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The G Protein-Coupled Receptor (GPCR) family consists of more than 800 different

members. In this article, we attempt to use the physicochemical properties of

Composition, Transition, Distribution (CTD) to represent GPCRs. The dimensionality

reduction method of MRMD2.0 filters the physicochemical properties of GPCR

redundancy. Matplotlib plots the coordinates to distinguish GPCRs from other protein

sequences. The chart data show a clear distinction effect, and there is a well-defined

boundary between the two. The experimental results show that our method can

predict GPCRs.

Keywords: feature extraction, CTD, MRMD2.0, Matplotlib, predict GPCRs

INTRODUCTION

G protein-coupled receptors (GPCRs) are the largest receptor superfamily. According to their
sequence similarity, they are divided into 6 subfamilies (AF), of which the Rhodopsin or rhodopsin-
like family is the largest andmost widely studied family (Fredriksson et al., 2003; Liu and Zhu, 2019;
Ru et al., 2020). Class A has approximately 284 members in humans, and Class B subfamilies can be
further divided into two unused families: Class B1, named secretin, secrete protein-like receptors,
and Class B2 (adhesion) adhere to GPCRs. Class B1 and Class B2 contain 15 members and 33
members in humans, respectively. The adhesive G protein-coupled receptor (ADGR) family is one
of the oldest GPCR families. It exists in primitive animals, and even in several basic fungi, and is
the ancestor of the B1 subfamily of GPCRs (Nordstrm et al., 2009; Krishnan et al., 2012). Finally,
the class C glutamate family is composed of peptide receptors. The class F frizzled protein family
has appsroximately 11 members in humans.

Protein classification is one of the key issues in bioinformatics and plays an important role in the
identification and study of gene markers (Tibshirani, 1996; Cheng and Hu, 2018; Feng, 2019; Guo
et al., 2019). With the development of machine learning, protein classification and prediction have
entered a new era. Machine learning can use previous experience and data to automatically improve
the performance of algorithms, build appropriate models, and discriminate new protein sequences.
Islam et al. (2017) applied a natural language processing N-Gram model to classify proteins. The
above machine learning methods have achieved certain effects in protein classification. This article
uses feature extraction and dimension reduction of GPCR proteins to distinguish between the
properties of the extracted proteins. Finally, Matplotlab is used to distinguish GPCRs from non-
GPCRs. In the article Prediction of G Protein-Coupled Receptors (Liao et al., 2016), the 188D
method is used to extract the protein features, and then cross validation and random forest are used
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to accurately divide the GPCR and non-gpcr protein sequences.
In this paper, the CTD mode (Zou et al., 2013) is used, where
C represents the content of each hydrophobic amino acid, T
represents the frequency of the divalent peptide, andD represents
the amino acid distribution at the five positions of the sequence.
After using CTDC feature extraction method, the innovative
feature of this experiment is that the redundant features are well-
extracted using dimensionality reduction. Finally, the machine
learning method and Matplotlib are used to draw a graph that
distinguishes GPCRs from non-GPCRs.

MATERIALS AND METHODS

Datasets
1. The original 5027G protein-coupled receptors (GPCRs) were
obtained in fasta format from the database (http://www.UniProt.
org/); 2. The initial sequence was pre-processed using the
protein clustering programme CDHIT (http://cd-hit.org/) to
improve the analysis performance and reduce the homology of
the predicted sequence (Zou et al., 2020). The critical value
of sequence identity was located at 0.8. Finally, 2,495 GPCR
sequences were obtained from the positive data set. 3. The
positive sequences of all the protein sequences were removed,
and 10,386 non-GPCR protein sequences were produced as the
positive dataset (Liao et al., 2016).

Feature Extraction Methods
Principle

CTD represents the composition, transition, and distribution,
respectively. Its principle is to replace the amino acid sequence
with mathematical symbols representing physical and chemical
properties (Cheng et al., 2018a). Because the protein sequence
information is of different lengths, CTD is used to obtain
fixed-length information from proteins as input to machine
learning. In protein or peptide sequences, CTD represents
physicochemical properties or amino acid distribution patterns
of specific structures (Dubchak et al., 1995, 1999; Cai et al.,
2003; Zhang et al., 2011; Ding et al., 2017). These features are
very important for protein sequence analysis (Wei et al., 2018;
Liu et al., 2019; Liu et al., 2019a; Yan et al., 2019; Chen et al.,
2020). According to the main amino acid indicators of Tomii and
Kanehisa (Kentaro and Minoru, 1996), amino acids are divided
into three groups according to seven physical and chemical
properties, as shown in Table 1.

