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Theoretical analysis of DNA sequencing coverage problem has been investigated
with complex mathematical models such as Lander–Waterman expectation theory
and Stevens’ theorem for randomly covering a domain. In the field of metagenomics
sequencing, several approaches have been developed to estimate the coverage
of whole-genome shotgun sequencing, but surprisingly few studies addressed the
coverage problem for marker-gene amplicon sequencing, for which arguably the biggest
challenge is the complexity or heterogeneity of microbial communities. Overall, much of
the practice still relies variously on speculation, semi-empirical and ad hoc heuristic
models. Conservatively raising coverage may ensure the success of sequencing
project, but often with unduly cost. In this study, we borrow the principles and
approaches of optimum sampling methodology originated in applied entomology,
achieved equal success in plant pathology and parasitology, and plays a critical role
in the decision-making for global crop and forest protection against economic pests
since 1970s when the pesticide crisis and food safety concerns forced the reduction
of pesticide usages, which in turn requires reliable sampling techniques for monitoring
pest populations. We realized that sequencing coverage is essentially an optimum
sampling problem. Perhaps the only essential difference between sampling insects and
sampling microbiome is the “instrument” used. In traditional entomology, it is usually
humans that visually count the numbers of insects, occasionally aided by binocular
microscope. In the metagenomics research, it is the DNA sequencers that count the
number of DNA reads. Furthermore, a key theoretical foundation for sampling insect
pest populations, i.e., Taylor’s power law, which achieved rare status of ecological
law and captures the population aggregation, has been recently extended to the
community level for describing community heterogeneity and stability, namely, Taylor’s
power law extensions (TPLEs). This theoretical advance enabled us to develop a
novel approach to assessing the quality and determining optimum reads (coverage)
of amplicon sequencing operations. Specifically, two applications were developed: one
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is, in hindsight, to assess the quality of amplicon sequencing operation in terms of the
precision and confidence levels. Another is, prior to sequencing operation, to determine
the minimum sequencing efforts for a sequencing project to achieve preset precision
and confidence levels.

Keywords: Taylor’s power law (TPL), Taylor’s power law extension (TPLE), minimum sequencing reads (MSR),
optimum sample size, amplicon sequencing, metagenetic sequencing

INTRODUCTION

Microbiome researchers employ two types of DNA sequencing
technologies. One is the whole-genome shotgun sequencing
(also known as metagenomic sequencing), and another is the
marker gene (e.g., 16S-rRNA for bacteria or 18s-rRNA for
fungi) amplicon sequencing. Existing approaches to studying the
sequencing coverage problem for microbiome research have been
focused on the former type, and surprisingly few studies have
been on the amplicon sequencing.

Rodriguez-R and Konstantinidis (2014) first distinguished
two terms in microbiome research, sequencing coverage (the
fraction of the metagenome represented in the metagenomic
dataset) vs. sequencing depth (repetition of features, which we
are not concerned in this study). The significance of coverage
problem is obvious. In extreme cases, when small datasets from
sequencing with insufficient coverage are utilized to describe
complex communities, statistical inferences become unreliable
and may even generate misleading conclusions (Rodriguez-R and
Konstantinidis, 2014). The coverage-size (data size of sequencing
reads) curve is usually logistic-shaped and approaches saturation
level when the sequencing efforts are sufficiently large. But,
as rightly pointed out by Rodriguez-R and Konstantinidis
(2014), coverage is not simply a function of dataset size.
Instead, the relationship heavily depends on the complexity (i.e.,
heterogeneity) of the microbial communities sampled. Wendl
et al. (2013) characterized current metagenomic project designs
as relying on variously on speculation, semi-empirical and ad hoc
heuristic models such as elementary extensions of single-sample
Lander–Waterman expectation theory.

Existing approaches to investigating the sequencing coverage
problem in metagenome research (some of the approaches
are also applicable to marker gene, e.g., 16s-rRNA amplicon
sequencing) may be categorized as the following five kinds.
One of the most widely used approaches is the rarefaction
curve, which is based on the principle that the curve of
any rarefied counts of a feature should reach plateau when
the sampling efforts are close to saturation (e.g., Chao et al.,
2014). Nonetheless, the effectiveness of rarefaction approach
is strongly contingent on the quality of assembly (clustering
in the case of 16s-rRNA) or references database or both. The
rarefaction approach for 16s-rRNA data can also be problematic
because their high sequence conservation frequently masks
important levels of genetic and ecological differences among
closely related species (Caro-Quintero and Konstantinidis, 2012;
Rodriguez-R and Konstantinidis, 2014). A second approach is
to evaluate the coverage of one or a few target species in the
metagenomic dataset using simple mathematical methods such

as the Lander–Waterman formulae (Lander and Waterman,
1988; Wendl et al., 2013), but ignoring the rest genomes in the
community. A disadvantage of this approach is the requirement
of reliable estimates for genome sizes and the abundance
of the targeted species, which usually poorly represents the
community as a whole. A third approach is to use genome-
wide approaches that capitalize on community modeling and/or
modeling of contig sequencing depth (e.g., Hooper et al., 2010;
Stanhope, 2010). A fourth approach is the redundancy-based
approach, termed Non-pareil and developed by Rodriguez-R
and Konstantinidis (2013, 2014). The approach is independent
of assembly, reference databases or abundance distribution
models, and can be used to compare different datasets. Non-
pareil can project the average coverage at larger sequencing
efforts, and estimate the amount of sequencing efforts needed
to reach any given coverage level. The non-pareil estimates are
made from the organisms recovered in a metagenomic data
set and are abundance-weighted. The estimates preferentially
represent the abundant organisms in a sample. If the goal
is to characterize all members of the community, or rare
members preferentially, the non-pareil estimates may be limited,
and should be complemented with genome- or marker-based
estimations (Rodriguez-R and Konstantinidis, 2014). A fifth
category of approaches is derived from some relatively mature
methods in single-species genomics research (e.g., Hooper et al.,
2010; Wendl et al., 2013).

Sequencing platforms-dependent factors such as non-uniform
coverage associated with prevalent NGS technology (Chouvarine
et al., 2016) and standard of operations (Sinha et al., 2015)
may also influence the sequencing coverage. Remedies include
mock microbial communities (Brooks et al., 2015), GC-
bias adjustment and filtration and normalization techniques
(Chouvarine et al., 2016), and small pilot studies assisted by
rarefaction (Pollock et al., 2018).

