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Predicting drug–target interactions (DTIs) is crucial in innovative drug discovery, drug
repositioning and other fields. However, there are many shortcomings for predicting
DTIs using traditional biological experimental methods, such as the high-cost, time-
consumption, low efficiency, and so on, which make these methods difficult to widely
apply. As a supplement, the in silico method can provide helpful information for
predictions of DTIs in a timely manner. In this work, a deep walk embedding method
is developed for predicting DTIs from a multi-molecular network. More specifically, a
multi-molecular network, also called molecular associations network, is constructed by
integrating the associations among drug, protein, disease, lncRNA, and miRNA. Then,
each node can be represented as a behavior feature vector by using a deep walk
embedding method. Finally, we compared behavior features with traditional attribute
features on an integrated dataset by using various classifiers. The experimental results
revealed that the behavior feature could be performed better on different classifiers,
especially on the random forest classifier. It is also demonstrated that the use of behavior
information is very helpful for addressing the problem of sequences containing both
self-interacting and non-interacting pairs of proteins. This work is not only extremely
suitable for predicting DTIs, but also provides a new perspective for the prediction of
other biomolecules’ associations.

Keywords: drug–target interactions, molecular association network, attribute feature, behavior feature, random
forest

INTRODUCTION

Prediction of drug–target interactions (DTIs) is one of the most important steps in the genomic
drug discovery pipeline and drug repurposing (Knowles and Gromo, 2003; Yildirim et al., 2007),
the purpose is to discover putative new drugs and new uses of existing drugs. To our knowledge, the
effects of many useful protein targets on drugs are modulated by interacting with ligands, including
enzymes, ion channels, G protein-coupled receptors and nuclear receptors (Yamanishi et al.,
2010). The development of rapid sequencing technology and the implementation of the human
genome project, which has produced massive amounts of biological data, has given birth to a new
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discipline—computational biology. Before this, many traditional
biological experimental methods were used to discover the
relationships between proteins. Such as Co-immunoprecipitation
(CO-IP), Tandam affinity purification (TAP), Glutathione-S-
transferase (GST) pull down, phage display technology, yeast
two-hybrid, and so on. However, due to the limitation of
flux, precision and cost, it is often difficult to realize large-
scale DTIs using traditional biological experimental methods.
Therefore, computer-assisted methods are increasingly used in
DTI predictions, and provide an effective means for the discovery
and screening of lead compounds.

Recently, several computational methods were developed
and considered to discover the DTIs (Chen et al., 2015; Chan
and You, 2016; Luo et al., 2017). Many researchers have
made great efforts to develop useful algorithms to deal with
various DTI-related prediction problems. The most commonly
used algorithms are docking simulations, literature text mining,
machine learning, and network information, among others.
Luo et al. (2017) proposed a network integration method
for DTI detection and computational drug repositioning from
heterogeneous information. Wong et al. (2015) analyzed the
docking modes of 20 drugs and 28 proteins, and determined that
13 drugs could target 11 proteins at the same time, and designed
multi-target drug complexes to destroy the mechanism of action
of various cancers. Heinemann et al. (2016) systematically
analyzed publication patterns appearing along the drug discovery
process of targeted cancer therapies in the literature, and
provided a support tool for novel drug development. Mayr
et al. (2018) obtained different types of molecular descriptors
on a ChEMBL dataset, and made a wide range of comparison
with several machine learning models for detecting DTIs. Lu
et al. (2019), based on the assumption that similar drugs
share similar patterns of relationships with target proteins,
proposed a heterogeneous network embedding model to predict
DTIs by integrating the drug–drug similarity network, target–
target similarity network and known DTIs into a heterogeneous
network, called HNEDTI. Zhang et al. (2019) introduced how to
calculate similarities based on drug–drug similarity and target–
target similarity, and summarized, analyzed, and compared
different machine learning-base prediction models. Based on
these methods, we proposed a multi-molecular network, also
called molecular associations network (MAN; Guo et al., 2019)
to detect the interactions between drug candidates and related
target proteins.