CTD (Dubchak et al., 1999) is very helpful for enzyme
prediction. Composition (Cai et al., 2003; Han et al., 2004; Chen
W. et al., 2019; Liu, 2019) refers to the number of specific amino
acids in a protein sequence divided by the total length N of the
amino acid in the protein sequence:

Composition(e) =
ne

N
(i)

where ne represents the sum of the number of e, a particular
amino acid, in the sequence. e could be 1, 2, or 3, which represents
the type of amino acid.

TABLE 1 | Seven types of physicochemical properties and the division of

amino acids.

Seven types of

physicochemical

properties

Division: 1 Division: 2 Division: 3

Secondary structure;

Amino acids

Helix;

M, E, A, K, R,

H, L, Q

Strand;

W, F, T, V, I,

Y, C

Coil;

S, D, G, P, N

Hydrophobicity;

Amino acids

Polar;

N, Q, D, E,

K, R

Neutral;

Y, P, H, S, T,

A, G

Hydrophobicity;

M, F, I, L, C,

W, V

Normalized van der

Waals volume;

Amino acids

0–2.78;

T, S, P, A,

G, D

2.95–94.0;

Q, L, V, N,

E, I

4.03–8.08;

M, H, K, F, R,

Y, W

Solvent accessibility;

Amino acids

Buried;

W, V, I, C, G,

F, A, L

Exposed;

Q, E, D, N,

K, P

Intermediate;

H, Y, M, S, P, T

Polarizability;

Amino acids

0–1.08;

G, A, S, D, T

0.128–

120.186;

G, P, N, V,

E, Q, I, L

0.219–0.409;

K, M, H, F, R, Y,

W

Charge;

Amino acids

Positive;

K, R

Neutral;

Q, G, H, I,

A, N, C, L,

M, FP, S, T,

W, Y, V

Negative;

E, D

Polarity;

Amino acids

4.9–6.2;

L, I, F, W, C,

M, V, Y

8.0–9.2;

P, A, T, G, S

10.4–13.0;

H, Q, R, K, N,

E, D

Assuming two specific amino acids are a and b, transition (T)
means the number of ab and ba divided by the length of the
protein sequence N-1:

Transition(ab+ ba) =
nab + nba

N − 1
(ii)

The distribution is the position of a specific amino acid in the
protein/the total length of the protein sequence, which represents
the chain length at which the first, 25, 50, 100% amino acids of
this particular amino acid are located.

For example, take the following protein sequence:
DEKRADGSTAGPSTDGNPS. According to Table 1, DE
is the amino acid sequence of classification 2 under
Charge, KR is the amino acid sequence of category 3
under Charge, and ADGST is the amino acid sequence of
classification 1 under Polarizability. AGPST is an amino
acid sequence of Polarity 2, and DGNPS is the amino
acid sequence of classification 1 under the Secondary
Structure. Thus, our protein sequence is converted by CTD
to 2233111112222211111. The following shows how the protein
sequence Composition, Transition, Distribution is calculated
(see Figure 1).

Composition of category 2: 7/(7 + 2 + 10 = 19)= 36.8%;
Composition of category 3: 2/19 = 10.5%; Composition of
category 1: 10/19 = 52.6%. Transition (23, 32) = 1/18 = 5.5%;
Transition (12, 21) = 2/18 = 11.1%; Transition (13, 31) = 1/18
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FIGURE 1 | Computational flow of CTD eigenvectors in protein sequences.

= 5.5%. Distribution (1) = 5/19, 6/19, 7/19, 8/19, 15/19, 16/19,
17/19, 18/19, 19/19; Distribution (2) =1/19, 2/19, 10/19, 11/19,
12/19, 13/19, 14/19; Distribution 3 is equal to 3/19, 4/19. The
final CTD results of DEKRADGSTAGPSTDGNPS are as follows:
Composition (2): 36.8%, Composition (3): 10.5%, Composition
(1): 52.6%. T (23, 32): 5.5%, T (12, 21): 11.1%, T (13, 31): 5.5%; D
(1): 26.3, 31.5, 36.8, 42.1, 78.9, 84.2, 89.4, 94.7, 100%; D (2): 5.2,
10.5, 52.6, 57.8, 63.1, 68.4, 73.6%; D (3): 15.7, 21.0%.

