AUTHOR=Schumacher Garrett J. , Sawaya Sterling , Nelson Demetrius , Hansen Aaron J. TITLE=Genetic Information Insecurity as State of the Art JOURNAL=Frontiers in Bioengineering and Biotechnology VOLUME=8 YEAR=2020 URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2020.591980 DOI=10.3389/fbioe.2020.591980 ISSN=2296-4185 ABSTRACT=

Genetic information is being generated at an increasingly rapid pace, offering advances in science and medicine that are paralleled only by the threats and risk present within the responsible systems. Human genetic information is identifiable and contains sensitive information, but genetic information security is only recently gaining attention. Genetic data is generated in an evolving and distributed cyber-physical system, with multiple subsystems that handle information and multiple partners that rely and influence the whole ecosystem. This paper characterizes a general genetic information system from the point of biological material collection through long-term data sharing, storage and application in the security context. While all biotechnology stakeholders and ecosystems are valuable assets to the bioeconomy, genetic information systems are particularly vulnerable with great potential for harm and misuse. The security of post-analysis phases of data dissemination and storage have been focused on by others, but the security of wet and dry laboratories is also challenging due to distributed devices and systems that are not designed nor implemented with security in mind. Consequently, industry standards and best operational practices threaten the security of genetic information systems. Extensive development of laboratory security will be required to realize the potential of this emerging field while protecting the bioeconomy and all of its stakeholders.