involving of repeated
externalization of the kidney which enables in vivo multiphoton
imaging over several days.

Kidney IVM can be used to investigate a renal injury,
IR injury, dysfunction, inflammation, cell death, microvascular
blood flow, glomerular filtration and podocyte migration
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(Russo et al., 2007; Devi et al., 2013; Hackl et al., 2013; Hall et al.,
2013; Schießl et al., 2016b).

Lung
The lung is an essential respiratory organ situated below the
rib cage. It contains a unique capillary network. Leukocytes
need to undergo shape deformation for traveling through the
narrow capillary segments (Wiggs et al., 1994). Pioneering
work on acute imaging of lung was done by the Presson
group where the dog was use as model organism. Later,
this model was developed for small animals (Presson et al.,
1994). Continuous movement caused by breathing and
heart beating poses difficulties for in vivo imaging. Presson
et al. (2011) for the very first time applied a customized
vacuum ring imaging window with adjunctive support of
gated imaging or frame registration for efficient reduction of
motion artifact and maximizing clarity of the image. This organ
stabilization approach revolutionized IVM in organs which are
susceptible to motion artifact. Several other approaches have
been used to stabilize lung for IVM which includes mechanical
stabilization using Bronchus clamping, glue fixation on a
coverslip and suction stabilization. However, immobilization
of one area of the lung can induce shear force which can
injure the lung (Looney et al., 2011; Fiole and Tournier, 2016;
Rodriguez-Tirado et al., 2016).

For exposing the lung, thoracotomy is performed. The animal
is placed in the right or left lateral decubitus position. An incision
is made to expose the rib cage. A couple of ribs (3–4) are removed
to expose the surface of a lung lobe followed by stabilization for
microscopy (Looney and Bhattacharya, 2014; Rodriguez-Tirado
et al., 2016). Using efficient optical tools, high-resolution lung
imaging can be performed for up to 12 hours (hrs) (Rodriguez-
Tirado et al., 2016). However, recently, Entenberg et al. (2018)
made a ground breaking success by developing a permanently
implantable and minimally invasive window that can be imagined
for up to 2 weeks.

Lung IVM can be applied to study mitochondrial function in
lung immunity, neutrophil as well as platelet trafficking, the gas
exchange process and lung tumor biology (Eichhorn et al., 2002;
Tabuchi et al., 2008; Kreisel et al., 2010; Fiole and Tournier, 2016;
Rodriguez-Tirado et al., 2016; Thanabalasuriar et al., 2016; Yipp
et al., 2017; Neupane et al., 2020). Apart from lung wobbling and
surgical invasiveness, a major problem in the lung is penetration
depth. Even highly efficient two-photon microscopy can only
image superficially (up to 30–100 µm), which may not display
deep tissue features of the lung (Perlman and Bhattacharya, 2007;
Looney et al., 2011).

Spleen
The spleen is an important secondary lymphoid organ for IVM.
It is located below the rib cage on the left-hand side within
the abdominal cavity. The spleen filters pathogens and antigens
from the blood. It contains the red pulp and white pulp regions,
separated by the marginal zone. Red pulp macrophages recycle
iron from senescent erythrocytes. The white pulp contains T
cell and B cell zones which are important for antigen-specific
immune responses (Martin-Jaular et al., 2011). It is relatively easy

to prepare spleen for IVM because of its superficial location in the
body (Secklehner et al., 2017).

To expose the spleen, an incision is made below the ribcage on
the left lateral position. Afterward, the spleen is exteriorized and
placed on a customized stage and sealed with adhesive (Ferrer
et al., 2012; Deniset et al., 2017). Spleen IVM is utilized in disease
models such as malaria (Secklehner et al., 2017), atherosclerosis
(Robbins Clinton et al., 2012) as well as cancer (Cortez-Retamozo
et al., 2012). Furthermore, it can also be used for imaging of
lymphocytic Calcium ion signaling (Yoshikawa et al., 2016).