Dimensionality Reduction
The MRMD2.0 (Wei et al., 2015; Zou et al., 2016a,b) algorithm
is used to reduce the dimensions of the files after using
CTDC to extract features. The specific process of dimensionality
reduction is:

1. Attribute selection: Using analysis of variance to test the
significance of the difference between the mean values
of two or more samples; maximum correlation and
maximum distance MRMD feature classification and
accuracy and stability of prediction tasks; MIC is based on
a non-parametric information-based maximum parameter
exploration for measuring the linear or non-linear strength
of two variables X and Y; the minimum absolute contraction
and selection operator (LASSO) (Tibshirani, 1996; Guo
et al., 2019) uses an L1 regularized linear regression method;
Minimal Redundancy-Maximum Correlation (mRMR)
method expands the representativeness of a feature set by
requiring features to be maximally different from each other;

chi-square test is a widely used hypothesis test based on
the chi-square distribution for common hypothesis testing;
Recursive Feature Elimination (RFE) classifies data according
to the size of the correlation coefficients or importance
of feature attributes. Through recursive elimination of
functions in each cycle, RFE attempts to eliminate possible
dependencies and collinearity in the model.

2. Function ranking PageRank algorithm: In the attribute
selection method used above, point a to b because feature
b is more important than feature a. Finally, the result of
each function selection method forms a link list. Using the
PageRank algorithm to rank these links, a directed graph is
formed, and each feature receives a score. A ranking is then
obtained according to the level of the feature, a, b, c, d, e ...

3. Finally, choose the best outcome of the sequence. Since the
first feature “a” in the new sequence has the highest score,
random forest (Pang et al., 2006; Ding et al., 2016; Cheng
et al., 2018b; Liu et al., 2019b; Su et al., 2019; Wei et al.,
2019; Xu et al., 2019c; Lv et al., 2020) is used for 5-fold cross-
validation starting from the first feature. The highest standard
score is made by comparing the three sequences: “a,” “a,b;”
“a,b,c,d,e.” Finally, five data indicators were used: f-score,
precision, recall, MCC and AUC (Xu et al., 2018a; Cheng,
2019; Cheng L. et al., 2019; Ding et al., 2019; Zeng et al.,
2019a, 2020; Zhang et al., 2019; Liu and Chen, 2020; Wang
et al., 2020), and the sequence with the highest index and the
highest score for dimension reduction was found. The specific
dimension reduction process is shown in Figure 2.
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FIGURE 2 | The specific dimension reduction process.

Algorithm Steps
GPCR sequence protein features are extracted using specific

protein extraction methods. Any two attributes in the extracted

features are divided into GPCRs and non-GPCRs. Finally,
Matplotlib is used to divide any two attributes in the extracted

features into GPCRs and non-GPCRs (the experimental flow
chart is shown in Figure 3):

(1) Using all the different positive protein samples, extract the

corresponding Pfam protein sequence from the “family and

domain” of the UniProt website and delete the redundant
and identical Pfam number. Then, the unique Pfam number

obtained for the positive data set (Liao et al., 2016).

(2) All the protein sequences are integrated into the Pfam
number file, and the protein sequences with the same Pfam

sequence are then merged into the same file named after the
Pfam number.

(3) Delete the files with a positive Pfam number. In the
remaining Pfam number files, the negative data set (Liao
et al., 2016) is extracted from the longest sequence of
each Pfam.

(4) Use the CTDCmethod command to extract specific features
in fasta files to generate GPCRs and non-GPCRs .csv files;
positive GPCRs sample are marked as 0, negative sample are
marked as−1, and the GPCRs and non-GPCRs .csv files are
combined into one file.

(5) The combined .csv file was reduced by MRMD2.0, and the
reduced CTDC-mRMD2.0.csv file was obtained.

