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Biological resources are multifarious encompassing organisms, genetic materials,
populations, or any other biotic components of ecosystems, and fine-grained
data management and processing of these diverse types of resources proposes
a tremendous challenge for both researchers and practitioners. Before the
conceptualization of data lakes, former big data management platforms in the research
fields of computational biology and biomedicine could not deal with many practical data
management tasks very well. As an effective complement to those previous systems,
data lakes were devised to store voluminous, varied, and diversely structured or
unstructured data in their native formats, for the sake of various analyses like reporting,
modeling, data exploration, knowledge discovery, data visualization, advanced analysis,
and machine learning. Due to their intrinsic traits, data lakes are thought to be
ideal technologies for processing of hybrid biological resources in the format of text,
image, audio, video, and structured tabular data. This paper proposes a method
for constructing a practical data lake system for processing multimodal biological
data using a prototype system named ProtoDLS, especially from the explainability
point of view, which is indispensable to the rigor, transparency, persuasiveness, and
trustworthiness of the applications in the field. ProtoDLS adopts a horizontal pipeline
to ensure the intra-component explainability factors from data acquisition to data
presentation, and a vertical pipeline to ensure the inner-component explainability factors
including mathematics, algorithm, execution time, memory consumption, network
latency, security, and sampling size. The dual mechanism can ensure the explainability
guarantees on the entirety of the data lake system. ProtoDLS proves that a single point
of explainability cannot thoroughly expound the cause and effect of the matter from an
overall perspective, and adopting a systematic, dynamic, and multisided way of thinking
and a system-oriented analysis method is critical when designing a data processing
system for biological resources.

Keywords: data lake, DIKW, biological resources, unstructured data, XAI, explainability, interpretability

Abbreviations: AGI, Artificial general intelligence; AI, Artificial intelligence; AM, Algorithm metadata; AV, Algorithm
visualization; BioBPX, Biological Pathway Exchange; DG, Data governance; DI, Data ingestion; DIKW, Data–information–
knowledge–wisdom; DL, Data lake; DM, DIKW metadata; DP, Data pond; DPV, DIKW provenance visualization; DS,
Dialogue system; EI, Explainable infrastructure; ELM, Extreme learning machine; EML, Explainable machine learning;
HCLS, Health care and life sciences; IM, Infrastructure metadata; IV, Infrastructure visualization; JS, Job scheduler; KG,
Knowledge graph; LIME, Local Interpretable Model-agnostic Explanations; MC, Metadata catalog; ML, Machine learning;
MM, Mathematics metadata; NA, Narrator; PCA, Principal component analysis; ProtoDLS, Prototypical Data Lake System;
SMV, Software Metrics Visualization; SP, Security and privacy; SRM, Software runtime metrics; ST, Sandbox training; SVD,
Singular value decomposition; TA, Twin agent; TDW, Traditional data warehouse; VI, Visualization; XAI, Explainable
artificial intelligence.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 September 2020 | Volume 8 | Article 553904

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.553904
http://creativecommons.org/licenses/by/4.0/
mailto:duanyucong@hotmail.com
https://doi.org/10.3389/fbioe.2020.553904
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.553904&domain=pdf&date_stamp=2020-09-29
https://www.frontiersin.org/articles/10.3389/fbioe.2020.553904/full
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-553904 September 29, 2020 Time: 10:39 # 2

Che and Duan Logical Design of a Prototypical DL System

INTRODUCTION

Biological resources encompass a vast range of organisms (and
parts thereof), the genetic materials they contain (known more
specifically as genetic resources), and any other biological
components of a population or ecosystem that has an actual
or potential use or value for human beings. The digitization of
biological resources has created a large volume of biological big
data; however, those data are possibly coming from multiple
sources and are heterogeneous, and in order to make an
actionable decision, there needs to be a trustful data integration
and an integrated analytical solution. Research scientists in
bioinformatics around the world have pulled all out of their
efforts to collaboratively solve the challenging problems (Afgan
et al., 2016; da Veiga Leprevost et al., 2017; Bussery et al., 2018).
A data lake is claimed to be capable of fulfilling descriptive
analytics, exploratory analytics, and confirmatory factor analytics
requirements in other application fields, yet it has not been
introduced in bioinformatics or genetics to store large quantities
of biological resource data or experimental data in a massive way.

As a newly emerging paradigm of modern data architectures,
the data lake radically simplifies the enterprise-wide data
infrastructure, and it is expected to accelerate technological
innovation alongside with the deep penetration of artificial
intelligence and machine learning capabilities into every
industrial and social sector. In the past, almost all of the
data involved in the operational products and the decision-
making products come from structured data stored in the back-
end databases or data warehouses, or semi- or unstructured
data crawled from the Web, and nowadays, many innovative
products are embedding AI in the unstructured data format of
computer vision, speech recognition, and text mining. These new
requirements differ a great deal from the requirements emerging
in the era of data warehouses, which need a structured, subject-
oriented, and relational database claiming to hold a single view of
data without data silos (Stein and Morrison, 2014). For example,
over the years, Irvine Medical Center, University of California,
had accumulated a pile of patient health records owned by
one million inpatients and outpatients. These different types of
data included online spreadsheet data, semi-structured medical
reports, unstructured prescriptions, and radiology images from
its radio department. The medical center had to store, integrate,
and access the big data, so they chose to use a Hadoop distribution
as their initial data lake infrastructure, for the benefit of Hadoop
open-source software stacks and low-price commodity hardware
clusters (Stein and Morrison, 2014). When it comes to the
processing of biological resources, as research institutions, labs,
and pharmaceutical plants increasingly use mobile apps and
cloud services, the application scenarios will be somewhat similar
to what they have experienced at the UC Irvine Medical Center.