Liver
The largest metabolic organ liver is located below the diaphragm.
It plays an essential role in metabolism, protein synthesis and
detoxification of systemic circulation (Vollmar and Menger,
2009). It receives around 80% blood supply from the portal
vein and the remaining 20% oxygenated blood from the hepatic
artery. Hepatocytes are the most abundant cell types inhabiting
liver. Apart from that, it also contains sinusoidal Kupffer cells,
endothelial cells, stellate cells and lymphocytes (Vollmar and
Menger, 2009; Marques et al., 2015a).

As per the requirement of the study, liver IVM can be
performed starting from a few hours to days (Ritsma et al., 2012;
Park et al., 2018). The surgical procedure involves the opening of
the abdominal cavity. A small part of right liver lobe is carefully
exteriorized and placed on a handcraft stage (Marques et al.,
2015b). Long term IVM requires installation of an observation
window in the abdomen. Ritsma et al. (2012) developed a window
model for long term liver IVM (up to 1 month) to study liver
metastasis. The window is composed of a titanium ring along
with a 1mm groove. The window is secured on an abdominal wall
by a purse-string suture in the groove and a coverslip is placed on
the top for imaging window (Ritsma et al., 2012).

Liver IVM has been used to investigate liver transplantation,
liver regeneration, and therapeutics of liver disease or injury
(Theruvath et al., 2008; Rehman et al., 2011; Czerny et al., 2012;
Liu et al., 2015, 2017; Krishnasamy et al., 2019; Wimborne et al.,
2020). Moreover, the liver IVM model has also been used to
study hepatic transport (Dunn and Ryan, 2017; Ryan et al., 2018;
Tavakoli et al., 2019), flow modulation in liver microvasculature
(Clendenon et al., 2019a,b), bile dynamic and (Meyer et al.,
2017) and enzyme regulation. Furthermore, this model is also
utilized to investigate liver during IR injury, infections, sepsis,
and endotoxemia (Vollmar et al., 1997; McAvoy et al., 2011; Lu
et al., 2014; Park et al., 2018).

Dorsal Skinfold Chamber Model
The Dorsal skinfold chamber model is a widely used model
for in vivo imaging. The chamber typically consists of two
symmetrical metal frames. The frames contain a circular
observation window. A double layer of depilated skin layer is
sandwiched between these two frames. One of the layers of the
skin along with subcutaneous tissue is removed completely in
a circular area according to the diameter of the observation
window. Then the circular coverslip is placed and fixed with the
help of a snap ring (Figure 3). Titanium is the most commonly
used metal to build the skinfold chamber but other varions from
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FIGURE 3 | Schematic diagram of a mouse with a dorsal skinfold chamber
for IVM.

stainless steel or aluminum and non-metal materials are also
used. The dorsal skinfold chamber model gives access to the
striated muscle of the dorsal skin for IVM. After implanation,
repetitive imaging can be performed up to 2–3 weeks (Schreiter
et al., 2017; Dondossola et al., 2018; Hessenauer et al., 2018).
It is suitable for both upright as well as inverted microscopes
(Prunier et al., 2017).

The dorsal skinfold chamber has been extensively used in
cancer biology to investigate tumor pathophysiology, tumor cell –
microvasculature interaction, metastasis as well as therapy (Jain
and Ward-Hartley, 1987; Jain et al., 2002; Alexander et al., 2013;
Dondossola et al., 2018). It is also used to investigate the effect
of chemical compounds on vascularization. Apart from that,
the dorsal skinfold chamber model is also useful for studying
interaction of biomaterials with surrounding host tissue, bacteria-
endothelial cell interaction, organ transplantation, wound
healing, fibrinolysis and thrombolysis, IR injury, inflammation,
and sepsis (Laschke et al., 2011; Hillgruber et al., 2014; Miranda
et al., 2015; Schreiter et al., 2017). The dorsal skinfold chamber is
a widely accepted IVM model to investigate tissue angiogenesis
and biocompatibility of biomaterials in tissue engineering.

Skull Cranial Window
The brain is the controlling unit of the entire body. Therefore, it is
very important to understand brain physiology. In vivo imaging
has become an important experimental tool to understand brain
physiology and pathology. The brain is covered with a membrane
known as the dura followed by two layers of compact cortical
bone sandwiching a cancellous spongy bone layer (Yang et al.,
2010; Zhao et al., 2018).