(6) Select any two attributes of the 39 attributes in the CTDC
sequence. GPCRs are purple andmarked 0, and non-GPCRs
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FIGURE 3 | Experimental flow chart for prediction of G protein-coupled receptors.

are green andmarked 1; UsingMatplotlib, plot the picture of
GPCRs and non-GPCRs.

RESULTS

Comparison of Effects of Different
Features
CTDCwas used to extract the characteristics of the GPCR protein
feature sequences sample, including 39 properties. Previous
studies showed that feature extraction is very important for
constructing the computational predictors (Wei et al., 2017a,b;

Xu et al., 2018b; Liang et al., 2019; Liu and Li, 2019; Patil and
Chouhan, 2019; Shen et al., 2019; Zhang and Liu, 2019; Junwei
et al., 2020; Liu et al., 2020; Wen et al., 2020). Any two of
the 39 attributes were selected and plotted using Matplotlab

to obtain the sample differentiation graph of GPCRs and non-
GPCRs, as shown in Figure 4. Among them, the abscissa and

the ordinate in the chart represent two of the 39 attributes.

The x-coordinate of Figure 4 on the left is the first of the 39

properties, “hydrophobicity_PRAM900101,” named “RKEDQN,”
which is hydrophilic. The y-coordinate is the 14th property,

“hydrophobicity_PRAM900101,” named “GASTPHY,” which is
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FIGURE 4 | Comparison of effects of different features.

neutral. In the right diagram of Figure 4, the X coordinate is
the fourth attribute in the CTDC feature extraction method,
normwaalsvolume: NVEQIL. The Y coordinate is the 25th
attribute in CTDC, hydrophobicity_ENGD860101: CVLIMF. As
seen from the chart, GPCRs and non-GRCRs are represented by
blue and green, respectively, in which GPCRs and non-GPCRs
can be clearly distinguished.

Comparison of Different Feature Extraction
Methods
A comparative experiment was conducted, and the GPCR protein
feature sequences are extracted by the 188D feature extraction
method. The experimental effect is shown in Figure 5. In
Figure 5, 120 and 100 dimensions of 188D are used. Non-
GPCRs and GPCRs are marked as −1 and 1, respectively. It
can be seen from the chart that the differentiation effect of
GPCRs and non-GPCRs is very poor, but the differentiation
effect of Figure 4 is very good. Thus, whether GPCRs and non-
GPCRs can be distinguished well is related to the selected feature
extraction method.

Comparison of Results of Different
Dimensionality Reduction Methods
The feature sequences of GPCR protein are extracted by the
mRMR (Ding and Peng, 2005; Peng et al., 2005; Wang et al.,
2018) dimensionality reduction method. 0 represents negative
sample non-GPCRs, and 1 represents positive sample GPCRs.
The experimental results are shown in Figure 6. In comparison
with Figure 4, the two figures adopt the same feature extraction
method of CTDC, the same attribute features and different
dimension reduction methods. As seen from the figure, the
difference between GPCRs and non-GPCRs was also very high
after the dimension reduction method was used, and positive and
negative samples are clearly distinguished.

Comparison With Others
In the study of Prediction of G Protein-Coupled Receptors with
SVM-Prot Features and Random Forest (Liao et al., 2016), the
researchers adopted a method different from the method in this

paper to predict GPCRs and non-GPCRs. The experimental steps
they adopted were as follows: 1. Extract GPCR and non-GPCR
sample characteristics with 188D (Balfanz et al., 2013) 2. The
sample sequences were divided into five parts, four of which were
for the training set and the remaining one for the test set. In
these four parts, positive and negative samples were treated with
a strike balance 3. Random Forest was applied to the training
samples, and the accuracy of the test samples was measured 4.
Finally, Sn, Sp, Acc, MCC, and AUC standards were adopted to
measure the accuracy. The correct classification rate of the five
independent test sets was 90.64, 90.37, 88.04, 93.28, and 95.73,
with an average rate of 91.61± 2.96%.

CONCLUSION

With the feature extraction method of CTDC, GPCRs and non-
GPCRs can be well-distinguished from the two randomly selected
dimensions. The same CTDC feature extraction method was
used, but another dimension reduction method, mRMR, was
selected. Compared with mRMD2.0, the differentiation effect
was similar, and GPCRs and non-GPCRs could be significantly
predicted. Using different feature extraction methods (188D)
and the same dimensionality reduction method (mRMD2.0),
GPCRs and non-GPCRs had no clear dividing line. In conclusion,
different methods of feature extraction and the same method of
dimensionality reduction have different effects on GPCRs and
non-GPCRs. Therefore, the feature extraction method is the
direct factor for distinguishing GPCRs from non-GPCRs.