One may have noticed that in previous review the definition
for coverage was not strictly distinguished between amplicon
sequencing and whole-genome sequencing. In fact, in much
of the existing literature, it is implicitly assumed that the
concept is applicable to both amplicon and whole-genome
sequencing. However, a careful examination would suggest
that some minor adaptations are needed to properly use the
coverage concept. According to Rodriguez-R and Konstantinidis
(2014), sequencing coverage would be the fraction of the
metagenome represented in the metagenomic dataset. A natural
adaptation of this definition could be the fraction of operational
taxonomic units (OTUs) represented in the amplicon sequencing
reads. Without this adaptation, the coverage concept would
not make full sense, which might explain why few existing
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studies addressed the coverage problem for amplicon sequencing
data. Nevertheless, our adaptation generates two new issues.
One issue is that the OTU (abundance) tables are essentially
the same as the species abundance tables in macro-ecology of
insects, plants or animals, but they are less similar to gene
abundance tables from the whole-genome shotgun sequencing.
This is because, unless genes can be classified into so-termed
MGS (metagenomic species) (actually only limited number of
genes can be classified as MGSs with current bioinformatics
algorithms) (Nielsen et al., 2014), their taxonomic identities
cannot be determined with current sequencing technologies and
bioinformatics analyses. The second issue is that OTU abundance
tables (distribution) are highly heterogeneous and the statistical
distribution follows the highly skewed distribution (particularly
power law distribution), which require statistical estimation and
inference methods different from commonly used Gaussian-
distribution-based methods. The second issue, of course, is
due to the enormous heterogeneities of microbial communities,
which is a well-known fact thanks to the HMP/MetaHIT and
recent studies (Ehrlich and MetaHIT Consortium, 2010; HMP
Consortium, 2012; The Integrative HMP (iHMP) Research
Network Consortium, 2019).

The above two issues have been faced by entomologists,
plant pathologists and parasitologists at least since 1970s when
pesticide crisis and consequent public concerns on food safety
and environmental pollution prompted the search for alternatives
to pesticides such as biological control (which relies on natural
enemies). Strategically, the pesticides crisis, as vividly described
by Carson (1962) in her now classic “Silent Spring,” also forced
the adoption of so-called integrated pest management (IPM),
the first principle of which is to tolerate pest (including insects,
plant pathogens and nematodes) unless the pest population size
crossed the so-termed “economic tolerance threshold.” Both IPM
and biological control obviously require reliable monitoring of
pest population (relative) abundances by sampling techniques
(estimation of total or absolute abundances is neither possible nor
necessary). A theoretical foundation for pest-sampling technique
is Taylor’s power law (TPL), which achieved somewhat rare
status of law in ecology (Taylor, 1961, 1984, 2019; Taylor
and Taylor, 1977; Taylor et al., 1983, 1988). Essentially, TPL
established an extremely robust power relationship between
population abundance (m) and its variance (V), which has been
verified by hundreds (if not thousands) of field observations
in various organisms. In fact, the TPL has been found to
exist in many fields beyond entomology and ecology including
computer science and molecular biology (Ma, 2012, 2015; Li
and Ma, 2019a), which are comprehensively reviewed and
synthesized in a recent monograph by Taylor (2019). This V-
m power law relationship bridges a gap between sampling
biological populations and rigorous optimum sampling theory in
statistics. For the above-described reasons, TPL-based optimum
sampling techniques have become widely adopted in global
crop/forest protection against pests as a key technique of
the IPM (e.g., Ifoulis and Savopoulou-Soultani, 2006; Jovani
and Tella, 2006; Wright and Palukkatu-Thodi, 2016; Shvydka
et al., 2018). It was also applied to fishery and water quality
monitoring where sampling estimations and monitoring of

organisms abundances are necessary. For example, The EU’s
standard “EVS-EN14757L2005” was established for water quality
sampling in fishery management with multi-mesh gillnets
(European Standard, 2005). These experiences in sampling
macrobial organisms (such as insect pests) are valuable for us
to tackle the problem of optimum sequencing reads because the
fundamental mathematical model (i.e., TPL model) and statistical
methods (i.e., for determining the minimum sample sizes or
sampling efforts) can be translated into a solution for sampling
microorganisms, as demonstrated in later sections. In fact, the
same technique has already been applied to microbial sampling
for the damages of parasites and/or plant pathogens as briefly
reviewed previously since 1970s. The only essential difference
between previous sampling experiences and the scenario of this
study is the “instrument” for counting the organisms or their
“proxy.” In previous experiences, visually counting insects by
humans or microscope for counting plant pathogens can be
the means (“instruments”), and in the present article, DNA
sequencers counting the DNA reads are the instruments.

For 16S-rRNA amplicon sequencing, the mission is to obtain
sufficient number of high quality reads that can be mapped to
bacterial species (or OTUs). If the number of 16s-rRNA reads
is not sufficiently large, low abundance species in the microbial
community may not be detected. More seriously, properties
of the sampled community may be wrongly characterized. But
if the number is too large or rare species are not a concern,
obtaining excessively large number of reads can be wasteful
economically. This mission is essentially the same as sampling
sufficient number of sampling units to detect the abundance of
pests (insects, plant pathogens, nematodes, or parasites). This is
why, in this study, we choose to learn from the successes of TPL-
based optimum sampling in applied entomology, plant pathology
and parasitology. As explained previously, we need to make slight
adaptation to the concept of coverage for amplicon sequencing.
In consideration of its conventional usage and compatibility
with the mission of 16S-rRNA sequencing, we use the term
coverage loosely referring to the number of sequencing reads of
16s-rRNA or other marker genes (such as 18s-rRNA) obtained
from amplicon or other metagenetic sequencing operations. We
could have adopted a direct adaptation of Rodriguez-R and
Konstantinidis (2014)—the fraction of OTUs represented in the
amplicon sequencing reads—as explained previously, but the
direct adaptation is not convenient for linking with the TPL-
based optimum sampling approach from economic entomology.
Obviously, sequencing coverage has an implicit and innate aspect
of quality control; we introduce two additional statistics, i.e.,
confidence level (p-value) and precision level to ensure our
loosely defined coverage concept can take advantages of the TPL-
based optimum sampling methodology. In addition, we use the
terms minimum reads and optimum reads interchangeably with
an implicit assumption, i.e., the optimum is the minimum in
consideration of both sequencing quality and cost.