The brain can be accessed using two methods: open-skull
or thinned-skull cranial window. As suggested by the name the
thinned-skull cranial window is prepared by thinning of the skull
bone layers with a drill. Controlled thinning is performed until
the transparency for imaging is achieved without exposing the
brain. On the other hand, in the open-skull window procedure,
drilling is continued until all three bone layers are removed.

A coverslip is positioned on the dura and sealed with adhesive
(Figure 4) (Dorand et al., 2014; Isshiki and Okabe, 2014).

Both methods have their merits and demerits. Thinned-
skull window approach causes minimal perturbation and allows
immediate imaging after surgery whereas in open-skull model
a resting period of approximately 2 weeks is required before
imaging. Moreover, the open-skull method is prone to cause
higher inflammation, astrogliosis, and higher dendritic spine
turnover due to a higher degree of perturbation. Thinned-skull
window approaches require re-thinning for repeated imaging,
which is not necessary for open-skull approaches. Furthermore,
image quality in the thin-skull window is compromised at
points deeper than 50 µm. Therefore, the open-skull window is
preferred for deep high resolution imaging. Depending on the
requirement both models can be used for chronic as well as acute
studies (Yang et al., 2010; Dorand et al., 2014). Both models
require highly skilled surgeons and the selection of the model can
be done based on the aim and the duration of the study.

Transcranial imaging can be used to study Alzheimer’s disease
and potential treatments, brain injury, leukocyte-pathogen
interaction and tumor dynamics in brain vasculature (Yang et al.,
2010; Dorand et al., 2014; Isshiki and Okabe, 2014; Secklehner
et al., 2017; Alieva et al., 2019).

DISCUSSION

Over the past decades, tissue engineering has made considerable
progress in the field of tissue regeneration. Researchers are
constantly applying novel approaches to understand tissue
physiology in the normal and diseased state as well as
regeneration or repair. 3D models closely resemble the native
tissue environment. However, they cannot exactly mimic in vivo
conditions where factors from the immediate and distant
environment play an important role in maintaining tissue
homeostasis (Kapałczyńska et al., 2018; Chen et al., 2019).
Therefore, it is inevitable to perform in vivo studies. On the
other hand, tissue repair or regeneration is a dynamic cellular
process. Conventional in vivo studies are incapable to explain
it thoroughly. Hence, performing IVM studies is the most
appropriate approach for in depth understanding of tissue repair,
regeneration, and cell interactions.

Researchers have developed different IVM models, which
require surgical procedures to expose the area of interest and
install a window or chamber. Cremaster muscle and skinfold
chamber models are the most preferable models in terms of
simplicity and reproducibility to visualize capillary perfusion
and leukocyte–endothelial interaction under native condition
and under treatment as well as during IR injury (Figure 5).
Cremaster muscle IVM model imaging is limited from few hrs
up to 3 days (Siemionow and Nanhekhan, 1999). Therefore,
the dorsal skinfold chamber model is widely preferred for the
long-term in vivo imaging.

The dorsal skinfold chamber is a key model to analyze different
tissue engineering strategies for improving the vascularization
of implanted biomaterials. Long term, repetitive evaluation
of the same ROI, evaluation of complex immunological
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FIGURE 4 | Schematic diagram of the skull cranial window for IVM. (A) Thinned-skull cranial window, (B) open-skull cranial window. (C) Dorsal view of the cranial
window.

phenomena is easily achieved. Kampmann et al. (2013)
observed enhancement of PLGA scaffold vascularization upon
application of Bone marrow-derived mesenchymal stem cells
(bmMSCs) and VEGF. Reichel et al. (2015) investigated
the effect of components of the Plasminogen Activation
System on vascularization of porous polyethylene (PPE)
implants. They observed accelerated vascularization in implants
coated with urokinase-type plasminogen activator (uPA) and
tissue plasminogen activator (tPA), plasminogen activator
inhibitor-1 (PAI-1) (Reichel et al., 2015). Recently, improved
vascularization of PPE implant coated with Vitronectin in
skinfold chamber model was reported (Hessenauer et al., 2018).
Adipose tissue-derived microvascular fragments (ad-MVF)
contain high vascularization capacity that can be easily harvested
from fat tissue. Frueh et al. (2017) seeded GFP+ ad-MVF on
collagen-glycosaminoglycan matrices and implanted them into
full-thickness skin defects in the mice skinfold chamber. They
observed significantly accelerated vascularization of the implants
(Frueh et al., 2017). This strategy can be used for full-thickness
skin defect treatment. In another experiment, Laschke et al.
(2019) cultivated ad-MVF at 20◦C and implanted it into dorsal
skinfold chambers. They observed enhanced vascularization
in sub normothermically cultivated ad-MVFs compared to
normothermically cultivated ad-MVFs (Laschke et al., 2019).

