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RNA 5-hydroxymethylcytosine (5hmC) modification plays an important role in a
series of biological processes. Characterization of its distributions in transcriptome is
fundamentally important to reveal the biological functions of 5hmC. Sequencing-based
technologies allow the high-throughput identification of 5hmC; however, they are labor-
intensive, time-consuming, as well as expensive. Thus, there is an urgent need to
develop more effective and efficient computational methods, at least complementary
to the high-throughput technologies. In this study, we developed iRNA5hmC, a
computational predictive protocol to identify RNA 5hmC sites using machine learning.
In this predictor, we introduced a sequence-based feature algorithm consisting of
two feature representations, (1) k-mer spectrum and (2) positional nucleotide binary
vector, to capture the sequential characteristics of 5hmC sites. Afterward, we utilized
a two-stage feature space optimization strategy to improve the feature representation
ability, and trained a predictive model using support vector machine (SVM). Our
feature analysis results showed that feature optimization can help to capture the most
discriminative features. As compared to well-known existing feature descriptors, our
proposed representations can more accurately separate true 5hmC from non-5hmC
sites. To the best of our knowledge, iRNA5hmC is the first RNA 5hmC predictor
that enables to make predictions based on RNA primary sequences only, without any
need of prior experimental knowledge. Importantly, we have established an easy-to-use
webserver which is currently available at http://server.malab.cn/iRNA5hmC. We expect
it has potential to be a useful tool for the prediction of 5hmC sites.

Keywords: RNA 5-hydroxymethylcytosine modification, feature representation, machine learning, web server,
sequence analysis
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KEY POINTS

• iRNA5hmC is the first RNA 5-hydroxymethylcytosine site
predictor, which enables to make predictions based on RNA
primary sequences without prior experimental knowledge.
• Benchmarking comparison results show that iRNA5hmC

outperforms other machine learning algorithms trained with
existing sequence-derived feature descriptors.
• Our feature analysis demonstrates that there exists the

compositional and positional specificity between true 5hmC
sites and non-5hmC sites.
• We have established an easy-to-use webserver that implements

the predictor. It is publicly accessible at http://server.malab.cn/
iRNA5hmC.

INTRODUCTION

RNA can be decorated by various chemical modifications
(Boccaletto et al., 2018). Over the past decades, more than
100 kinds of modifications have been identified in mRNA,
tRNA, rRNA, and snRNA, etc. (Shi et al., 2019). These
modifications play important roles in a series of biological
processes (Roundtree et al., 2017), such as RNA splicing,
RNA translation, and RNA decay. In addition, it was also
demonstrated that RNA modifications are associated with human
diseases (Jonkhout et al., 2017), including cancer, cardiovascular
diseases, Bowen–Conradi syndrome, obesity, and diabetes, etc.
Hence, determining their distributions in the transcriptomes is
important for decoding the biological and physiological functions
of RNA modifications.

Thanks to the high-throughput sequencing methods, recent
years have witnessed a burst of researches on N6-methyladenine
(m6A), N1-methyladenine (m1A), N7-methylguanosine (m7G),
and 5-methylcytidine (m5C), etc. (Conde et al., 2015; Chen et al.,
2019; Pian et al., 2019; Yuan et al., 2019). Another kind of RNA
modification, called 5-hydroxymethylcytosine (5hmC) is formed
by TET-mediated oxidation of m5C (Fu et al., 2014). The 5hmC
was originally identified in wheat seedlings (Racz et al., 1978),
and was also detected in various tissues of mouse and human
(Li and Liu, 2011). Later on, Huber et al. (2015) found that
5hmC is pervasive in all three domains of life across a variety of
different species.

Recently, by using the hMeRIP-seq method, Delatte et al.
(2016) revealed a transcriptome wide profile of 5hmC in
Drosophila and found that 5hmC modifications are non-
randomly distributed, with an enrichment in coding regions.
Meanwhile, they also found that 5hmC modifications are
abundant in the Drosophila brain. A similar result was also
observed by Miao et al. (2016); they found a high level of 5hmC
modification enrichment in mouse brain stem, hippocampus,
and cerebellum regions. These results suggest that 5hmC
modification might play an important role in brain tissue.
To further revealing the biological functions of 5hmC, it is
necessary to characterize its distribution in the transcriptome of
multiple spices. Unfortunately, the distribution of 5hmC remains
uncharacterized in most species.