When applying TPL-based optimum sampling technique to
address the coverage problem of amplicon sequencing, a new
(third) issue regarding the sampling entity (target) occurs. The
entity of microbiome sequencing (sampling) is community but
that of insect sampling is population. In a previous study
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(Ma, 2015), we had extended TPL to the community level
and tested it with the HMP datasets, which removed the
last roadblock for introducing the sampling technique from
economic entomology to estimating the optimum coverage and
quality of amplicon sequencing.

In summary, the objective of this study is two-fold,
corresponding to two categories of TPL/TPLE-based applications
we introduce in this article. One is, in hindsight, to assess
the quality of amplicon sequencing operation in terms of
the precision and confidence level (p-value). Another is,
prior to sequencing operation, to determine the minimum
sequencing efforts (optimum sequencing coverage)—the
minimum sequencing reads required to meet certain level of
preset precision and confidence level (p-value) for sequencing
a microbiome sample or for monitoring a specific species in a
community sample (Figure 1).

METHODS

Taylor’s power law was first discovered in ecology by British
ecologist Lionel Roy Taylor (1924–2007) (Taylor, 1961, 1984,
Taylor and Taylor, 1977; Taylor et al., 1983, 1988) and by now
has been validated by tens of hundreds field observations, not

only in ecology, but also in many other fields of natural and
social sciences. In recent years, TPL has again attracted renewed
theoretical interests (e.g., Eisler et al., 2008; Cohen et al., 2012,
2016; Stumpf and Porter, 2012; Cohen and Xu, 2015; Giometto
et al., 2015; Lagrue et al., 2015; Ma, 2015; Xu, 2016; Xu et al., 2016;
Reuman et al., 2017), and a recent monograph (Taylor, 2019)
reviewed and synthesized the field timely and comprehensively.

The TPL It has a mathematical form,

V = amb (1)

where a and b are parameters from fitting the TPL with pairs of
mean (m) and variance (V) obtained from sampling biological
populations through time, space or both. The traditional
biological entities of TPL were limited to the population level
(Taylor, 1961, 1984; Taylor and Taylor, 1977; Taylor et al., 1983,
1988). It was extended to the community level by Ma (2015) with
four extensions (Taylor’s power law extensions or TPLEs), i.e.,
Type-I TPLE for measuring the community spatial heterogeneity,
Type-II TPLE for community temporal stability, Type-III TPLE
for mixed-species spatial heterogeneity (aggregation), and Type-IV
TPLE for mixed-species temporal stability (Ma, 2015).

Both the TPL and TPLEs have the same mathematical form,
i.e., Eq. 1, but the interpretations of variables (m, V) and

FIGURE 1 | A diagram showing the procedures (steps) to implement the proposed TPP/TPLE-based optimum sample size approach for: (i) assessing the quality of
an amplicon-sequencing project in hindsight; (ii) estimating minimum sequencing reads designed for sequencing whole microbiome sample based on the TPLE; or
(iii) estimating minimum sequencing reads designed for monitoring specific species based on the TPL.
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parameters (a and b) are different at population and community
scales. Parameter b is a species-specific (the traditional TPL) or
community-specific (the TPLEs), but parameter a is strongly
influenced by sampling approaches, and is a function of sampling
efficiency (Taylor et al., 1998; Ma, 2015; Taylor, 2018). The mean
(m) in the traditional TPL refers to the mean population size
(abundance) (MPS) per spatial or temporal sampling unit, and V
is the corresponding variance at the population scale. The mean
(m) in the Type-I and Type-II TPLE refers to the mean species
size (abundance) (MSS) per species, and V is the corresponding
variance at the community scale. Both MPS and MSS are relative
abundance (size) since they are measured or estimated per sample
or per species (strictly per sample per species). For example,
assuming three species A, B, and C with per-sample abundance
(size) of 2, 4, and 6 respectively, then the MSS for the three-
species community is equal to 4. Estimating the absolute or total
species (population) abundances is neither feasible nor necessary
in most cases. For the fitting of TPL and TPLEs and their
interpretations, readers are referred to Taylor (1961, 1984) and
Ma (2015), respectively.

TPL and its extensions TPLEs have been found to characterize
the m–V relationship universally well, which leads to the
recognition of TPL as one of few classic laws in theoretical
ecology (Taylor, 2019). In applied ecology, the most important
application of TPL turned out to be in sampling design for
estimating population abundance. This is because, as explained
below, the m–V relationship is necessary for computing
minimum sample size (sequencing reads in our case), also known
as the optimum sample size in consideration of the cost-saving
with minimum sampling efforts.

The analytic approach to determining an optimum sample size
(N) (also known as the optimum number of sampling units),
or the optimum (or minimum) sequencing reads in our case,
for estimating the mean population abundance is based on the
general formula by Karandinos (1976),

Nopt =

(
tα/2

D

)2 (
V
m2

)
, (2)

where tα/2 is Student’s t-distribution value such that P(t > tα) =
α/2. D is actually used to define half-width of the confidence
interval as a fixed proportion of the mean. For a 95% confidence
interval, α = 0.05, tα/2 = 1.96 ≈ 2. In Eq. 2, V and m are the
variance and mean of population abundance, respectively. Eq. 2
is based on general sampling theory in elementary statistics and it
seemed that Karandinos (1976) was the first who introduced the
approach to entomology.

Plug TPL model Eq. 1 into Eq. 2, the optimum sample size can
be estimated with the following formula:

Nopt =

(
tα/2

D

)2
am(b−2) (3)

where a and b are the parameter from TPL or TPLE (the different
implications are explained below), tα/2 is Student’s t-distribution
value and depends on the number of sampling units and
approximates to 2 for more than 10 samples at the 95% level of
confidence (p = 0.05). Several authors independently derived the

above Eq. 3 (e.g., Ma, 1988, 1989, 1990; Duncan et al., 1989), and
the approach is not only widely adopted in entomology and insect
pest management, but also in other fields where estimating and
monitoring the abundance of organisms are necessary, such as
sampling and monitoring nematode, parasites, plant pathogens,
fishery, and water quality monitoring (e.g., European Union’s
standard “EVS-EN14757L2005”; European Standard, 2005; Xu
et al., 2016). For another example, The US Forest Service’s
decision support software for monitoring Gypsy moth also used
TPL-based sampling approach (Taylor et al., 1991; 2018).