Due to their intrinsic traits, data lakes are thought to be
ideal technologies for processing of hybrid biological resources
in the format of text, image, audio, video, and structured
tabular data. Unfortunately, facing with these voluminous and
heterogeneous data, current data lake proposals cannot afford
the system complexity and high tolerance for human errors,
due mostly to their incipient design and low explainability.

However, some research directions and application scenarios
have received special attention on the explainability due to
their specialties and critical states, especially those in medicine
and pharmacy pertaining to human lives where decisions are
literally a matter of life or death. Biology as a discipline also
concerns much on the explainability of biological phenomena
and effects. Thus, the data management of biological resources
urgently needs to solve the following two problems: (i) efficient
and effective management of heterogeneous data from multiple
sources and (ii) reasonable explanation of applications running
on the platform in terms of the overall system design.
Usually, explainability cares more about the Explainable Artificial
Intelligence and Machine Learning (XAI and ML) algorithm
(Samek et al., 2017) and recommender systems (Schafer
et al., 1999; Zhang et al., 2014). However, we consider that
explainability is a very broad term that still includes engineering-
related aspects like the data/information/knowledge/wisdom
spectrum, or DIKW (Duan et al., 2019), network architecture,
and development language, human-related aspects like human
faults, and cognitive psychology, not just algorithm and
mathematics-related aspects. A single point of explainability
cannot thoroughly expound the cause and effect of the matter
from an overall perspective; we must adopt a systematic view and
system-oriented analysis method.

Also, the data lake approaches may learn lessons and
experiences from other similar approaches, which are possibly
coming from different application domains, for example, the
virtual research environment approaches (Assante et al., 2019;
Houze-Cerfon et al., 2019; Remy et al., 2019; Albani et al., 2020).
As is known to all, the integration of domain knowledge from
different application domains will bring different perspectives to
the data lake solutions.

Consequently, we propose in this paper the following:

1. to construct a practical data lake system for processing
multimodal biological data using a prototype system
named ProtoDLS;

2. to adopt a horizontal pipeline to ensure the intra-
component explainability factors from data acquisition
to data presentation, and a vertical pipeline to ensure
the inner-component explainability factors including
mathematics, algorithm, execution time, memory
consumption, network latency, and sampling size.

In order to better understand the meaning of explainability
from the outset, in here we give a brief definition of
explainability and interpretability (Adadi and Berrada, 2018;
Arrieta et al., 2020).

Definition 1 Explainability denotes an account of the system,
its workings, and the implicit and explicit knowledge it uses
to arrive at conclusions in general and the specific decision at
hand, which is sensitive to the end-user’s understanding, context,
and current needs.

Definition 2 Interpretability denotes the extent to which a
cause and effect can be observed within a system. Or, to put
it in another way, it is the extent to which you are able to
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predict what is going to happen, given a change in input or
algorithmic parameters.

In the context of this article, explainability and interpretability
are used interchangeably.

The reminder of this paper is organized as follows. Section
“Related Work” briefly surveys the current status quo of data
lakes and XAI, as well as the research development of data
management approaches in the field of bioinformatics, genetics,
and phenomics. Section “The Prototype Architecture” presents
the overall architecture of our prototype system, i.e., ProtoDLS
and describes the specific features of each key component.
Sections “Horizontal Pipeline” and “Vertical Pipeline” elucidate
the detailed design especially from the point view of explainability
in a horizontal and vertical pipeline, respectively. Section
“Project Progress and Discussion” discusses the current project
progress and makes a contrast between ProtoDLS and emerging
data lake systems. In closing, Section “Conclusion and Future
Work” comes to a conclusion of the paper and outlines future
development directions about ProtoDLS.

RELATED WORK

In 2010, James Dixon, CTO of Pentaho (2020), firstly proposed
the concept of data lake in one blog post, as a way trying to store
voluminous and diversely structured data in their native formats,
in an evolutionary storage place allowing later detailed analyses
(Dixon, 2010). Although the concept was first coined in early
2010, academia adopted it a couple of years later. Until now, there
has been no well-accepted definition of what a data lake is, and
the corresponding underlying features vary differently according
to the real-world contexts. Some early research advancements
on data lakes for a time were ever bound up with on-demand
data models, or widely called schema-on-read models (also
known as late binding models) (Fang, 2015; Miloslavskaya and
Tolstoy, 2016). The key reason for adopting the schema-on-
read model in data lakes lies in the bulk workloads of manual
schema extraction, which is inoperable in the face of machine
learning tasks, especially deep learning tasks. At the same time,
Suriarachchi and Plale (2016) found that with the continuing
growth of data in top gear, a data swamp will soon appear
from a meant-to-be data lake without the guidance of a clear-
cut schema. Thus, to ensure data accessibility, exploration, and
exploitation, an efficient and effective metadata system becomes
an indispensible component in data lakes (Quix et al., 2016).
Yet, most of the research work on data lakes still concentrate on
structured data, or semi-structured data only (Farid et al., 2016;
Farrugia et al., 2016; Madera and Laurent, 2016; Quix et al., 2016;
Klettke et al., 2017). So far, unstructured data have not received
enough consideration in the relevant research literature, while
more often than not unstructured heterogeneous data occur
frequently (Miloslavskaya and Tolstoy, 2016). Multimodality in
data lake systems is estimated to come under the spotlight in the
next research wave.