However, a similar work was done in the Prediction of G
protein-coupled sensor (Nordstrm et al., 2009) study. Compared
with our study, the defects were as follows: 1. The 188D feature
extraction method with more dimensions was adopted, the 188D
feature extraction method had more feature dimensions, and
the feature information of proteins was more complete and
more comprehensive. The dimension information extracted by
the CTDC method in this experiment has only 39 attribute
characteristics, and there are less data. In addition, there is
less redundant information after dimension reduction. 2. Five
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FIGURE 5 | Comparison of different feature extraction methods.

FIGURE 6 | Comparison of results of different dimensionality reduction methods.

independent test sets and training sets were divided in the
Prediction of G protein-coupled sensor study, and the positive
and negative samples in the training set tended to be balanced
by the use of strike. However, defects in the strike method lead
to inaccuracy of the data. In this paper, on the basis of original
data collection, feature extraction and dimensionality reduction
were directly carried out to distinguish GPCRs sample from
non-GPCRs sample to obtain more accurate prediction results.
Compared with this paper, the advantages are as follows: 1.
The accuracy of the Prediction of G Protein by Coupled sensor
study is approximately 90%; while the GPCRs and non-GPCRs
differentiation diagram in this paper is shown by Matplotlab,
and the accuracy was not calculated correctly. 2. The universality
of this experiment is relatively low. The CTDC method and
MRMD2.0 dimension reduction method may only be applicable
to GPCRs protein sequence but not to other protein sequence.
In the study of Prediction of G protein-coupled sensor, cross
validation and Random Forest can be used on other protein
sequences (Lai et al., 2018; Tang et al., 2018), especially the
proposed framework can be applied to protein fold recognition

(Wei et al., 2016; Liu et al., 2017), protein remote homology (Liu
et al., 2020), protein subcellular localization (Lv et al., 2019), etc.

DISCUSSION

Like other macromolecules, proteins are important parts of the
living body, the material basis of life, and they participate in
almost every activity in the cell. Proteins performmany functions
in the body. Through the study of proteins, the mechanism of
diseases can be studied, and the design of new drugs can also
be promoted. With the advent of machine learning, the function
prediction of proteins has also flourished. Obtaining high-
performance classification models, accurately and efficiently
extracting protein sequences, and converting them into equal-
length amino acid sequences have become research directions of
many scientists.

Compared with the traditional experimental method, a set
of experimental schemes in this paper replaces the redundant
experimental steps. Using the CTDCmethod and dimensionality
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reduction in CTD, the redundant attributes in the protein
sequence features are successfully removed, and they are drawn
intuitively using Matplotlib. The division map between GPCRs
and non-GPCRs is then drawn. In the division map, there can
be a clear distinction between GPCRs and non-GPCRs. This
experiment has achieved a certain degree of accuracy.

There are still many aspects that need to be further studied.
The Matplotlib coordinate chart used to classify GPCRs and
non-GPCRs can only distinguish the relatively large positive and
negative samples after being divided by attributes, extracting
several solutions: 1. The use of a single Matplotlib coordinate
diagram is simple to operate and has many limitations;
thus, it cannot reach high accuracy. In the later stage, more
comprehensive computational intelligence method such as
neural networks (Song et al., 2018a; Zhou et al., 2018; Bao et al.,
2019; Hong et al., 2019; Sun et al., 2020), network methods
(Sun et al., 2014; Zhou et al., 2015, 2016; Song et al., 2018b;
Zeng et al., 2018) and evolutionary strategies (Xu et al., 2019a,b;
Zeng et al., 2019b) can be adopted to take the extracted protein
features as input. Thus, the positive and negative samples can
be divided more accurately, and accuracy can be obtained. 2.
In terms of high extraction accuracy, a more comprehensive
protein feature extraction method combined with the dimension

reduction method (Yang et al., 2019; Zhu et al., 2019) for
GPCRs pruning was attempted to screen out features with higher
differentiation between GPCRs and non-GPCRs.
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