In the MAN, we not only used DTI data, but also added
other biomolecules’ interactions information in the network.
The main idea of this work comes from computational systems
biology (Kitano, 2002; Materi and Wishart, 2007), network
biology (Barabasi and Oltvai, 2004; Emmert-Streib and Glazko,
2011; Cahan et al., 2014), and network representation learning
(Yang et al., 2015; Zhang et al., 2018). Computational systems
biology aims to reveal new biological characteristics from a
systematic perspective and use interdisciplinary tools to integrate
and analyze large amounts of complex heterogeneous data from
various experiments. It plays a key role in many complex
processes occurring in biological systems. Subsequently, as more
and more large and diverse data were collected at multiple levels

of the system biology, Barabasi and Oltvai (2004) proposed
network biology to understand the cell’s functional organization.
Network biology refers to studying the biosystem network using
mathematical methods and graph theory, and the network
topology model. The studies have shown that cellular networks
obey the general rules of network science, and it is helpful
for understanding the interactions between molecules inside
a living cell. Afterward, inspired by deep learning and word
embedding technology in natural language processing (NLP),
vector representation of nodes in automatic learning networks
has become a research hotspot (Goldberg and Levy, 2014;
Pennington et al., 2014; Peters et al., 2018; Devlin et al., 2018;
Yang et al., 2019). This work has been gradually applied to the
field of bioinformatics.

To summarize, Guo et al. (2019) for the first time proposed
a MAN by integrating the associations among miRNA, lncRNA,
protein, drug, and disease, where any kind of potential
associations can be predicted. In this paper, we constructed a
biomolecular relationship network, which contains nine kinds
of associations with five types of molecules. All the molecules
in the MAN were treated as nodes and all the relationships
were regarded as edges. The associations between a node and
other nodes in the complex network were called the behavior
of the node. This work introduced two kinds of important
information: the original attribute information of node itself
(e.g., sequences of proteins, molecular fingerprints of drugs) and
behavior information of the biomolecules. Then, a comparative
experiment was carried out with a random forest (RF) classifier.
The experiment results show that the behavior of the node
contains more useful information than the attribute of the node
in the DTIs prediction, and better results can be obtained.

RESULTS AND DISCUSSION

In order to illustrate that the behavior features of nodes contain
more useful information than the traditional attribute features
of biomolecules, we compared the performances of various well-
known classifiers based on these two different types of features
under five-fold cross-validation in various evaluation criteria.
Cross-validation is mainly used to prevent over-fitting caused
by over-complicated models. It is a statistical method used to
evaluate the generalization ability of training data. For the five-
fold cross-validation, the original data is randomly divided into
five parts, and four parts are selected as the training set each time,
and the remaining one part is used as the test set. The cross-
validation was repeated five times, and the average value for the
accuracy of the five runs was taken as the evaluation index of the
final model. In this work, the number of the five training sets is
17,770, 17,770, 17,770, 17,770, 17,776, respectively; the number
of five test sets is 4444, 4444, 4444, 4444, 4448, respectively.

Performance Evaluation With Support
Vector Machine on Two Different
Features
In the experiment, we employed the state-of-the-art method
Support Vector Machine (SVM) to assess the performance
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TABLE 1 | Performance evaluation with SVM on attribute features.

5-folds Acc (%) TPR (%) TNR (%) PPV (%) MCC (%)

1 66.16 66.79 65.53 65.96 32.32

2 66.22 66.16 66.29 66.25 32.45

3 66.49 67.64 65.35 66.12 33.00

4 67.06 67.69 66.43 66.84 34.12

5 66.74 67.37 66.11 66.53 33.49

Average 66.53 ± 0.37 67.13 ± 0.65 65.94 ± 0.48 66.34 ± 0.35 33.08 ± 0.75

TABLE 2 | Performance evaluation with SVM on behavior features.