Almost at the same time, with the development of big data
and deep learning, especially since the totemic year of 2012,
AI algorithms have attained or surpassed the limits of human

beings in many areas like chess games and drug discovery,
which were computationally unimaginable in early years (Lecun
et al., 2015). However, some black-box models like random forest
(Breiman, 2001), GBDT (Friedman, 2001), and deep learning
(Lecun et al., 2015) have extraordinarily complex inner working
mechanisms and inexplicable outer input–output mappings.
Even for a senior graduate student, to fully understand the
rationale of a black-box model will cost him several days and
make him go through a painful process of a conscientious
manual formula derivation and a time-consuming experimental
verification. The problem with these models is that they are
devoid of transparency and explainability, although they will
nearly gain superior performance after careful fine-tuning. In the
healthcare and medical field, that would become a big problem
since applications in these demanding fields require a full-fledged
explanation of model rationales. Thus, research efforts in these
fields have witnessed a burst of articles and papers in explainable
artificial intelligence (XAI) (Došilović et al., 2018). Since XAI
methods have extensive application scenarios, a full survey of XAI
research and development is a difficult task to accomplish. On
a large scale, the related research topics in XAI can be roughly
divided into two major categories: integrated approaches and
post-hoc approaches.

The integrated approaches usually keep an eye on the
transparency factors, and transparency is a required means
for the protection of human rights from unfairness and
discrimination (Edwards and Veale, 2017). Similar to the idea,
transparent models are expected to be both explainable and
interpretable. As one of its subbranches, pure transparent
approaches restrict the model choices to the model families
that are considered transparent. For example, Himabindu et al.
(2016) ever proposed a method to use separate if-then rules
to effectively interpret decision-making sets. Based on region-
specific predictive models, Wang et al. (2015) proposed an
oblique treed sparse additive model, which exchanges a modest
measure of interpretability for accuracy, but in SVM and
some other non-linear models, it gains a satisfying degree of
accuracy. As another subbranch, hybrid approaches combine
pure transparent models and black-box models to get a
balance between interpretability and performance. To develop
internal rating models for banks, Gestel et al. (2005) used a
progressive method balancing the requirements of predictability
and interpretability.

Post-hoc approaches will not impact the model performance
since it extracts information from the already learned model.
Usually, post-hoc approaches are used in cases where model
mechanisms are too complex to explain. For example, as
for explainable recommendation, two diverse models generate
recommendations and explanations, respectively. After the
genuine recommendations have been performed, an explanation
model independent of the recommendation algorithms will
provide explanations for the recommendation model carried
out just a while ago (so it is called as “post-hoc”). Likewise,
to provide a post-hoc explainability for recommendations,
Peake and Wang also presented a data mining method with
several association rules (Peake and Wang, 2018). In addition
to recommendation, post-hoc approaches were also used in

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 September 2020 | Volume 8 | Article 553904

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-553904 September 29, 2020 Time: 10:39 # 4

Che and Duan Logical Design of a Prototypical DL System

image recognition and text classification. To find out model
defects in these fields, with the aid of several elastic nets,
Guo et al. (2018) augmented a Bayesian regression mixture
model and extracted explanations for a target model through
global approximation.

XAI has received relatively little attention in the field
of bioinformatics and biology, but ontology-based data
management in this line has gleaned quite a few studies. In
phenomics research, aiming to support adequate collaboration
between teamworkers, Li Y.F. et al. (2010) presented PODD, a
data reservoir based on ontology. Like its big brother, genomics,
phenomics research uses imaging devices and measurement
apparatuses to acquire vast amounts of generated data, which
are subsequently used for analysis. Thus, in phenomics research,
there are key challenges for data management of large amounts
of raw data (image, video, raw text). Meanwhile, in genomics,
Ashburner et al. (2000) constructed the famous Gene Ontology
(Gene Ontology, 2020), a well-established and structured
tool to represent gene ontology categories and terms, which
has been successfully used for many years by researchers.
The Gene Ontology includes three independent ontologies,
molecular function ontology, cellular component ontology,
and biological process, and can be used for all eukaryotes,
even as we are gaining more knowledge of protein and gene
functions in cells (Ashburner et al., 2000). The Bio2RDF (2020)
project declares to transform silos of life science data into
a globally distributed network of linked data for biomedical
knowledge translation and discovery. Up until now, Bio2RDF
has accumulated 378 datasets, including Bio2RDF:Drugbank
and Bio2RDF:Pubmed. The EBI RDF platform (Ebi Rdf, 2020)
claims to bring together a number of EMBL-EBI resources that
provide access to their data using Semantic Web technologies.
As a well-accepted exchange language, BioPAX (Biological
Pathway Exchange) aims to enable integration, exchange,
visualization, and analysis of biological pathway data (Demir
et al., 2010). OntoLingua provides a distributed collaborative
environment to browse, create, edit, modify, and use ontologies
(OntoLingua Server, 2020). The BioSchemas project develops
different types of schemas for the exchange of biological data
and aims to reuse existing standards and reach consensus
among a wide number of life science organizations (BioSchemas,
2020). Although closed, W3C’s HCLS (Health Care and Life
Sciences) group has done a great deal of work to use Semantic
Web technologies across health care, life sciences, clinical
research, and translational medicine. Amid questions about its
feasibility and availability, IBM Watson brings to customers a
cognitive computing platform which can understand, reason,
and learn from a magnitude of unstructured medical literature,
patents, genomics, and chemical and pharmacological data
(Ying et al., 2016).

Apart from ontology research in biology, at different
times, a collection of databases such as scientific publications
(PubMed, 2020), genes (Ensembl, 2020), proteins (UniProt,
2020), and gene expression data (Ebi ArrayExpress, 2020; Gene
Expression Atlas, 2020; GEO, 2020) have ever been created
in order to store big quantities of bio-data for the purpose
of refining and for systematic scientific research work. These

data storage platforms have seldom based on data lakes since
data lakes are not as mature as commercial databases and data
warehouses; neither are open-source data management solutions
like Hadoop software stack.

At the intersection of data lakes and explainability, research
on explainable data lakes still remains unexplored. Also,
for now, barely little literature in the field of data lakes
has discussed explainability systematically. This paper tries
to fill the gap between data lakes and explainability from
a systematic view, not just a XAI view, and to borrow
knowledge and experience from the research development on
XAI and data lakes.