The skinfold chamber can also be adapted to investigate
the regeneration of transplanted tissue material. Lushaj et al.
(2012) implanted neonatal atrial and ventricular tissues in the
skinfolds chamber. This was the first successful attempt of
ectopic engraftment of differentiated myocardium in the skinfold

chamber (Lushaj et al., 2012). In another experiment, Walser
et al. (2013) implanted in vitro co-cultivated primary human
osteoblasts and human dermal microvascular endothelial cells
spheroids (HOB-HDMEC) into the skinfold chamber. They
observed noticeable interconnection to the host microvasculature
via the inosculation process. This strategy can be a very useful
treatment of large bone tissue defects (Walser et al., 2013).

The dorsal skinfold chamber model is the most preferable
model for investigation of biocompatibility and host reaction to
different biomaterials. Jehn et al. (2020) compared the effects
of mesenchymal stem cells (MSC) in combination with Poly-
L-lactide-co-glycolide (PLGA) and beta-tricalcium phosphate
(β-TCP) scaffold. They reported significant improvement in
angiogenesis for β-TCP scaffolds compared with PLGA scaffolds
(Jehn et al., 2020). Laschke et al. (2009) investigated in vivo
biocompatibility and vascularization of porous polyurethane
scaffolds. The scaffolds stimulated a weak angiogenic response
after 14 days of implantation with low inflammatory reaction
(Laschke et al., 2009). Gniesmer et al. (2020) studied chitosan-
graft- polycaprolactone (CS-g-PCL) fiber mats for rotator cuff
tear repair. Intravital investigation revealed significant increase
in vascularisation in CS-g-PCL fiber mats compared to the
porous polymer patch and uncoated PCL fiber mats on day 14
(Gniesmer et al., 2020). Dondossola et al. (2016) applied this
model to examine foreign body response to 3D porous calcium
phosphate-coated medical grade poly (ε-caprolactone) (mPCL-
CaP) scaffolds. They observed a connection between giant
cells and vascular endothelial growth factor (VEGF) induced
neovessels as key factor stimulating the foreign body response
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FIGURE 5 | Illustration of IVM images using different microscopy methods. (A) IVM image of FITC-Dextran labeled microvasculature in the skinfold chamber, scale
bar: 100 µm. (B) 2 PM THG image of collagen in the skinfold chamber, scale bar: 100 µm. (C) IVM image showing leukocytes labeled with Rhodamine 6G in the
skinfold chamber, scale bar: 100 µm. (D) RLOT image of the cremaster muscle, scale bar: 50 µm.

and late-stage fibrosis (Dondossola et al., 2016). The same
group also used a skinfold chamber model to study tumor-bone
interactions and therapeutic response. They implanted tissue-
engineered bone constructs in prostate cancer lesions. They
observed tumor growth inside the bone cavity and along the
cortical bone interface. They also reported reduction in osteoclast
kinetics and osteolysis on application of bisphosphonate therapy
without perturbing tumor growth (Dondossola et al., 2018).

Moreover, Polstein et al. (2017) used optogenetics for
controlling cell differentiation and tissue formation in the
skinfold chamber. They used a light-inducible switch to control
the expression of angiopoietin-1 and VEGF for stimulation
of vascular sprouting in a mouse dorsal skinfold chamber
(Polstein et al., 2017).

In the aforementioned studies, repetitive evolution of the
same ROI (region of interest) was performed to examine a
comprehensive picture of the dynamic process starting from
recruitment of cells to formation of a vasculature network or
inosculation of host vasculature in scaffolds within the very
same alive animal. This is only possible in IVM. Moreover, IVM
enables observation of the immediate and long-term response of

the native in vivo environment on the implantation of biomaterial
in a live animal. The conventional approach for making similar
observation requires termination of the experiment, extraction
of the implant, and complex evaluation processes such as micro
sectioning and staining. The harvesting and handling in this
process itself can temper with final results. Imaging of dynamic
cellular processes at multiple time points also reduces the
requirement of total animals numbers for a particular study.