5-folds Acc (%) TPR (%) TNR (%) PPV (%) MCC (%)

1 74.71 71.56 77.86 76.37 49.51

2 77.12 72.73 81.50 79.72 54.44

3 75.83 75.07 76.60 76.23 51.67

4 75.99 75.83 76.15 76.07 51.98

5 75.51 73.41 77.60 76.62 51.06

Average 75.83 ± 0.87 73.72 ± 1.73 77.94 ± 2.11 77.00 ± 1.53 51.73 ± 1.79

FIGURE 1 | The ROC curve of SVM on attribute feature.

between the two different features on the integrated dataset. The
two features include attribute features and behavior features.
The attribute features are obtained from the molecular sequence
information. The behavior features are derived from the MAN.
We hypothesized that the MAN may assist in improving
prediction performance. In order to ensure reasonable fairness,
we set the same parameters to compare the performances
of the two different features on the model. The results are
shown in Tables 1, 2.

Meanwhile, receiver operating characteristic (ROC) curves are
widely applied in many fields, such as machine learning, data
mining, and so on. We also used ROC curves to measure the
comprehensive index between the False Positive Rate and the
True Positive Rate continuous variable. The area under curves
(AUC) could be shown as the prediction accuracy of the classifier.
The larger the AUC, the higher the accuracy.

FIGURE 2 | The ROC curve of SVM on behavior feature.

The ROC curve of the SVM classifier based on attribute feature
and behavior feature with 5-fold cross-validation is shown in
Figures 1, 2, respectively. It is clear that the average of AUC
is 0.7028 by using attribute information, the average of AUC is
0.8188 by using behavior information based on MAN network.
Hence, the behavior information of nodes play an important role
in the DTIs predictions.

Performance Evaluation With Random
Forest on Two Different Features
In order to illustrate that the behavior features are indeed better
than the attribute features, either on a single liner classifier or on
an ensemble classifier, we also implemented the RF model on our
experiment. In this experiment, we set the same parameters to
compare the performances of the two different features on the
model, the results are shown in Tables 3, 4.
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TABLE 3 | Performance evaluation with RF on attribute features.

5-folds Acc (%) TPR (%) TNR (%) PPV (%) MCC (%)

1 81.37 77.59 85.15 83.93 62.92

2 81.98 78.62 85.33 84.27 64.10

3 81.80 79.16 84.43 83.56 63.68

4 80.49 76.78 84.20 82.94 61.15

5 80.71 76.30 85.13 83.69 61.67

Average 81.27 ± 0.66 77.69 ± 1.20 84.85 ± 0.50 83.68 ± 0.49 62.70 ± 1.27

TABLE 4 | Performance evaluation with RF on behavior features.

5-folds Acc (%) TPR (%) TNR (%) PPV (%) MCC (%)

1 85.58 79.93 91.22 90.11 71.61

2 86.16 80.38 91.94 90.89 72.81

3 85.76 80.56 90.95 89.9 71.9

4 84.18 77.63 90.73 89.33 68.96

5 85.56 79.86 91.26 90.13 71.58

Average 85.45 ± 0.75 79.67 ± 1.18 91.22 ± 0.46 90.07 ± 0.56 71.37 ± 1.44

FIGURE 3 | The ROC curve of random forest on attribute feature.

The ROC curves of the RF classifier based on attribute feature
and behavior feature with five-fold cross-validation are shown in
Figures 3, 4, respectively. It is obvious that the average of AUC
is 0.8779 by using attribute information, the average of AUC is
0.9206 by using behavior information based on the MAN. So,
the behavior information of nodes play an important role in the
DTI predictions.