Considering that the high-throughput experimental methods
are expensive and time-consuming, it is necessary to develop
computational methods for the detection of 5hmC modification
sites. Inspired by the successful application of machine learning
methods for identifying RNA modifications, in this study, we
developed iRNA5hmC, a computational predictor to predict
RNA 5hmC sites using machine learning. In this predictor,
we used the k-mer spectrum and positional nucleotide binary
vector to respectively capture the sequence composition and
position-specific characteristics of 5hmC sites, utilized a two-
stage feature selection strategy to optimize the feature space,
and trained the SVM-based predictive model. To the best
of our knowledge, iRNA5hmC is the very first machine
learning predictor that enables researchers to make RNA
5hmC predictions based on RNA primary sequences only,
without any other prior experimental knowledge. Importantly,
we have established an easy-to-use webserver to make the
proposed predictor more impactful. We expect that it has the
potential to be a complementary tool to the high-throughput
sequencing methods.

MATERIALS AND METHODS

Datasets
Here, we constructed the first 5hmC dataset for training the
predictive model. It consists of positive samples and negative
samples. The positive samples were collected based on Delatte
et al.’s (2016) work, which contains 662 5hmC site containing
sequences with the sequence similarity less than 80%. According
to our previous experiences (Chen et al., 2019), the sequences
were given the length of 41 nt (nucleotides) with the 5hmC site
in the center. The negative samples (non-5hmC site containing
sequences) were obtained by choosing 41-nt long sequences
with the intermediate cytosines that are not detected as 5hmC
by the hMeRIP-seq method. Accordingly, a huge number
of negative samples were collected. In order to balance the
number of samples between positive and negative dataset in
model training, we randomly selected out 662 non-5hmC site
containing sequences as the negative samples. The dataset used
to train the proposed model is available at http://server.malab.cn/
iRNA5hmC.

The Proposed Predictive Framework
The predictive procedure can be concluded as two phases:
(1) model training and (2) prediction. In the training phase,
the training samples are encoded and integrated by feature
representation algorithms. Afterward, the features are optimized
to obtain the best feature subset, which are then fed into the SVM
algorithm to train predictive model. In prediction phase, given
the query sequences that are not characterized, we followed the
similar procedure to encode the sequences, and used the trained
model to predict whether or not the query sequences are 5hmC
sequences. The SVM model gives each query sequence a score
to measure how likely it is true 5hmC sequence. If the score
is higher than 0.5, it is considered to be the 5hmC sequence;
otherwise, it is not.
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Feature Representation
In this study, we introduce a feature representation algorithm
containing the following two sequence-based feature descriptors:
(1) k-mer spectrum and (2) nucleotide binary encoding, which
are described as follows.

The first feature descriptor is k-mer spectrum. There are
two reasons for using it. One is that it is a simple and useful
feature algorithm to encode character sequences like RNAs and
DNAs. On the other hand, more importantly, previous study
has demonstrated that DNA 5mC is often found in contexts
of CG, CHG, and CHH (H represents either A, C, or T)
(Kumar et al., 2018). Therefore, there might be similar for RNA
5hmC modification.

For convenience of discussions, a given RNA sequence can be
represented as

S = R1R2 · · ·Ri · · ·RL−1RL (1)

where R1 represents the first nucleotide, R2 represents the second
nucleotide, and so forth. Ri can be any of the four nucleotides
{A, C, U, G}. The k-mer spectrum computes the occurrence
frequencies of all possible sequential patterns with length k.
Therefore, using this descriptor, the given sequence can be
represented as,

Fk-mer
=

[
f k-mer
1 , f k-mer

2 , . . . , f k-mer
i , . . . , f k-mer

4k

]
(2)

where f k-mer
i is the occurrence frequency of the i-th k-mer in S.

Similarly, we used 2-mer and 3-mer spectrum to encode our RNA
sequences. Naturally, S is represented as 2-mer and 3-mer vector,
respectively:

F2−mer
=
[
f (AA) , f (AC) , . . . , f (GG)

]
(3)

F3−mer
=
[
f (AAA) , f (AAC) , . . . , f (GGG)

]
(4)

The second feature descriptor is nucleotide binary encoding, in
which we transform different nucleotides into different numeric
vectors by the following rule: the codes of “A,” “U,” “C,” and “G”
are “0001,” “0010,” “0100,” and “1000,” respectively.