Skinfold chambers have also played an important role in
cancer research and identification of key anti-tumor therapies.
Yuan et al. (1995) used the skin fold chamber model
to determine microvascular permeability in human tumor
xenografts. Molecular size is one of the important determining
factors for transvascular transportation of therapeutic agents in
tumors. They concluded that liposomes of up to the diameter
of 400 nm were permeable in human colon adenocarcinoma
LS174T tumor vessels (Yuan et al., 1995). Vascular targeted
therapies are showing promising results for cancer treatment.
Several preclinical and clinical studies are reported which focus
on blocking vasculature growth of the tumor. Savarin et al.
(2018) monitored antiangiogenic or vascular disruptive effects of
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targeted gene and irradiation therapy from dorsal skin window.
They observed a significant reduction in the tumor vessel area
in animals receiving targeted gene treatment (Savarin et al.,
2018). Haeger et al. (2019) determined that invading tumor
cells survive DNA damage and radiotherapy via β1/αVβ3/β5
integrin crosstalk. Noticeably, effective radiosensitization can
be accomplished by targeting multiple integrins (Haeger et al.,
2019). Although, skin fold chamber is an excellent model for the
cancer research, skin is not orthotopic location for all tumor types
(Prunier et al., 2017).

The ability of reparative imaging provides an excellent
opportunity to observe tumor cell metastasis and the effect
of therapeutic treatment at several time points in real-time
and in the same animal which is not possible in conventional
cancer study designs (Condeelis and Segall, 2003).

Apart from the skinfold chamber, the skull cranial window
is another important model for in vivo brain imaging. The
skull cranial window model is more complex than the skinfold
chamber. This model is very use full to study brain disease, injury
and possible treatments (Yang et al., 2010; Dorand et al., 2014;
Isshiki and Okabe, 2014; Secklehner et al., 2017; Alieva et al.,
2019). Khosravi et al. (2018) used a cranial window chamber
model to study angiogenesis and cellular events around surgical
bone implants. Both cranial window and skinfold chamber
models are widely used to study tumor development, cell–cell
interaction, specific disease or injury and therapeutics (Upreti
et al., 2011; Pai et al., 2014; Miranda et al., 2015; Reeves et al.,
2015; Zhang et al., 2016; Ampofo et al., 2017; Tarantini et al., 2017;
Alieva et al., 2019).

Intravital microscopy can be applied to study dynamic
activities such as membrane trafficking. Endocytosis is a vital
cellular process that plays an important role in the regulation
of cell signaling, metabolism and motility. Moreover, the
deregulation of the endocytic pathway is connected to infection,
immunodeficiencies, neurodegeneration, and cancer (Ebrahim
and Weigert, 2019). Molitoris group initiated an investigation
of endosomal system dynamics in the kidney model. They
applied multiphoton microscopy for in vivo imaging of uptake
of systemically injected molecules such as fluorescent dextrans,
folate receptors and albumin in the kidneys’ proximal tubuli
(Dunn et al., 2002; Sandoval et al., 2004). Recently, Kuwahara
et al. (2016) revealed Megalin as a potential therapeutic target
for metabolic syndrome-related chronic kidney disease. The
kidney IVM model is used to understand the function of
different receptors present in the renal system. Schießl et al.
(2016a) used intravital microscopy to investigate the effects
of the angiotensin II (Ang II) receptor on podocyte function.
They demonstrated that Ang II enhances the endocytosis of
albumin by podocytes that can result in impaired podocyte
function (Schießl et al., 2016a). The higher amount of albumin
in urine or Albuminuria is an indication of the kidney
disease. The salivary glands IVM model evolved as a relatively
simple model for membrane trafficking studies (Ebrahim and
Weigert, 2019). Secretory cells contain secretory granules,
which transport a variety of proteins. Shitara et al. (2020)
demonstrated the role of Cdc42 GTPase in the biogenesis and/or
maturation of these secretory granules. Membrane remodeling

is important for the regulation of different processes such
as cell division, migration, and membrane trafficking that
requires continuous modifications of the composition as well
as the property of the lipid bilayer. Milberg et al. (2017)
applied the salivary gland model to investigate the role of
the actomyosin cytoskeleton in membrane remodeling. They
reported that the actomyosin cytoskeleton serves as a scaffold
for the recruitment of regulatory molecules and also provides
necessary mechanical forces for remodeling the lipid bilayer
(Milberg et al., 2017).