THE PROTOTYPE ARCHITECTURE

In this section, we will present the overall architecture
of ProtoDLS (Prototypical Data Lake System for Biological
Resources) we have designed. In the field of bioinformatics and
genetics, ProtoDLS intends to answer the explainability problem
in a systematic, dynamic, and multisided view instead of an
isolated, static, and one-sided view. In order to explain certain
questions about data, metrics, rules, and business objectives,
ProtoDLS insists that only every component and module is
self-explanatory itself, the unhindered explainability can be
thoroughly implemented in the system level as a whole, and
only after that, explainability can take real effect and solve real-
world problems. ProtoDLS also disbelieves a single point of
explainability such as XAI for that XAI also has input into, output
out of, and interactions with other components, modules, or even
machine learning algorithms in a data lake system as in Figure 1.

As in Figure 2, the overall architecture of ProtoDLS can
be roughly divided into two major components: Data Lake
(DL, A in Figure 2) and Traditional Data Warehouse (TDW,
B in Figure 2). Initially debuted as a substitute for data
marts in the topmost tier of data warehouses, data lakes have
exhibited a relationship of complement to data warehouses
rather than a competitive relationship with data warehouses.
The complementary strengths and challenges between them in
recent years also suggest the urgent needs to exchange ideas
on opportunities, challenges, and cutting-edge techniques within
them. In ProtoDLS, TDW is usually used to cleanse, integrate,
store, and analyze the processed, trusted, and well-structured data
or semi-structured data like website logs. Raw data is always
discarded or stored in a NAS/SAN/Cloud storage area. TDW and
DL transfers data back and forth; sometimes, DL can serve as a
staging area for TDW, and vice versa. DL stores raw data in any
format and outputs the deeply analyzed results in a schematic
format to TDW for visualization, reporting, and ad hoc query.
TDW also outputs some structured data to DL as its metadata
and elementary elements. The detailed data flow between them is
stored in Metadata Catalog (MC, A-6 in Figure 2) of DL for later
explanation and traceability.

The Data Ingestion (DI, A-1 in Figure 2) component of
ProtoDLS provides an appropriate data extraction, integration,
transformation, and load mode for multiple heterogeneous data
sources. DI has the following features:
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FIGURE 1 | Explainability is a comprehensive concept and XAI is just an aspect of explainability.
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FIGURE 2 | The overall architecture of ProtoDLS.

1. Data source configuration: to support multiple data
sources, including but not limited to TDW, databases, flat
files, message queues, and protocol datagrams.

2. Data collection: to support the collection actions of
the corresponding data source, and complete data
structure analysis, data cleaning, data transforming, data
normalization, data format standardization, etc.

3. Data synchronization: to support data synchronization
to other data sources, including necessary cleaning,
processing, and transforming.

4. Data distribution: to support data sharing and
distribution, and publish data in various forms (object
stores, APIs, etc.).

5. Data preprocessing: to support data encryption,
desensitization, standardization, and other particular
processing logic.

The Explainable Infrastructure (EI, A-4 in Figure 2)
component of ProtoDLS is slightly different from the traditional
infrastructure layer. EI is also composed of network unit, storage
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unit, and computing unit. The generated data are all collected in
these units, such as memory consumption by second, network
latency by second, storage capacity by hour/day. The warning,
alert, or other important system admin event will be triggered
and displayed in an intuitive way, like using NLG (Natural
Language Generation).

The Visualization (VI, A-5 in Figure 2) component of
ProtoDLS empowers other components with visualization
capabilities. With visualization, horizontal components and
vertical modules can enhance explainability of DIKW flow (see
below), statistical algorithms, and deep learning algorithms.

In one respect, the design of a data lake platform
is fundamentally metadata driven, especially in terms of
explainability. The MC component of ProtoDLS is very critical to
explainability, since it globally stores all of the metadata generated
locally in every component, of which type includes technical
metadata, business metadata, and operational metadata. MC
stores every and each data change and schema change. MC can
represent metadata in tabular forms or human understandable
sentences supported by the Explainable Machine Learning
(EML, A-3 in Figure 2) component. MC provides a system-wide
single point of truth for all kinds of users in ProtoDLS.

The Knowledge Graph (KG, A-7 in Figure 2) component
of ProtoDLS visualizes knowledge entities and the relationships
between the entities in a graph model. With the help of
KG, EML, or any other component in ProtoDLS can extract
named entity, relationship, and attributes from it. Knowledge
representation, knowledge fusion, entity disambiguation, and
knowledge/ontology reasoning in KG can enhance explainability
in other components. The question and answer feature is critical
to explainability, and KG can provide accurate and concise
natural language abilities to aid it.

The Job Scheduler (JS, A-8 in Figure 2) component of
ProtoDLS schedules jobs for execution (start, stop, terminate,
invocate, replay, or sleep) at a specific time/date, or triggers
jobs upon receiving some certain event, or records the execution
orders of jobs and running status within jobs in DC. JS
orchestrates the running jobs in ProtoDLS in a sequential or
concurrent order, and its scheduling trigger scheme includes
time-based, interval-based, and event-based.

In contrast to TDW, the biological data maintained in DL
are more scattered, disordered, and schema-less, so it is more
necessary to govern the data usability, availability, integrity,
security, and flows in DL through the work of Data Governance
(DG, A-9 in Figure 2), otherwise DL will gradually become
corrupted and finally transforms into a data swamp. To efficiently
and effectively drive data intelligence, DG is crucial and it is
also one of the biggest challenges during the construction of
DL. The core task of DG lies in improving the multimodal
data quality by the aid of metadata management, data standard
conformance, data lifecycle management, data security and
privacy management, and data stewardship. Without the aid of
DG, low-quality data will greatly lower the precision and recall
of machine learning algorithms and thus will further restrict the
interpretability and explainability of ProtoDLS as a whole.