In Eqs 2 and 3, D is the error level, and defined as the standard
error of the mean (SE) (i.e., standard error per unit of mean or the
standard error divided by the mean). The SE is equal to standard
deviation (s =

√
V) divided by the square root of sample size

(
√

N), that is,

D = SE/m = (s/
√

N)/m = CV/
√

N (4)

where CV is the coefficient of variation and is equal
to s/m =

√
V/m.

D is also known as allowable error or fixed precision level, with
which the mean (m) is measured. For example, D = 0.30 or 30%
represents that the sample mean may be 30% higher or lower
than the population (sensu statistics or actual) mean in 95% of the
occasions (e.g., sampling is repeated 100 times) (95% confidence
limits). P = 1 - D is often termed as relative precision. For example,
when D = 0.3, P = 1 - 0.3 = 0.70 = 70%, one can say that the relative
precision for this sampling operation is 70% and the precision can
be achieved in 95% of times. In other words, there are 5% of times
when the pre-specified precision level of 70% may not be reached.

As further classified and demonstrated in the next section, we
introduce two major categories of sampling applications. One
category is based on the TPLE at the community level, specifically
Type-I TPLE for community spatial heterogeneity or Type-II
TPLE for community temporal stability. As a side note, Type-
III and Type-IV TPLEs are built for the mixed species and may
not be suitable for sampling design. Another category is based
on the traditional TPL or what we term as single-species power
law, given that the TPL is constructed at the population (sensu
biologically) level.

The second category (TPL-based) of applications is essentially
the same with the applications widely adopted in applied
entomology and IPM decision-making as well as other fields
mentioned previously, and they are designed for monitoring
(by sampling) the abundance of a specific species (or OTU). In
this category, the TPL parameters (a and b) for single-species
population are plugged into Eq. 3 to compute corresponding
optimum sample size (N) under a certain relative precision
(P = 1 − D) and confidence level. In the case of the 16s-
rRNA sequencing coverage problem, the optimum sample
size (N) computed from Eq. 3 corresponds to the minimum
sequencing reads required for estimating the abundance of a
specific species or OTU.

The first category of applications is based on the TPLEs (Ma,
2015). This is a new application of the optimum sample size
formula tailored for community (or microbiota) level. In this
category, the parameters (a and b) from Type-I or Type-II TPLE
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are plugged into Eq. 3 to compute the optimum sample size
under a certain relative precision level and confidence level. In the
case of 16s-rRNA sequencing based coverage problem addressed
in this paper, the optimum sample size (N) corresponds to the
minimal sequencing reads required to estimate mean species size
(abundances) (MSS) per species in a microbiome sample reliably
and confidently (specified by relative precision and confidence
level). The difference between Type-I TPLE and Type-II TPLE
based sampling scheme lies in space vs. time. The spatial version
Type-I TPLE is constructed to measure the spatial heterogeneity
(e.g., inter-individual) based on the cross-sectional data of many
individuals (or habitats in general), and in contrast, the temporal
version Type-II TPLE is constructed based on the longitudinal
data of one individual (or one piece of habitat in general).
Therefore, the optimum sample size based on Type-I TPLE is
suitable for cross-sectional sampling, and that based on Type-II
TPLE suitable for longitudinal sampling.

Regarding the TPLE based optimum sample sizes for
addressing 16s-rRNA sequencing coverage problem, there are
two additional important intricacies, which we briefly described
here, but the detailed discussion is deferred to the next section
with illustrative examples. In general, there are two ways to apply
the optimum sample size formula (Eq. 3) at the community
level. One approach is similar to the application based on
the traditional TPL, i.e., for estimating the MSS (i.e., the total
abundances of all species divided by the total number of species in
the sampled community) under a pre-specified relative precision
and confidence level. An alternative approach is to harness the
power of the formula for “reversely” assessing the quality of a
sequencing project, because if we know the MSS (which is known
after the completion of sequencing), we can compute the relative
precision of the sequencing operation. We will demonstrate both
the applications in the next section. Figure 1 illustrates the steps
(procedures) to implement the proposed method for assessing the
sequencing quality or estimating the optimum sequencing reads
(minimum sequencing efforts) for amplicon sequencing based on
TPL/TPLE model parameters.

DEMONSTRATIONS

The 16S-rRNA Datasets for
Demonstration
We use two datasets to demonstrate the applications of
TPL/TPLE based optimum sample size formula. The first dataset
is from the American Gut Project (AGP)1, part of the Earth
Microbiome Project (EMP), and is co-founded by Dr. Rob
Knight and Dr. Jeff Leach at the University of California, San
Diego. The AGP OTU tables were rarefied to 10,000 sequence
reads per sample and computed from the DNA-sequencing
data of 16s-rRNA (v4 region) marker genes from the gut
microbiome of 6500 volunteer participants (as of October 2015),
and downloaded from the AGP website2. We selected the dataset
of 1473 healthy Caucasian individuals and excluded the samples

1http://americangut.org/
2https://github.com/biocore/American-Gut/tree/master/data/AG

from individuals with IBD, diabetes and any other diseases. The
cross-sectional AGP dataset is utilized to build Type-I TPLE
models for demonstrating the optimum sequencing reads in a
cross-sectional study.

The second dataset we utilized is from a longitudinal
study on the HVM (human vaginal microbiome) by Gajer
et al. (2012) sampled from 32 healthy women at reproductive
age. The dataset is one of the longest and also the most
comprehensive longitudinal study of microbiome dynamics,
conducted with 16s-rRNA amplicon sequencing technology. We
term this dataset 32-cohort HVM (Human Vaginal Microbiome)
dataset hereafter. This dataset is utilized to build Type-II TPLE
models for demonstrating the optimum sequencing reads in a
longitudinal study.