Hackl et al. (2013) used repeated MPM of the same glomeruli
for imagining the motility of podocytes in the multi-color Pod-
Confetti mouse model. They observed the appearance of a new
podocyte within 24 h of the previous imaging session (Hackl
et al., 2013). In a recent study, Schiessl et al. (2018) used MPM
for evaluation of the cellular and molecular activities involved in
renal proximal tubular regeneration. They observed proliferating
tubular cells at the site of injury (Schiessl et al., 2018).

These above-mentioned dynamic portrayals of processes such
as membrane trafficking and cellular motility are otherwise not
possible in conventional study design without terminating the
study at several timepoints.

The lung and heart are the most difficult organs for in vivo
imaging because of continuous movement. Different methods
for stabilization and software-based video editing methods are
established (Presson et al., 2011; Matsuura et al., 2018). Lung
IVM models are extensively used for imaging of immune cell
trafficking, alveolar perfusion, and gaseous exchange. Oxygen
uptake and carbon dioxide disposal is the primary function
of the lung. Tabuchi et al. (2013) combined mice lung IVM
along with two-dimensional oxygen saturation mapping to
study pulmonary oxygen uptake. They demonstrated that 50%
of total oxygen uptake takes place in precapillary arterioles
of less than 30 µm in diameter before the blood enters the
alveolar-capillary network (Tabuchi et al., 2013). In another
similar study, they used the same methodology to study
alveolar dynamics and local gas exchange in the healthy and
diseased lung (Tabuchi et al., 2016). In a recent study, the
role of neutrophils in a sepsis-induced lung injury model
was investigated using combinations of fluorescent dyes and
antibodies to differentiate leukocyte subsets. The acute lung
injury decreased the functional capillary ratio due to the
generation of dead space by prolonged neutrophil entrapment
within lung capillaries (Park et al., 2019). Initial in vivo
heart studies for leukocyte trafficking used heterotopic heart
tissue transplantation due to inherent technical difficulties in
imaging moving tissue (Li et al., 2012). Later Lee et al. (2012),
introduced a two-photon method for intravital visualization of
murine heart at subcellular resolution. Recently, novel cardiac
stabilizers were established for imaging the beating native
heart within the intrathoracic position in rats (Matsuura et al.,
2018). They successfully managed real-time in vivo imaging of
cardiac tissue dynamics under normal and IR conditions at
subcellular resolution. They observed the subcellular dynamics
of the myocardium and mitochondrial distribution in cardiac
myocytes. They also observed IR injury induced suppression
of the contraction/relaxation cycle and the resulting increase
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in cell permeability and leukocyte accumulation in cardiac
tissue. Dynamics of immune cell trafficking immediately after
events such as myocardial infarction is only possible in an
IVM study design.

Liver IVM models have been used for the investigation of
liver injury such as IR, and bacterial (Mycobacterium bovis,
Borrelia burgdorferi, acillus cereus, and methicillin-resistant
Staphylococcus aureus) and parasitic (Plasmodium berghei,
Leishmania donovani, and Schistosome granulomas) infections
and their treatment (Marques et al., 2015b). Acetaminophen
is an antipyretic and analgesic drug. Recently, Hu et al.
(2016) revealed that lower dosage of Acetaminophen induces
reversible mitochondrial permeability resulting in mitochondrial
dysfunction and steatosis in hepatocytes in the murine liver (Hu
et al., 2016). Inhibition of the bile salt export pump (BSEP) is
strongly connected to drug-mediated liver injury that commonly
goes undetected during clinical testing. Ryan et al. (2018) used
quantitative intravital microscopy to identify the dose-dependent
effects of BSEP inhibitors. They used fluorescent bile salts as a
biomarker for hepatobiliary transport inhibition. This model can
provide valuable information on the toxic effects of the drug
on human liver (Ryan et al., 2018). Dynamic processes such as
cell–cell, cell–pathogen interaction, fluctuation in mitochondrial
function, and bile transport can only be visualized in realtime
using the IVM approach.