The Security and Privacy (SP, A-10 in Figure 2) component of
ProtoDLS deals with security and privacy issues since ProtoDLS

will be flooded by the influx of numerous raw and unprocessed
data, which will be very dangerous without some appropriate
supervision, audit, and access control methods. Privacy
preserving data mining can protect personal privacy data from
leakage and damage, improve explainability, and reduce bias.

The Data Pond (DP, A-2 in Figure 2) component of ProtoDLS
subdivides and processes the data exported by DI according to
the incoming data format. ProtoDLS needs to provide a variety
of data analysis engines to meet the needs of data computing.
It needs to meet batch, real-time, streaming, and other specific
computing scenarios. In addition, it also needs to provide access
to massive data to meet the demand of high concurrency and
improve the efficiency of real-time analysis. Heterogeneous data
enters into DP according to the dispatch of JS. Initially, text data
enter into text DP, and image data enter into image DP, and so on.
When multimodality analysis is set, different types of data may
enter into a hybrid DP, for example, text data and image data may
enter into text-image DP for later coordinated processing. The
partition of DP over data formats ensures the explainability and
traceability in DP.

The EML component of ProtoDLS is responsible for
executing NLP, image classification, video classification, audio
recognition, and conventional machine learning and deep
learning algorithms in an explainable way. The methods
for explainability may include example illustration, analogy,
visualization, model-agnostic, local approximation, or even
human intervention.

Potentially, ProtoDLS has a wide range of platform
users including system administrators, data scientists,
statisticians, analysts, and ordinary end users, who have
different explainability demands for ProtoDLS. For discovery
and ideation, data scientists will currently focus more on
the explainability of the black-box deep learning algorithms.
Statisticians will pull all out to explore data patterns and
identify data rules through tests, summaries, and higher-order
statistics under some hypothesis. Data analysts may cost their
efforts to explain the business intelligence metrics in their
everyday life. System administrators will pay attention to the
normal operation of ProtoDLS. When the system is down
or a performance degradation occurs, EI in ProtoDLS will
give system administrators an easy-to-understand explanation
and system administrators will rephrase the explanation in
less technical terms to other users of ProtoDLS, in order
to mitigate the user anxieties and confusion. Ordinary end
users usually are not technical experts in the abovementioned
areas, and all they want is an easy-to-understand explanation.
According to the explanation, they will make decisions and
enact policies and rules. However, the requirement creates
the most difficult part of explainability in ProtoDLS, since
the generated explanation by the platform must be presented
in an intuitive way prone to human understanding, without
many technical terms or nomenclatures. ProtoDLS accumulates
all the explanations in every component and module and
ranks them in an important or critical order, and ProtoDLS
will synthesize them into a paragraph that human can easily
understand and accept. The training procedures will absorb
insights and suggestions from experts in bioinformatics, genetics,
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and phenomics, in algorithms, in computer architecture, or even
in cognitive psychology.

ProtoDLS aims to help researchers and practitioners in
bioinformatics, genetics, and phenomics finish the following
tasks in an explainable way:

1. Multimodality data governance over datasets collected
from biological resources, including data standard
conformance, data security enforcement, metadata
management, data quality improvement, data stewardship,
and data lifecycle management, with an aim to reduce the
difficulties of data analytics without data lakes.

2. Multimodality data exploration and exploitation
using cutting-edge machine learning, deep learning,
and artificial intelligence techniques, on the basis of
ingesting, aggregating, cleaning, and managing datasets
maintained in ProtoDLS.

3. To generate new data dimensions based on the analysis of
previous usage histories.

4. To create a centralized multimodality data repository for
data scientists and data analysts, etc., which is conducive
to the realization of a data service optimized for data
transmission.

HORIZONTAL PIPELINE

In ProtoDLS, the horizontal pipeline mainly concerns about
when, where, how, by who, and to what degree the large amounts
of instantly collected raw data are being transformed into
meaningful information, useful knowledge, even insightful
wisdom for all kinds of end users. In the horizontal direction,
ProtoDLS is divided into several components according to
specific functional requirements. Thus, ProtoDLS adopts
a horizontal pipeline to ensure the intra-component (or
subsystem-level) explainability across the horizontal landscape,
from data acquisition, to data storage, all the way up to data
processing, and finally to data presentation.

Data, Information, Knowledge, Wisdom
ProtoDLS observes and manages the data flow between
horizontal units in light of the conceptual framework of
DIKW (Duan et al., 2019). As seen in Figure 3, the DIKW
model integrates data, information, knowledge, and wisdom in
a set of related layers, each extending the ones underneath
itself. The original observation and measurement activities
obtain the raw data, in the format of image/text/video/audio,
and the relationships between the raw data are analyzed
accordingly to obtain the information, which in ProtoDLS is the
integrated and formatted data from the raw data according to
some ETL processing rules. The application of information in
action produces knowledge, which in ProtoDLS is information
applied to bioinformatics, genetics, and phenomics. Wisdom is
concerned about the future, and it tries to understand things that
have not been understood in the past, things that have not been
done in the past.

Finding out how data, information, knowledge, and wisdom
flow between components should act as the first step toward

the complete explainability of a specific question posed toward
ProtoDLS, since quick location of the need-to-explain points will
be realized in terms of clear-and-cut DIKW flows.

ProtoDLS records any DIKW flow between every two
components in MC in the following format: <Task_Name,
Source_Component_Name | External_Source_Name, DIKW,
Sink_Component_Name | External_Source_Name, Last
Execution Time, Duration, Executed By >, i.e., DIKW flows from
a source component or an external source into a sink component
or flows out into an external source. MC can give back the
DIKW flow path for any request from other components. System
administrators can monitor and retrieve the DIKW flow in a
single operational console. When incidents occur, DIKW flow
monitoring capabilities can give admin teams a quick start and a
good explanation for other platform users.