Finally, a given RNA sequence is encoded as a total of 244
features (41× 4+ 42

+ 43
= 244).

Feature Optimization
Feature optimization is a key step to remove the noisy features
and retain the features having the highest degree of separability
between two classes, which has been employed to improve the
predictive performance in several bioinformatics problems. In
this study, we used a two-stage feature selection strategy. In
the first step, we compute the feature importance for the 244
features by analysis of variance (ANOVA) (Chen et al., 2016),
which calculates the separability degree of each feature to obtain
respective F-value and yields a feature ranking list regarding
their classification importance. The feature with a larger F-value

indicates much more importance. The ANOVA F-value of the
θ-th feature definitions is given below:

F − value(θ) =
S2
B(θ)

S2
w(θ)

(5)

where S2
B(θ) and S2

w(θ) are the means square between (MSB) and
means square within (MSW), respectively. They are defined as
follows:

S2
B(θ) =

1
dfB

K∑
i=1

ni

(∑ni
j=1 fij (θ)

ni
−

∑K
i=1
∑ni

j=1 fij (θ)∑K
i=1 ni

)2

(6)

S2
w (θ) =

1
dfw

K∑
i=1

ni∑
j=1

(
fij (θ)−

∑K
i=1
∑ni

j=1 fij (θ)∑K
i=1 ni

)2

(7)

here dfB = K − 1 and dfw = N − K are degrees of freedom for
MSB and MSW, respectively. K and N represent the number of
groups (for the current case K = 2) and total number of samples,
respectively; and ni is the number of sample in the i-th group.
fij(θ) denotes feature value of the θ-th feature of the j-th sample
in the i-th group.

In the second step, we used the sequential forward search
(SFS) strategy to determine the optimal feature representations
(Whitney, 2006). To be specific, features from the ranked feature
list are added ten-by-ten from lower rank (higher index) to
higher rank (lower index) each time, and are used to re-
construct the SVM-based prediction model on the five-fold
cross validation test. Finally, the feature subset with the best
performance (in terms of ACC) is recognized as the optimal
set. The detail of the feature optimization results is discussed in
section “Feature analysis.”

Classification Algorithm
Support vector machine is a powerful machine learning
algorithm for classification, regression as well as other machine
learning tasks. It has been successfully applied to a series of
supervised learning problems in computational biology (Bu
et al., 2018; Zhang et al., 2018; Li and Liu, 2019; Liu and
Li, 2019; Liu et al., 2019). The main principle of SVM is
to transform the input data into high-dimensional feature
space, and then determine the most suitable hyperplane for
separating the samples in one class from another. After that,
the hyperplane can be used to predict the class of unknown
data. In this study, we implemented the SVM algorithm by
using the SVM library in Python (version 2.7.15). We chose
the radial basis function (RBF) as the kernel function, which
can transform the non-linearly separated feature space into
higher-dimensional one that is linearly separable. Moreover,
we optimized the parameters by grid search to determine
the optimal classification hyperplane for SVM algorithm. The
classification algorithm optimization results can be seen in
section “Classifier Optimization.”

Evaluation Metrics and Methods
Four metrics, namely sensitivity (Sn), specificity (Sp), accuracy
(ACC) and Matthew’s correlation coefficient (MCC), were used to
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quantitatively evaluate the performance of the proposed method.
Their definitions are given below:

SN = TP
TP+FN

SP = TN
TN+FP

ACC = TP+TN
TP+TN+FN+FP

MCC =
TP× TN− FP× FN

√
(TP+ FN) (TP+ FP) (TN+ FP) (TN+ FN)

(8)

where TP (true positive) represents the number of correctly
predicted positive samples; TN (true negative) represents the
number of correctly predicted negative samples; FP (false
positive) represents the number of negative samples incorrectly
predicted to positive samples; FN (false negative) represents
the number of positive samples incorrectly predicted to
negative samples.