As mentioned above, it is apparent that the constructed
MAN network can receive accurate DTI detection because
more behavior information can be obtained from the complex
biomolecular associations network. The presented complex
network has made an indelible contribution to the prediction
of DTIs. The main innovations can be summed up in
the following two aspects: (1) Construction of the MAN
network, which integrates five types of biomolecules and

FIGURE 4 | The ROC curve of random forest on behavior feature.

nine known relationships between them. It can provide a
novel potential helpful tool for predicting new DTIs across
the whole field of bioinformatics; (2) Behavior features were
obtained by deep walk network embedding method, which
can further optimize the performance of classifiers. This
method can achieve more helpful information in the data than
traditional attribute features. In a few words, experimental results
revealed that our presented network is not only extremely
suitable for DTI prediction, but also fit for other biomolecule
associations prediction.

MATERIALS AND METHODS

Datasets Construction
In this article, the heterogeneous data input to the MAN is
collected from nine known relationships: DTIs, drug–disease
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TABLE 5 | Nine known relationships in the molecular associations network.

Relationship Database Number

Drug–target DrugBank (Wishart et al., 2017) 11107

Drug–disease CTD (Davis et al., 2018) 18416

Protein–disease DisGeNET (Piñero et al., 2016) 25087

lncRNA–target LncRNA2Target (Cheng et al., 2018) 690

lncRNA–disease LncRNADisease (Chen et al., 2012) 1264

lncRNASNP2 (Miao et al., 2017)

miRNA–target miRTarBase (Chou et al., 2017) 4944

miRNA–disease HMDD (Huang et al., 2018) 16427

miRNA–lncRNA lncRNASNP2 (Miao et al., 2017) 8374

Protein–protein STRING (Szklarczyk et al., 2016) 19237

Total N/A 105546

TABLE 6 | The number of 5 types of biomolecules from the nine known
relationships.

Biomolecule Number

Drug 1025

Target/Protein 1649

miRNA 1023

lncRNA 769

Disease 2062

Total 6528

associations (DDAs), protein–protein interactions (PPIs),
protein–disease associations (PDAs), lncRNA–target
interactions, protein–miRNA interactions, lncRNA–disease
interactions, lncRNA–miRNA association, miRNA–disease
association; which were shown in Table 5. These known
relationships were also based on five types of biomolecules:
drug, protein, disease, lncRNA, miRNA; which were listed in
Table 6. The MAN contained topological relationships and
distributions among all the molecules in the heterogeneous
network. Considering the local and global connection modes,
this work describes the basic context and intrinsic connection
profiles for the whole nodes. Therefore, the prediction of DTIs
can be determined by the connection relationships of the other
nodes in the network.

Multi-Molecular Network
From the collection of nine known relationships between
five types of biomolecules annotated in many well-known
databases which are mentioned above, we constructed
a multi-molecular network, also called MAN by linking
two arbitrary association nodes. The complex MAN is
shown in Figure 5. Based on the known associations, some
biomolecules are suggested to interact with each other. In
the network graph, the heterogeneous nodes correspond to
five types of biomolecules (drug, protein, disease, miRNA,
and lncRNA), and edges correspond to associations among
them. The construction of the systematic MAN network
provides a new perspective for predicting interactions between
drug and target.

Traditional Attribute Representation
Drug Molecular Fingerprint
The drug molecular data was extracted from DrugBank database.
To further process these data better, we calculated the Morgan
fingerprints of drug molecules with the RDKit (Landrum, 2013)
tool in python. The main idea of the molecular fingerprint
method is that molecular structure is encoded as many
substructure fingerprints in a series of binary bits, and a kernel
is then applied to a molecule to generate a bit vector or count
vector. Substructure pattern matching can be done using query
molecules built from SMARTS which is first determined as a
predefined dictionary (Guba et al., 2015). As we all know, there
is a SMARTS-based implementation of the 166 public MACCS
keys (Cereto-Massagué et al., 2015). As shown in Figure 6, each
fingerprint bit corresponds to a fragment of the molecule, if its
corresponding known fragment appears in the given molecule,
the corresponding bit in the fingerprint is set to 1; otherwise, it
is set to 0. Thus, each molecule can be represented as a Boolean
array. In this method, although the whole molecule was divided
into a great many of fragments, it still retains all the complexity
of drug molecules.