DIKW Provenance
Provenance was a concept originated from the database
community decades ago (Buneman et al., 2001). The emergence
of data provenance, or data lineage, is that database or data
warehouse users need to find out the data origin and the data
evolution process, where they are coming from, where they
are going, and what is happening to them; also, they need
to frequently execute impact analyses in order to make sure
that certain actions to be performed will affect the system in
a controlled way and within a controlled range, or trace back
data quality issues and errors till to their root causes as fast as
they can. Or, on the other hand, many senior technical users
like data scientists and data analysts tend to use datasets in
isolation or in a team, which may quickly create some explicit or
implicit upstream and downstream dependencies and chaining
of dependent data processing. In this regard, the system or the
platform need to cover a broad spectrum of workload scenarios
like batch jobs, streaming jobs, mini-batch queries, ad hoc
queries, deep learning training tasks, and support programming
languages like R, Python, and Scala, and even new programming
languages like Julia. To perform provenance on the data lake,
we need DIKW provenance as an upgraded version in place of
data provenance. With DIKW provenance, the ProtoDLS users
can track and understand how DIKW flows across the platform
at every stage, where DIKW resources are sourced from, and how
they are being consumed, thus allowing users to develop trust and
confidence in the platform, algorithms, infrastructure, and other
inner working mechanisms of ProtoDLS.

Basically, DIKW provenance has the following categories:

1. What—provenance answers the question: what does this
do?

2. Who—provenance answers the question: who did this?
3. When—provenance answers the question: when did this

happen?
4. Where—provenance answers the question: where did this

happen?
5. How—provenance answers the question: how the

knowledge is worked out?
6. Why—provenance answers the question: why the result is

working?
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7. Why Not—provenance answers the question: why the
result is not achieved?

With DIKW provenance, many questions related to the
horizontal pipeline can be answered and thus explainability on
a horizontal level will be achieved to some extent in ProtoDLS.
As seen in Figure 4, the DIKW provenance flows can be
recorded in a module named DIKW Metadata (DM) in MC,
and the DIKW Provenance Visualization (DPV) module in VI
is responsible for replaying the provenance flows in a reverse
direction using animation.

VERTICAL PIPELINE

In ProtoDLS, the vertical pipeline concerns more about the
explainability in every component rather than the intra-
component explainability. For example, the fusion algorithm
implemented in DP may require an explanation mainly in the
scope of DP, rather than an explanation of the DIKW flows
between DI and DP which has been explained and can be queried
in the horizontal pipeline.

Mathematics
For certain users, mathematics can be annoyingly inevitable when
they conduct data analytics; however, mathematics is central to
the area of computational biology and biomedical research. Some
mathematical equations are relatively straightforward and easy to
explain to the ordinary users, just like the famous SVD (Singular
Value Decomposition) theorem:

M = U6VT

Although the formula is simple in its form, the meaning behind
it is quite wide and deep. That is, a seemingly simple formula also
needs thorough explanation for ordinary end users. Furthermore,

when stepping into the territory of machine learning, we will
find that this area is glutted with so many cranky mathematical
equations and formulas in all sorts of complex and profound
algorithms, for example, convex optimization algorithms (Boyd
et al., 2006) and the ELM (Extreme Learning Machine) algorithm
(Huang et al., 2006), just like the following one excerpted from
ELM:

min LRELM =
1
2
||β||2 +

C
2
||Y −Hβ||2

Some mathematical formulas are very hard to comprehend even
by seasoned machine learning experts. Therefore, it is necessary
to explain different mathematical formulas, even those seemingly
ones in the system. To understand mathematical formulas is
fundamental to understanding how a complex algorithm works
as a whole. ProtoDLS thinks about the problem in three aspects:

1. to explain the interpretation of each symbol in the
mathematical formula.

2. to explain the denotation of the entire mathematical
formula including its user, context, etc.

3. to explain the connotation lying behind the entire
mathematical formula.

Thus, in ProtoDLS, MC also records all of the bits and
pieces about every mathematical formula and the associated
formula derivation process in a particular region of it, namely,
the Mathematics Metadata (MM) region, as seen in Figure 5.

With MM in MC, all the components and users of ProtoDLS
can easily query, retrieve, and check in mathematics-related
problems. At the same time, with the aid of VI, ProtoDLS can
offer its users with an intuitive visualization presentation for
better explainability.

Algorithms
Likewise, algorithms, especially black-box deep learning
algorithms are also hard to comprehend. There roughly exist two
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FIGURE 5 | The MC component records all about mathematical formulas and formula inference processes.

different cases when we are dealing with algorithms in practical
applications:

1. Algorithms cannot be thoroughly understood by
ordinary end users.

2. Algorithms cannot be clearly explained by current
technical advancements, like black-box series of deep
learning algorithms.

The first case can be somewhat eased by technical measures,
like visualization and narrative storytelling. When it comes to the
second case, explainability will soon become the bottlenecks of

the whole platform. The methods we could adopt are reproducing
algorithms and methods in the latest literature in ProtoDLS.