Imaging duration was one of the major limitations of IVM
studies. Earlier models for abdominal organs were mainly acute.
Ritsma et al. (2012) made a breakthrough in the area of the
abdominal imaging window (AIW). They developed a window
model for long-term liver IVM (up to 1 month) (Ritsma et al.,
2012). Most of the current AIWs are designed and installed
as described by Ritsma et al. (2012). Moreover, this window
design can also be used to visualize internal organs such as the
spleen, kidney, small intestine, pancreas, and liver. Perry et al.
(2019) observed enhanced neovascularization and integration of
pre-vascularized tissue-engineered muscle graft into abdominal
wall defects compared to non-prevascularized grafts. Recently,
Entenberg et al. (2018) developed a permanently implantable
lung window that can be imagined for up to 2 weeks. Also,
tissue regeneration is a dynamic and lengthy process that starts
with the recruitment of immune cells following injury. Another
imaging strategy for extension of the imaging period is the
repeated externalization of organs or tissue (Hackl et al., 2013).
However, surgical processes involved in repeated externalization
of an organ can damage the organ of interest and delay the
regeneration process or can lead to false results. Moreover, it
is also prerequisite to keep organ or tissue wet and maintain
the normal temperature during the surgical process. A precise
experimental design is required for imaging of the entire
regeneration process.

In most chamber or window models a glass coverslip is placed
on the top of the tissue which can induce an inflammatory or
immune response. Biocompatibility of the glass coverslip can
be improved with PLL-g-PEG(poly-L-lysine-graft-poly(ethylene
glycol)) coating (Ritsma et al., 2013). It is questionable if data
collected from a small field can be extrapolated to the entire
organ. Intravital microscopy provides high-resolution imaging

of one small region that provides dynamic information of that
spot only. For repeated analysis, it is important to identify the
very same spot for the next microscopy. Hackl et al. (2013)
used serial MPM imaging of the same glomerulus over time in
the intact Pod-GFP mouse kidney. They identified Glomeruli
based on a laser-induced mark placed close to the glomerulus
(Hackl et al., 2013). For a better understanding of the dynamic
process, imaging of more than 2 or 3 fields from a single
animal is important. However, it can be difficult to fully correlate
information because each field image contains small temporal
heterogeneity. Here, it would be interesting to include a system
that can collect data from multiple fields at the same time.
However, imaging at lower magnification objectives such as 2.5×
could be helpful because smaller magnification objectives provide
a larger field of view than higher magnification objectives such
as 25×. Though, lower magnification objectives can compromise
the resolution (Dunn and Ryan, 2017).

The IVM studies are designed for imaging in vivo cellular
dynamics. However, the surgical procedure involved during the
experiment itself can interfere with the dynamics of cellular
activity. Continuous exposure to light in different microscopic
modalities is reported as phototoxic. Organs and tissues are
a multicellular structural system. It is difficult to discriminate
each cell type in one region. Here, in vivo imaging can
be strengthened using different labeling strategies. Various
approaches such as fluorescence dyes, fluorescence proteins and
QDs are available. The specificity of these fluorescent probes
can be increased using specific antibodies or antibody fragments.
Discrimination of different cell types in one particular region can
be achieved by combining one or more of the aforementioned
strategies. For instance, GFP-positive animals can be injected
with different cell marking dyes and marker antibodies at the
same time (Dunn et al., 2002; Sandoval et al., 2004). Residual
cell debris containing fluorescent proteins can result in unwanted
background. Administration of all these substances can cause
a toxic effect on the animal. Therefore, it is important to
determine the optimal amount which exhibits minimum toxicity
without interfering with the image quality. Moreover, some
studies are designed for repeated in vivo imaging. Here, it
is important to perform a preliminary study to determine
the effect of long-term and repeated administration of these
fluorescent probes.