Protein Sequence
The total protein sequence information was collected from the
STRING database. For protein sequences, 20 types of amino
acids were classified into four categories by the polarity of the
side chain information, which contained (Ala, Val, Leu, Ile,
Met, Phe, Trp, Pro), (Gly, Ser, Thr, Cys, Asn, Gln, Tyr), (Arg,
Lys, His), and (Asp, Glu). Similarly, each protein sequence was
transformed into a 64-dimensional (4 × 4 × 4) feature vector
by counting the frequency of every subsequence appearing in
the whole protein sequence, and each dimension of the vector
is the normalized frequency of the corresponding 3-mer in the
sequence (Rizk et al., 2013).

Network Embedding—DeepWalk
In 2014, Perozzi et al. (2014) proposed DeepWalk, which can
learn latent representation of vertices in a network. Analogous
to word2vec, it uses the co-occurrence relationship among the
whole nodes in the graph to learn the vector representation
of nodes. There are two stages in the process of the deepwalk
method: (1) A sequence of nodes is constructed. The locally
associated training data is obtained by applying a random walk
generator for sampling from each node in the homogeneous
network. Then, to obtain a sequence for each node by imitating
the process of text generation; (2) The Skip-Gram is used to
train the sampling data, and the discrete nodes are represented
as vectors in the network, and the Hierarchical Softmax is used to
classify the ultra-large-scale classification.

Generation of Sequence of Nodes
In the MAN, a homogeneous network was constructed by
five research objects (miRNA, lncRNA, drug, protein, and
disease) at the cellular level. On the assumption that there is
a network graph G a random vertex vi is uniformly sampled
as the root of the random walk. Then, a walk samples
uniformly from each vertex to the adjacent nodes until it
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FIGURE 5 | Construction of Multi-molecular Network.

reaches the maximum length. In this way, the process of
text generation is simulated to find sequence information for
each node in the network, e.g., V14->V11->V12->V13, V27-
>V23->V24->V21->V22, V34->V32->V36->V31->V37, and so
on. Random walks on MAN is shown in Figure 7. Afterward,
the sequence of each node will be treated as a sentence in
NLP as input of word2vec, and the vector representation of
nodes is obtained.

Skip-Gram Model
Skip-Gram is one type of the word2vec model, which was
proposed by McCormick (2016). It uses nodes to conjecture
context, and learns vector representation by maximizing the co-
occurrence probability of words within a window, and ignores the
order in which nodes appear in sentences. The representation of
nodes with the same context is similar. The higher the frequency
of two nodes appearing in a sequence at the same time, the
higher the similarity between the two nodes. The co-occurrence
probability can be transformed into the product of conditional
probability according to independence assumption, which can be
summarized as follow:

P
(

vi−c, . . . , vi+c

vi|8(vi)

)
=

i+c∏
k= i−c
k 6= i

P(vk|8(vi)) (1)

FIGURE 6 | Representation of drug molecular fingerprint.

where, vi−c and vi+c are the left and right context of the word vi,
c is the size of the window. In addition, we map each vertex vk to
its current representation vector 8(vk)∈ Rd.

The conditional probability of each vertex in the sequence
is calculated, that is, the log value of the probability of other
nodes in the sequence when the node appears, and the vector
representation of the node is updated with the help of the
stochastic gradient descent algorithm.
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FIGURE 7 | Random Walks on Molecular Associations Network.

J(8) = −logP(uj|8(vk)) (2)

Classification Models
Classification is one of the important tasks in data mining.
The so-called classification is to classify the unknown data into
existing categories according to its characteristics or attributes.
That is to say, using given categories and known training data
to learn classification rules and classifiers, and then predicting
the unknown data.