As you can see in Figure 6, there is a module named
Algorithm Metadata (AM) in MC. AM preserves all the
information related to algorithms. The Algorithm Visualization
(AV) module in VI plays a very special role in the algorithmic
framework of ProtoDLS, since visualization is very critical to
the explainability of algorithms, especially the deep learning
algorithms. In the algorithmic framework, four modules exist
in EML, i.e., Sandbox Training (ST), Dialogue System (DS),
Narrator (NA), and Twin Agent (TA). At the same time,
EML opens up a sandbox region in DP, specifically for model
training, which has the following benefits: (i) algorithms can
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be trained and tested with real data sets in the production
environment, and training the algorithm with the same data
distribution will enhance the explainability; (ii) deployment from
the sandbox region to the production environment is relatively
straightforward; and (iii) the sandbox is isolated from the
production environment and thus faults or halts of sandbox will
not affect the production environment. The events that occurred
in ST will go into the AM and be stored for later explanation.
The dialogue bots behind DS interact with algorithm users with
multiround natural language dialogues, with the help of KG. NA
tells users how the algorithms work in a narrative storytelling
mode. For example, it is well-known that beginners to NLP
usually find it very hard to understand the concept of embedding.
Embedding is a technique of mapping an object onto a vector.
Without any explanation, this definition cannot be thoroughly
understood by beginners. However, we may use a narrative of the
algorithm to exchange for understandability, as seen in Figure 7.
The idea of TA in EML is imitated by a reinforcement framework
proposed by Wang et al. (2018). Sometimes, the machine learning
algorithm is too complex to be thoroughly grasped. In such
cases, we usually choose an explanation model to give post-hoc
explanations about the real algorithm model. Based on this basic
idea, the twin agents go further and select the best explanations
about the algorithm model according to some reinforcement
learning and adversarial learning rules. Drawing inspiration from
this idea, TA simulates a reinforcement learning framework to
enhance the explainability of some hard black-box algorithms.

Engineering Explainability
In ProtoDLS, engineering factors of explainability consist of two
major categories: the infrastructure (storage, memory, network,
and computation) explainability and the software development
explainability (programming language, process, thread, software
methodology). The infrastructure explainability concentrates on
the explanation of the running status of the infrastructure,

like for example the question: how much memory do the
underlying cluster nodes consume now? Meanwhile, the software
development explainability concentrates on the explanation of
program-related problems and questions.

EI uses a simple audit log to record all file access requests of the
file system, intended to be easily written and non-intrusive. The
log details include operation status (success, halted, failed, etc.),
user name, client address, operation command, and operation
directory. Through the audit log, system admins can view all
kinds of operation status of EI in real time, track all kinds of
warnings, errors, alerts, and incorrect operations, and execute
some metric monitoring.

At the same time, EI daemons will generate a series of
monitoring logs. The monitoring log monitors and collects the
measurable information of EI according to some predefined
rules. For example, the following metrics will be collected by EI:
the number of bytes written, the number of file blocks copied,
and the number of requests from the client. EI daemons also
monitor the network latency, memory consumption, and storage
consumption. The X-Storage, X-Memory, X-Computation, and
X-Network modules of EI continuously monitor their metrics
and output the monitored metrics to the Infrastructure
Metadata (IM) module of MC, respectively, as their names
indicate. IM in MC transfers metrics to the Infrastructure
Visualization (IV) module of VI to monitor the running
status of EI on a visual interface for system administrators in
real time on one side. On the other side, the DS module in
EMI can asynchronously request metrics from IM to finish
multiround natural language dialogue with users, as seen in
Figure 8.

Programming languages used for the computations also would
affect our correct understanding of runtime contexts, algorithms,
and running results. The runtime context of a process is
composed of its program code, data structure, and hardware
environment needed for program running. To collect the runtime
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context of programs, the JS component in ProtoDLS will start a
job to monitor in real time, and it will store the monitored metrics
in MC, as seen in Figure 9. Similarly, the collected metrics will
store in a module named Software Runtime Metrics (SRM) in
MC. SRM transfers the processed metrics to the Software Metrics
Visualization (SMV) module of VI to monitor the running status
of software contexts on a visual interface for software users or
developers in real time on one side. On the other side, the
DS module in EMI can request metrics from SRM to finish
multiround natural language dialogue with software users or
developers, as seen in Figure 9.

Modality Explainability
ProtoDLS is created to support multimodality in the first place
since it was chartered and initially designed for multimodal
bioinformation processing for research purposes. Multimodality
itself is a hard problem both in techniques and in applications,
which causes several aspects of explainability needs. The
explainability of multimodality lies in multimodal fusion.
Multimodal fusion refers to the synthesis of information from
two or more modalities for preprocessing. Multimodal fusion can
be roughly divided into three types of fusion: early fusion, late
fusion, and intermediate fusion.
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The early fusion or data-level fusion combines multiple
independent data sets into a single feature vector and then inputs
it into a machine learning classifier. Because the early fusion of
multimodal data often cannot fully utilize the complementarity of
multimodal data, the original data of early fusion usually contain
a great deal of redundant information. Therefore, early fusion
methods are often combined with feature extraction methods to
eliminate redundant information, such as principal component
analysis (PCA) (Jolliffe, 2005), mRMR (Peng et al., 2005), and
autoencoders (Vincent et al., 2008). In this regard, feature-level
explainability largely determines the overall explainability of
the fusion model.

The late fusion or decision-level fusion fuses the output
scores of classifiers for decision-making trained by different
modal data. The advantage of this method lies in that the
errors of the fusion model come from different classifiers,
while the errors from different classifiers are often separate
and independent, which will not cause further accumulation of
errors. Common late fusion methods include max fusion, average
fusion, Bayes-based fusion, and ensemble learning fusion. As
a typical representative of late fusion, ensemble learning is
widely used in communication, computer recognition, speech
recognition, and many other research fields. As a classical model-
agnostic method, LIME (Local Interpretable Model-agnostic
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Explanations) will help to explain the late fusion of multimodality
data (Ribeiro et al., 2018).

Intermediate fusion refers to the transformation of different
modal data into high-dimensional feature expression, and
then fusion in the middle layer of the model. Taking the
neural networks as an example, the intermediate fusion first
uses the neural network to transform the original data into
high-dimensional feature representation and then obtains the
commonalities of different modal data in high-dimensional
space. One of the advantages of the intermediate fusion method
is that it can flexibly choose the location where fusion happens.