From our own experience of animal studies and for both
ethical and scientific reasons, it is very important to pay special
attention to animal health. Animals need to be checked regularly
for the overall health and healing of surgical areas. Many long-
term windows or chamber installation requires placement of glass
coverslips which are prone to break occasionally. Animals often
tend to remove sutures placed to fix the chamber or window.
Therefore, a regular check-up is necessary to prevent incidents
that might affect the experiment outcome.

Penetration of depth is one of the major concerns for IVM
studies. Conventional single-photon optical modalities such as
epifluorescence and confocal microscopy can reach up to around
100 µm of depth only. Compared to conventional to one-photon
confocal microscopy, 2 PM can improve the depth of penetration
by a factor of 2 to 3 (Kobat et al., 2011). Theer et al. (2003) used
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a 800 nm excitation source by using a Ti: Sapphire regenerative
amplifier. They could achieve 1 mm imaging depth in the mouse
brain. Later, Kobat et al. (2011) used 1,280-nm excitation to
achieve a remarkable penetration depth of approximately 1.6 mm
in the cortex of a mouse brain. However, in 2 PM light scattering
and absorption of tissue limit the penetration depth and both of
these are dependent on excitation wavelength (Miller et al., 2017).
In 2 PM microscopy, the highest imaging depth is determined by
the ability of excitation light to hit the focus point unscattered
as well as the released fluorescence to reach the detector (Kobat
et al., 2011). Horton et al. (2013) developed a revolutionary
system in the field of 3 PM. They used 3 PM to imaging of
subcortical structures within an intact mouse brain. In 3 PM,
1,700 nm excitation source was used. Application of longer
excitation wavelength reduces the attenuation of excitation light
by the tissue. Moreover, 3PE significantly reduces the out-of-
focus background and improves the signal to background ratio.
In the preliminary 3PM experiments, vascular and neuronal
structures in the mouse brain at ∼1.3 mm depth were imagined
(Horton et al., 2013). Certainly, 3 PM has the potential to
play a game-changing role in the field of IVM. Current 3 PM
applications are largely limited to brain IVM (Horton et al., 2013;
Wang T. et al., 2018). Application of innovative microscopic
methods on other organs such as heart, lung, and kidney
can achieve previously unmet penetration depth. Though, the
establishment of an advanced imagining system requires more
money and optimization initially, once established it can uncover
dynamic activities deep inside the tissue that was hidden so far.

Overall, suitable selection and application of advanced optical
modalities with fluorescence tagging methodologies in IVM can
enable in-depth analysis of the tissue in healthy and diseased
state, tissue development, repair and biomaterial compatibility
as well as host reactions on implantation. It can also provide
essential information at the level of cell–cell interactions and
facilitate the development of potential treatments for complex
diseases such as cancer and Alzheimer.

SUMMARY/CONCLUSION

Intravital microscopy provides information at the cellular and
molecular level in different dynamic complex processes. It can be
performed in both acute as well as chronic settings using windows
or chambers. Advancement in microscopy and fluorescent
markers have changed the direction of IVM. IVM provides useful
information to understand physiology and cellular interaction. It
can be applied to disease models for exploring new therapeutic
approaches. Selection of the right model and suitable microscopic
methods are very important points to be considered. Respiration
and heart beating pose problems in imaging of upper extremity
organs such as heart and lung. Deep tissue imaging is possible
via multiphoton microscopy. However, there is still scope for
development in further deep tissue imaging and application of
advanced microscopic tool such as 3 PM for deep in vivo imaging
of organs such as lung, liver, heart, kidney, and spleen.

Intravital microscopy is a promising approach to investigate
host reactions on implanted biomaterials (Dondossola et al.,
2016; Gniesmer et al., 2020; Jehn et al., 2020). IVM models for
different organs have already been developed but most models
are currently used to analyze organ specific dynamic processes
during the healthy or diseased state. The majority of current
IVM experiments can be adapted to improve tissue engineering
strategies. IVM has great potential to improve and expand
the boundaries of regenerative medicine. Considering all the
advantages of IVM, it would be beneficial to keep developing
and applying IVM models compatible with tissue engineering
experiments in order to gain deeper insight in angiogenesis,
inflammation and immunologic processes in tissue engineering.
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