Building Type-I and II TPLE Models
To demonstrate the utilizations of the TPLE-based optimum
sample size, we first need to obtain the parameters (a and b)
of power law extensions (TPLEs) and then plug the acquired
parameters into Eq. 3 for computing the minimum (optimum)
reads. Table 1 below listed the Type-I TPLE model parameter
values fitted to the AGP (American Gut Project). The parameter
b of TPLE should be community (microbiome) specific, and
should be invariant of sampling environment such as sequencing
platform (Ma, 2015). In contrast, the parameter a of TPLE is
not community (microbiome) specific and may vary between
different sequencing platforms. In fact, parameter a may be
strongly influenced by environmental and sampling factors
(Taylor, 1961, 1984, Taylor and Taylor, 1977; Ma, 2015). The
variability of TPLE parameter a also means that estimating the
optimum sample size is influenced by sampling procedure (which
is captured by parameter a) besides the type of microbiome
(which is captured by parameter b), pre-specified precision and
confidence levels (D, tα/2), which is also evident from Eq. 3.
All parameters but the parameter a are controllable in the sense
that only parameter a is specific to a sampling operation or
to a specific sequencing operation in the case of this study.
This is a limitation of any sampling procedure but also a
reality, which remind us that the sequencing coverage problem
is also dependent on sequencing platform. The intricacy that
the parameter (a) of TPLE or TPL can capture the sequencing
platform specificity should actually be an advantage or flexibility
of our proposed approach.

Type-II TPLE for community temporal stability can also
be utilized for constructing the optimum sample size formula
at the community level, but for monitoring the temporal
changes of a community in a longitudinal setting. In this
study, we demonstrate the temporal application with the Type-
II TPLE models previously built for the 32-healthy cohort
originally designed for investigating the temporal dynamics of

TABLE 1 | Type-I TPLE (Taylor’s Power Law Extension) parameters for the AGP
(American Gut Project).

Datasets b ln(a) CACD R p N

AGP 1.831 6.636 0.0003 0.797 0.000 1473
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the human vaginal microbiome (HVM) of 32 healthy women
(Gajer et al., 2012; Ma, 2015). The relevant parameters (a and b)
of Type-II TPLE for the 32-healthy cohort were excerpted from
our previous publication (Ma, 2015) as Supplementary Table S7
in the Online Supplementary Information (OSI), but not listed
in the main text of this article.

Assessing the Quality of Amplicon
Sequencing Operations in Hindsight
Based on Type-I or Type-II TPLE
As stated in previous section, there are two promising
applications with the TPLE-based optimum sample size,
we demonstrate its first application—evaluating the quality
of a finished sequencing operation—here, and its second
application—computing the optimum coverage (minimum
sequencing reads) under pre-specified relative precision and
confidence levels—in the next sub-section.

In this venue, the MSS per species is known after finishing
the sequencing operation and necessary bioinformatics analysis,
which can be directly computed as the total sequencing reads
(abundances) of all species detected divided by the total number
of species detected. The number of total reads from the
sequencing operation is also known. We can easily calculate the
relative precision P = (1 - D) with Eq. 3. Obviously, P can be a
quality measure of the sequencing operation.

The bottom section of Table 2 shows that the actual
relative precision levels (P) computed for the AGP is 66%.
This estimation of precision of the AGP project should be
rather reasonable, and it also demonstrated the feasibility of the
proposed approach. As a side note, the top section of Table 2
listed the table of minimum sequencing reads corresponding to
various levels of relative precision levels, i.e., the demonstration
of another potential application of the optimum sample size
explained in the next sub-section.

Similarly, we can evaluate the sequencing quality of the
32-healthy cohort project in terms of the relative precision in

TABLE 2 | The minimum sequencing reads required to achieve certain precision
(P) levels estimated with Type-I TPLE-based optimum sample size formula for the
AGP, as well as the actual precision level of the AGP (the bottom section)
estimated in hindsight.

D (Error Level) P = (1 − D)
(Precision)

AGP: Mean Species Size
(per Species) = 2.162

Minimum Reads

0.10 0.90 267,566

0.15 0.85 118,918

0.20 0.80 66,891

0.25 0.75 42,811

0.30 0.70 29,730

0.35 0.65 21,842

0.40 0.60 16,723

0.45 0.55 13,213

0.50 0.50 10,703

The Actual Relative Precision of the AGP datasets (MSS = 2.162)

0.34 0.66 23,634

estimating the MSS for each of the 32 subjects in the 32-healthy
cohort. Table 3 below shows the results of the three subjects
(#400, #430, and #439) excerpted from Supplementary Table S1
in the OSI (Online Supplementary Information), where the
complete results for all 32 subjects were exhibited. The relative
precision levels of the 32-helathy cohort ranged from 58–90%
with an average of 76%.

The major difference between Type-I TPLE and Type-II TPLE
based sampling (Table 2 vs. Table 3) is that the former is
applicable to cross-sectional study and the latter is applicable to
longitudinal study of an individual’s microbiome. This is because
Type-I TPLE captures the community spatial heterogeneity
(variability) information, while Type-II TPLE captures the
community temporal stability (variability) information.

Estimating the Minimum Coverage
Required for Amplicon-Sequencing
Microbiome Sample (i.e., at Community
Scale) Based on Type-I or II TPLE
While the previous application is essentially a hindsight
evaluation of a sequencing operation, what we demonstrate below
in Table 4 are foresight estimates of the minimum sequencing
reads (i.e., the sequencing coverage loosely) required to achieve
certain precision levels, under assumed MSS (mean species size,
noted as m) per species. For example, for AGP sampling displayed
in the top section of Table 4, if we assume precision P = 70%
with confidence level of 95% (i.e., α = 0.05, the probability
of committing a type-I error), the column corresponding to
P = 0.70 (error level D = 0.3) listed the minimum sequencing
reads required to meet the relative precision level of 70% under
different MSSs ranging from m = 1 to 1000. We observed the
decreasing number of minimum reads with the increase of the
MSS (m), ranging from 33,868 to 10,539, corresponding to m = 1,
1000 respectively. This is reasonable because with higher m,
less sampling efforts or fewer reads should be needed to reach
a certain precision. Another trend in the top AGP section of
Table 4 is that higher precision levels require more minimum
reads. The trend is better illustrated in Figure 2.