The location where multimodal data fusion happens directly
relates to the explainability. The late fusion method is a little
bit easier to explain than the intermediate fusion and the early
fusion. Moreover, the explainability also relates to the classifiers
and is constrained by the explainability of the participated
classifiers, which engenders new difficulties. In ProtoDLS, we
treat modality explainability in a quite straightforward way, so
we view the modality explainability independently and explain
the participated algorithms or classifiers irrelevantly at first. In
terms of its complexities and the current technical limitations,
we leave the modality explainability as an open problem to be
tackled in the future.

PROJECT PROGRESS AND DISCUSSION

ProtoDLS started from an initial intent to build a platform
supporting multimodal bioinformation processing for research
and experiment purposes, with explainability in the heart of its
design goals. In addition, some other minor design goals might
include performance, robustness, security, privacy-preserving,
and extensibility. However, meeting these design goals at the
same time will greatly increase the complexity of system
construction. Thus, we focus completely on the explainability of
ProtoDLS in the first stage.

As seen in Figure 10, the whole software development
process roughly includes the following phases: concept initiation,
logical design, physical design, implementation, and deployment.
Currently, we have just finished the logical system design and
entered into the physical system design phase. During the phase,
we will determine the physical structure of TDW and DL and
subsequently evaluate the performance of the physical design.
In order to guarantee the explainability design goal, we should
observe the following steps during the implementation phase:

1. Finish the implementation tasks in the horizontal pipeline
in the first place, then switch to finish the tasks in the
vertical pipeline.

2. In the horizontal pipeline, DIKW provenance is among
the top priorities to implement since DIKW provenance
acts as a backbone for the explainability of ProtoDLS, and
meanwhile the technologies behind it are relatively mature
and engineering oriented.

3. In the vertical pipeline, mathematical formulas and
algorithms are the first two implementation factors before
we start implementing engineering-related factors.

TABLE 1 | Feature comparison with some popular data lake
systems on the market.

Delta
Lake

Apache
Iceberg

Apache
Hudi

Apache
Kudu

AWS
Data
Lake

(Dremio)

ProtoDLS

Hadoop
support

√ √ √
– –

√

Metadata
management

√ √ √ √ √ √

Workload
management

– – – –
√ √

Data
governance

– – – –
√ √

Streaming
√ √ √ √ √ √

Versioning
√

–
√

–
√

–

Spark SQL
√

–
√ √

– –

Index –
√ √ √ √ √

Row-level
update

√ √ √ √ √
–

ACID
transactions

√ √ √ √ √
–

Standard
compliance

– – – –
√

–

Security – – –
√ √ √

S3 support
√ √

– –
√

–

Explainability – – – – –
√

4. In the last step, finish the implementation tasks for
multimodality explainability.

ProtoDLS is an ambitious and challenging project with
uncertain risks, which requires a continuous investment of
capital and human resources. Only after a process of thoughtful
and considerable design and implementation, it is estimated
that ProtoDLS will reach a preliminary stage in 10 months
and implement a primary overall explainability. At that stage,
compared with some popular data lake systems on the market,
such as Apache Hudi (2020), Apache Iceberg (2020), Apache
Kudu (2020), Aws Data Lake (2020), and Delta Lake (2020)
ProtoDLS will gain some competitive advantages, as illustrated
in Table 1.

CONCLUSION AND FUTURE WORK

The large amounts of data continuously generated from
heterogeneous types of biological resources cause great challenges
for advancing biological research and development; accordingly,
these challenges will further incur great difficulties for biological
data processing subsequently. To attack these challenges, this
paper presents a design scheme for constructing a practical data
lake platform for processing multimodal biological data using
a prototype system named ProtoDLS. Explainability is a major
concern when we deploy and use such a platform oriented
for processing of biological resources, ProtoDLS adopts a dual
mechanism to ensure explainability across the platform. On the
horizontal landscape, ProtoDLS ensures the intra-component
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explainability from data acquisition to data presentation. On the
other hand, on the vertical axis, ProtoDLS ensures the inner-
component explainability including mathematics, algorithm,
execution time, memory consumption, network latency, security,
and sampling size.

The explainability is a rather broad concept, with multiple
meanings in diverse scenarios, in a degree, to realize a full
spectrum of explainability is somewhat close to the realization
of artificial general intelligence (AGI), which will cost substantial
human resources and capital investment. Also, the design of
ProtoDLS is only a little step toward this. So many aspects need
to be considered for ProtoDLS. For example, to design a typed
DIKW resource framework will stand on a more abstract level
to explain DIKW provenance, which will enhance the degrees
of explainability on the horizontal axis in ProtoDLS. Every
vertical module of each component leaves a huge gap for further
fine-tuning that will require considerable research efforts and
sometimes need several times of practical experiments. Finally,
we should start from the logical prototype design given by this
paper and begin implementing some subsets of ProtoDLS. For
example, with the help of NLP techniques, an extensible and
highly concurrent metadata management component can be
designed and implemented, with a dialogue module supporting
human understandable sentences. Upon the submission of this
paper, the physical design of ProtoDLS has already started off,
and implementation also has initiated simultaneously to prepare
some initial verification.

To the best of our knowledge, this may be the first time
that a logical design of a prototypical data lake is proposed
in terms of the explainability around the data processing in
a data lake. Although this paper is relatively elementary, we
also hope to provide a starting point and a stepping stone
for any academic researchers and industrial practitioners in
bioinformatics, genetics, and phenomics, or people interested in
data lake research and deployment in any other fields. For people

who are doing research on the data lake explainability, this paper
also may be beneficial and helpful.
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