Support Vector Machines
Support Vector Machine (SVM) is a supervised machine
learning algorithm, which is mainly used for binary classification
problems (Suykens and Vandewalle, 1999). In this algorithm,
each data was considered as one point in n-dimensional space
(n is the number of features), and each eigenvalue is a value
of a specific coordinate. Then, classification is carried out by
finding the hyper-planes that distinguish the two classes. In the
sample space, the partition of hyper-planes can be described by
the following linear equations:

f (x) = wTx+ a = 0 (3)

Assuming that it has completed the separation of samples and
the labels of the two samples are {+1,−1}, for a classifier, f (x) > 0
represents the class that label is +1, otherwise, it is−1. In order to
maximize the distance between the nearest two classes of samples
on both sides of the plane, we need to find two hyper-planes
parallel to and equal to the hyper-plane.

f (x) = wTx+ a = +1 (4)

f (x) = wTx+ a = −1 (5)

Then, to maximize the interval between these two
hyper-planes max(1/||w||). Thus, SVM can provide a good
generalization ability for classification problems.

Random Forest
Random forest is a relatively novel machine learning model.
In the 1980s, Breiman (2017) developed the classification tree,
which achieved classification and regression by repeating binary
data, and the amount of calculation was greatly reduced. In
2001, Breiman combined classification trees into RFs, which
randomized the use of variables (columns) and data (rows) to
generate many classification trees, and then summarized the
results of all the classification trees (Breiman, 2001). Random
forest contains many decision trees in the forest, but there is no
correlation between these trees. When a new sample is input to
the forest, each decision tree will judge which category the sample
should belong to. And then, the sample was predicted to be of the
most selected category.

In the process of feature importance assessment using RF, it
depends on the contribution of each feature to each tree in the
RF. The contribution is usually measured by Gini index or error
rate of out-of-bag (OOB) data. Assuming that there is n features
f1, f2, f3, . . . , fn, the Gini variable importance measures (VIM) of
each feature fi can be described as follows:

Ginin =
|M|∑

m=1

∑
m′ 6=m

pnmpnm′ = 1−
|M|∑

m=1

p2
nm (6)

Where, m represents m classes. pnm is the proportion of class
k in node n.
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Performance Measurement Tools
In our study, in order to size up the effectiveness and steadiness
of our constructed model, we counted the results of five
parameters: Accuracy (Acc), recall (sensitivity, hit rate, or true
positive rate (TPR), specificity (selectivity, or true negative rate
(TNR), precision (positive predictive value (PPV) and Matthews’s
Correlation Coefficient (MCC), respectively. These parameters
can be represented as follows:

Acc =
TP + TN

TP + FP + TN + FN
(7)

TPR =
TP

TP + FN
(8)

TNR =
TN

FP + TN
(9)

PPV =
TP

FP + TP
(10)

MCC =
(TP × TN)− (FP × FN)

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

(11)

where TP is the count of true interacting pairs correctly
predicted, i.e., the number of true positives. FP refers to the
quantity of false positives, which is described as the number
of true non-interacting pairs falsely predicted. TN means the
quantity of true negatives, in other words, it represents the
number of true non-interacting pairs predicted correctly. FN
represents the quantity of false negatives, i.e., the true interacting
pairs falsely predicted to be non-interacting pairs. According
to these parameters, a Receiver Operating Characteristic (ROC)
was plotted to evaluate the performance of the random
projection method. Then we can calculate the AUC to assess the
performance of the model.

CONCLUSION

In this study, we investigated the relationship among drug,
protein, miRNA, lncRNA and disease. Then, we developed a
novel method to discover the potential interaction between drug

and target on a large scale. We constructed a novel scheme based
on the above five molecules and nine relationships arbitrarily
between two molecules, which is called the MAN network.
By focusing on this network, each node can obtain a feature
vector by using node behavior information (the relationship
of each node with others could be described by the deepwalk
network embedding method). To our knowledge, this is the first
report to predict DTIs from a complex heterogeneous network
in an overall view at the cellular level. Experimental results
demonstrated that our model has achieved good prediction
results, which is a new attempt to predict DTIs. This work would
have potential applications for drug discovery and repositioning.
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