The table of estimated minimum reads from Type-II TPLE for
the 32-healthy HCMC datasets, listed in the bottom section of
Table 4 below, showed a similar pattern as in the case of Type-I
TPLE for AGP datasets in the top section, except that one sub-
table was listed for each individual in the 32-cohort. The bottom
section of Table 4 listed the look-up tables for two subjects (#400,

TABLE 3 | The sequencing precision “reversely” estimated in hindsight with
TPLE-based optimum sample size formula for the 32-cohort HVM (see
Supplementary Table S1 for full results).

Subject ID M Reads D (Error Level) P = (1 – D) (Precision)

#400 43.383 2603 0.255 0.745

#430 49.133 4127 0.104 0.896

#439 55.327 2324 0.181 0.819

. . . . . . . . . . . . . . .

Average 39.613 2710 0.244 0.756
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TABLE 4 | The minimum sequencing reads (MSR) required for characterizing the species composition and abundance of microbiome sample (i.e., at microbiome sample
scale) under certain precision levels with preset confidence level (p = 0.05): the top section demonstrates the Type-I TPLE based optimum sample size formula with AGP
datasets, and the bottom section demonstrate the Type-II TPLE based counterpart with 32-cohort HVM datasets.

M D (Error Level) and P = (1 - D) (Precision Level)

D = 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

P = 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

Minimum sequencing reads table for the AGP based on Type-I TPLE

1 30,481,629 1,219,265 304,816 135,474 76,204 48,771 33,868 24,883 19,051 15,053 12,193

5 23,222,675 928,907 232,227 103,212 58,057 37,156 25,803 18,957 14,514 11,468 9289

10 20,655,617 826,225 206,556 91,803 51,639 33,049 22,951 16,862 12,910 10,200 8262

20 18,372,324 734,893 183,723 81,655 45,931 29,396 20,414 14,998 11,483 9073 7349

30 17,155,551 686,222 171,556 76,247 42,889 27,449 19,062 14,005 10,722 8472 6862

40 16,341,429 653,657 163,414 72,629 40,854 26,146 18,157 13,340 10,213 8070 6537

50 15,736,648 629,466 157,366 69,941 39,342 25,179 17,485 12,846 9835 7771 6295

100 13,997,103 559,884 139,971 62,209 34,993 22,395 15,552 11,426 8748 6912 5599

200 12,449,850 497,994 124,498 55,333 31,125 19,920 13,833 10,163 7781 6148 4980

300 11,625,314 465,013 116,253 51,668 29,063 18,601 12,917 9490 7266 5741 4650

400 11,073,631 442,945 110,736 49,216 27,684 17,718 12,304 9040 6921 5468 4429

500 10,663,806 426,552 106,638 47,395 26,660 17,062 11,849 8705 6665 5266 4266

1000 9,485,018 379,401 94,850 42,156 23,713 15,176 10,539 7743 5928 4684 3794

Minimum sequencing reads table for the 32-cohort HVM based on Type-II TPLE

(Only results for two subjects are displayed and see Supplementary Table S2 for the full results of the whole cohort)

Subject #400

1 91,978 3679 920 409 230 147 102 75 57 45 37

5 319,116 12,765 3191 1418 798 511 355 261 199 158 128

10 545,289 21,812 5453 2424 1363 872 606 445 341 269 218

20 931,764 37,271 9318 4141 2329 1491 1035 761 582 460 373

30 1,274,718 50,989 12,747 5665 3187 2040 1416 1041 797 629 510

40 1,592,152 63,686 15,922 7076 3980 2547 1769 1300 995 786 637

50 1,891,866 75,675 18,919 8408 4730 3027 2102 1544 1182 934 757

60 2,178,176 87,127 21,782 9681 5445 3485 2420 1778 1361 1076 871

70 2,453,799 98,152 24,538 10,906 6134 3926 2726 2003 1534 1212 982

80 2,720,592 108,824 27,206 12,092 6801 4353 3023 2221 1700 1344 1088

90 2,979,898 119,196 29,799 13,244 7450 4768 3311 2433 1862 1472 1192

100 3,232,729 129,309 32,327 14,368 8082 5172 3592 2639 2020 1596 1293

Subject #430

1 622,226 24,889 6222 2765 1556 996 691 508 389 307 249

5 542,889 21,716 5429 2413 1357 869 603 443 339 268 217

10 511,917 20,477 5119 2275 1280 819 569 418 320 253 205

20 482,712 19,308 4827 2145 1207 772 536 394 302 238 193

30 466,406 18,656 4664 2073 1166 746 518 381 292 230 187

40 455,172 18,207 4552 2023 1138 728 506 372 284 225 182

50 446,645 17,866 4466 1985 1117 715 496 365 279 221 179

60 439,797 17,592 4398 1955 1099 704 489 359 275 217 176

70 434,089 17,364 4341 1929 1085 695 482 354 271 214 174

80 429,204 17,168 4292 1908 1073 687 477 350 268 212 172

90 424,941 16,998 4249 1889 1062 680 472 347 266 210 170

100 421,164 16,847 4212 1872 1053 674 468 344 263 208 168

#430) in the 32-healthy HVM cohort and the full results for all
subjects in the cohort were exhibited in Supplementary Table S2
(Supplementary Excel file) of the OSI.

An interesting phenomenon exhibited in Table 4 (the bottom
section) for Type-II TPLE-based optimum sampling formula

happened with subject #400. Specifically, for subject #400,
estimating the higher MSS actually required more sampling
efforts (reads). The underlying mechanism for this phenomenon
is that the b-value of TPLE for subject #400 exceeded 2
(b = 2.773) as exhibited in Supplementary Table S7 or in
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FIGURE 2 | The 3D graph showing the minimum sequencing reads
(coverage) required for achieving various pre-specified precision levels,
computed with Type-I TPLE based optimum sampling formula.

Ma (2015). When b > 2, the heterogeneity (variability) is so
higher that more sampling efforts are actually needed to reliably
estimate the MSS. This example demonstrated the far-reaching
influence of the heterogeneity (variability) on the sequencing
coverage requirements, which is nicely captured by community
specific TPLE parameter (b), an inherent advantage of our
proposed approach.

Estimating the Minimum Coverage
Required for Monitoring Single-Species
Abundance Based on the Classic TPL
While the previous sub-section demonstrated the computation
of optimum sequencing reads at the whole microbiome sample
level, in this sub-section, we demonstrate the estimation of
optimum reads at individual species level. This application is
based on the traditional TPL, and, in principle, has no differences
with its application in applied entomology, plant pathology and
parasitology. To apply the TPL-based sampling formula, we
first need to construct the TPL model for each single species
in the AGP or 32-cohort HMV datasets, respectively. For the
AGP dataset, to build single-species TPL models, we divided
1473 samples into 26 groups (the large sample size statistically,
and this is equivalent to divide each species into 26 population
samples). For each species, we then computed the mean and
variance for each group and obtained a total of 26 pairs of V–
m pairs, fitted to TPL model with the V–m pairs, and obtained
the TPL parameters. The TPL model parameters for all 2838
species were listed in Supplementary Table S3 (Supplementary
Excel file) in the OSI, and the results for 10 selected species were
excerpted from Supplementary Table S3 and listed in the top

TABLE 5 | The minimum sequencing reads table for species L. inners, required to
achieve certain precision levels (P) for estimating the single-species population
abundance (of L. inners) based on the TPL-based optimum sampling formula:
excerpted from Supplementary Table S6 (containing the full results of all species
listed in Supplementary Table S4).

m D (Error level) or P = 1 - D (Precision)

D = 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

P = 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

L. iners

1 410,835 16,433 4108 1826 1027 657 456 335 257 203 164

2 302,585 12,103 3026 1345 756 484 336 247 189 149 121

3 253,019 10,121 2530 1125 633 405 281 207 158 125 101

4 222,858 8914 2229 990 557 357 248 182 139 110 89

5 201,962 8078 2020 898 505 323 224 165 126 100 81

6 186,352 7454 1864 828 466 298 207 152 116 92 75

7 174,099 6964 1741 774 435 279 193 142 109 86 70

8 164,138 6566 1641 730 410 263 182 134 103 81 66

9 155,826 6233 1558 693 390 249 173 127 97 77 62

10 148,748 5950 1487 661 372 238 165 121 93 73 59

20 109,555 4382 1096 487 274 175 122 89 68 54 44

50 73,123 2925 731 325 183 117 81 60 46 36 29

100 53,856 2154 539 239 135 86 60 44 34 27 22

500 26,475 1059 265 118 66 42 29 22 17 13 11

1000 19,499 780 195 87 49 31 22 16 12 10 8

section of Supplementary Table S8. The 10 species were selected
to represent the full spectrum of mean population abundance
(per sample) in the AGP datasets because the optimum sample
size to be estimated is strongly dependent on the population
abundance. We divided the 2838 species into 10 intervals based
on the order of mean population abundance and selected one
species from each interval.

For the 32-cohort HVM datasets, we obtained the TPL
parameters for single-species populations from our previous
study (Ma, 2015) and excerpted them as OSI Supplementary
Table S4. The 10 species in the bottom section of Supplementary
Table S8 were selected from Supplementary Table S4 to
represent the so-called type-indicator species for the HVM
proposed by Ravel et al. (2011) and Gajer et al. (2012).

Supplementary Table S5 exhibits the tables of the minimum
sequencing reads for each of the 10 selected species (top
section of Supplementary Table S8) from the AGP study, under
different pre-defined precision levels. Supplementary Table S6
(Supplementary Excel file) exhibits the tables of the minimum
sequencing reads for each of the species from the HVMC study
(listed in Supplementary Table S4) under different pre-defined
precision levels. Table 5 below is excerpted from Supplementary
Table S6, and it contains the minimum sequencing reads table
for species Lactobacillus inners. Figure 3 is the 3D graph showing
the minimum sequencing reads (coverage) for monitoring the
community state type (CST) indicator species, L. inners, required
for achieving various pre-specified precision levels, computed
with single-species TPL-based optimum sampling formula.

The difference between the TPLE-based (the previous
section) and traditional TPL-based (here) optimum sample
size approaches lies in the scale of sampling operation. The
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FIGURE 3 | The 3D graph showing the minimum sequencing reads
(coverage) for monitoring the community state type (CST) indicator species,
L. inners, required for achieving various pre-specified precision levels,
computed with single-species TPL-based optimum sampling formula.

TPLE-based optimum reads are designed for estimating the
community-scale (microbiota or microbiome scale) MSS (mean
species size: M), and therefore, it should be utilized to assess
the quality of amplicon-sequencing from the perspective of
microbiome sample. For individual species, the TPLE-based
approach may offer little insights on the quality (precision) of
their population abundance estimates. In contrast, the TPL-
based approach is designed for estimating the MPS (mean
population size: m) of single species and should be utilized to
guide the sequencing design for monitoring (estimating) the
abundance of individual species, which can be of particular
biological significance such as community-type indicators (as
defined by Ravel et al., 2011 and Gajer et al., 2012 for
the CST of the human vaginal microbiome or opportunistic
pathogens hidden in human microbiomes. For examples,
in the case of AGP, Supplementary Table S5 (the first
species listed) shows the minimum reads table for the most
abundant OTU (Bacteroidetes_4468234). Figure 3 (also see
Table 5) displayed the minimum sequencing reads (coverage)
for monitoring (estimating) one of the CST indicator species
of the HVM, L. inners, required for achieving various pre-
specified precision levels, computed with single-species TPL-
based optimum sampling formula.

As to the reason why either MSS (community sample scale)
or MPS (single-species scale) is chosen as target of estimation
for evaluating the quality of sequencing operation (the first
application) or for determining the optimum sequencing reads
is due to that only MSS or MPA is part of the variance-mean
power-law model (TPL or TPLE) (Ma, 2015; Li and Ma, 2019a).
We have tried to establish a similar power-law model with

variance-richness or variance-diversity relationship, but failed.
Although diversity-scaling with sampling units or the so-termed
diversity–area relationship (DAR; Ma, 2018; Li and Ma, 2019b)
or classic species–area relationship (SAR; Watson, 1835; Preston,
1960) does follow the power-law model, only power-law model
that involves variance can be utilized to derive optimum sample
size formula, which is obvious from Eq. 2.

Similar to the community-scale minimum reads table,
parameter b of single-species TPL also strongly influences the
change pattern of minimum reads. The change trend of minimum
reads with the change of precision level (P) is independent of
parameter b, but that with the change of MPS (m) is dependent
on whether or not b > 3. If b < 3, the minimum reads
decrease with the increase of m. But if b > 3, the trend is
opposite, that is, an increase in m leads to an increase in the
minimum reads too. In existing literature, b-value is usually in
the range between 1 and 2, rarely exceeding 2, not to mention of
exceeding 3. However, the case of b > 3 does exist in microbiome
studies (Ma, 2015). Our interpretation for this phenomenon is as
follows. The case of b > 3 indicates that the aggregation (single-
species) or heterogeneity (community) is exceptionally high,
which makes it harder to reliably detect those high-abundance
patches and consequently needs to check more reads to achieve
pre-specified precision.

CONCLUSION AND DISCUSSION

Sequencing coverage is essentially a problem of sampling for
quality control, and it is a mixture of science and art, because
sampling is usually conducted with incomplete information.
In other words, sampling or sequencing coverage problem
has to deal with uncertainties. Therefore, coverage estimation
cannot be perfect and there is no such a need either. Sampling
is also inherently constrained by the need of being cost
conscious. Determining the minimum sequencing efforts (i.e.,
optimum sequencing reads) for 16s-rRNA amplicon sequencing
is essentially the same sampling problem that has been largely
worked out in fields such as economic entomology and IPM.
We borrow the TPL/TPLE-based optimum sample size formula
from entomology to develop two categories of applications for
amplicon sequencing. The first category of applications is based
on the TPLE (Type-I or Type-II) (Ma, 2015) and can be utilized
to (i) assess the quality of sequencing operation in hindsight, or
(ii) estimate the minimum (optimum) sequencing reads (coverage)
required to meet certain pre-specified precision and confidence
levels, for planning a sequencing operation. The second category
application is based on single-species TPL (Taylor, 1961, 1984),
which is essentially the same as the traditional TPL-based
approach widely adopted in economic entomology and IPM, and
can be utilized to monitor single species-population abundances,
such as the opportunistic pathogens or the indicator species for
CSTs as defined by Ravel et al. (2011).

A contribution of this study is to identify and quantify the
primary factors that can influence the minimum sequencing
efforts required to satisfy desired relative precision level (P)
and confidence level (the confidence level of 95% or Type-I
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error probability of α = 0.05) simultaneously. Sampling theory
from elementary statistics, as demonstrated by Karandinos (1976)
with Eq. 2, suggests that sampling variation (V) and mean
(m) determines the optimum sample size when the precision
and confidence levels are pre-specified. Taylor’s power law and
its extensions establish the relationships between V and m at
species and community scales, respectively (Eqs 1–3). The V–m
power law not only makes the sampling biological populations
somewhat unique, but also more convenient than sampling
problems in other fields such as quality control of industry
products. The approach has been widely adopted in many fields
of agriculture, forestry, fishery, environmental sciences, and
biomedicine. Some sampling procedures based on TPL have been
established as national or international standards.

The power law based optimum sample size formula (Eq. 3)
specifies a total of 5 parameters for estimating the minimum
sequencing reads (coverage) in our case. Among the five
parameters, error (precision) level (D or P) and confidence
level (tα = 2) parameters set the quality control parameters
for determining minimum sequencing reads, and both of which
should be set by decision-maker based on his or her project-
specific objectives for microbiome sequencing. The values of
TPL (TPLE) a and b are hopefully known for the decision-
maker to determine the minimum sequencing reads based on
the studies of the PL model parameters in existing literature.
It was for this similar reason, in applied entomology, plant
pathology and nematode and other relevant fields, the power
law parameters for many economically important organisms are
already known in existing scientific literature. We hope that
in future, for the sake of evaluating the quality of sequencing
coverage, power law analysis (Ma, 2015) is treated as a routine
procedure in microbiome research. A fifth variable, M (the
mean species size for TPLE, or mean population size for TPL)
appears to be a “circular” parameter since the exact value of m
can only be computed after the completion of the sequencing
operation. However, in practice, a rough estimate of M based
on the expertise of decision-maker can be used, which is also a
standard practice in applied entomology and other relevant fields.
For example, in a sequencing center, a rough estimation of M
based on similar sequencing projects (such as gut microbiome
studies) should be readily available. With the accumulation of
more projects (experiences), a sequencing center may refine their
estimations and establish standard operation procedures for each
category of sequencing studies. Furthermore, the first application
(approach) can be harnessed, in hindsight, to estimate the
precision of completed projects. This feedback process can help
further optimize established operational procedures, especially
for a sequencing center.

The power law parameter b is species-specific (TPL) or
community-specific (TPLE) characteristic. Hence, b-value can
be utilized in cross platform settings. Nevertheless, the power
law parameter a may be influenced by other sampling related
factors such as sequencing platforms, primer used, etc. There may
not be a perfect solution to deal with the uncertainty associated
with the variability of parameter a. Nevertheless, sampling itself
is an approximating or estimating process for the true values.
The TPL (TPLE) based optimum sequencing reads may be a

best educated guess we can achieve in many practical sequencing
operations, which is obviously valuable despite certain level of
controllable uncertainty. It is for this reason that sampling is
considered as a mixture of art, science and drudgery (Wright
and Palukkatu-Thodi, 2016). A promising measure to deal with
this uncertainty associated with TPL (TPLE) parameter a is
most likely still based on the TPL (TPLE). As demonstrated
in sampling insect populations by Taylor (2018), abundance-
dependent sampling efficiency can be estimated with TPL (Taylor,
2018). By establishing a reference sequencing platform such
as we established for AGP and HVM in this study, and by
comparing the relative sampling efficiency with the reference
platform, one should be able to, at least partially, overcome
the previously discussed uncertainties. It should be possible to
borrow the principles and methods from successful solution
demonstrated by Taylor (2018). Besides setting up reference
sequencing platform, future studies designed for validating
the proposed approach in this article should be performed.
For example, comparative investigations with the coverage
optimization approaches in metagenomics sequencing such as
Lander–Waterman expectation theory and Stevens’ theorem
could be invaluable.
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