Moreover, we used the five-fold cross validation method to
measure the predictive performance of the predictor (Liu, 2019).
The procedure of this validation method involves three steps.
Firstly, a dataset is randomly partitioned into five equal-size
subsets. Of the five subsets, four are chosen as the training dataset
for model training, while the remaining one is retained as the
validation data to evaluate the performance of the model. After
that, this process is repeated until each subset is used exactly
once as the validation data. Lastly, the five results are averaged
to obtain a final prediction estimation.

To more intuitively evaluate the predictive performance, we
also used two curves: receiver operating characteristic (ROC)
curve and Precision-Recall (PR) curve. The ROC curve plots
the true positive rate (TPR) against the false positive rate (FPR;
1-specificity) under different classification thresholds; while the
PR curve plots precision (the fraction of TP in all predicted
positives) against recall (sensitivity) at various threshold settings.
The PR curve is more sensitive to false positives than the ROC
curve, especially evaluated on imbalanced dataset. In addition,
the area under the ROC curve (AUC) is utilized to quantitatively
measure the quality of the predictive model. The range of
AUC is 0.5–1. The higher the AUC is, the better the predictor
(Hanley and McNeil, 1982).

RESULTS AND DISCUSSION

Classifier Optimization
To achieve the best performance, we conducted the following
experiments to optimize the SVM classifier.

Firstly, we did the parameter optimization. There are two
parameters in SVM, including the penalty coefficient (denoted as
c) and gamma (denoted as g). We used the grid search strategy to
find the optimal values of log2c and log2g in the range (−2 to 5)
and (−5 to 2), respectively. Figure 1A shows the visualization of
the grid search process in three-dimensional space.

Next, we need to determine which kernel function is most
suitable for our dataset. There are three kernel functions in SVM,
including RBF, Polynomial, and Sigmoid, for handling different
feature space. Therefore, we compared the performance of the
three kernels. We can observe in Figure 1B that the RBF performs

better than the other two kernels, with the highest AUC of 0.70.
Consequently, the SVM with RBF kernel is used to train the
model in our predictor.

Feature Analysis
To in-depth explore the critical information benefiting for the
prediction of 5hmC, we conducted a series of feature analysis
experiments, including feature combination, optimization, and
contribution analysis.

Feature Combination Analysis
In our predictive framework, three feature descriptors, including
2-mer spectrum, 3-mer spectrum, and nucleotide binary features
are concatenated to encode RNA sequences. To evaluate
their contributions for 5hmC prediction, we compared the
performance of different features and that of their combinations.
The results are listed in Table 1. As can be seen, amongst the three
individual feature descriptors, the 3-mer spectrum performs the
best than the other two (2-mer spectrum and binary vector).
This indicates that the sequential patterns are more useful for
5hmC prediction. By combining 2-mer and 3-mer spectrum,
the performance is slightly improved. Particularly, adding binary
vector to the combination of 2-mer and 3-mer spectrum, the
performance decreases dramatically to 56.1% and 0.122 in terms
of ACC and MCC, respectively, which is almost the same with the
performance by using binary vector only. The possible reason is
that integrating different types of feature space results in mutual
information that is not useful for the performance.

Feature Optimization Analysis
To obtain the most discriminative features, we further did the
two-stage feature optimization to the integrated feature space.
The procedure of the optimization strategy can be seen in section
“Methods and Materials.” Figure 2A illustrates the ACC curve
of the predictive model by gradually adding features (from the
feature rank list) under the SFS process. As shown in Figure 2A,
when the feature number reaches to 26, the model achieves the
maximum ACC. After reaching the peak, the performance leads
to a significant drop as adding more features (see Figure 2A).
This suggests most of the low-ranked features (binary vector)
are relatively irrelevant with the high-ranked features, and
even result in a decrease in the performance. The significant
improvement by the optimal features is observed, for which the
overall performances in terms of ACC and MCC were increased
approximately 9.38% and 0.188 after feature optimization. These
results demonstrate that feature optimization can effectively
enhance the feature representation ability, thereby contributing
to the improved performance.

Next, we further compared the spatial distribution of the
original feature space and the optimal feature space. For intuitive
comparison, we used a visualization tool t-SNE (Maaten and
Hinton, 2008) that enable to reduce the feature space to a two-
dimensional space. Figures 2B,C depict the t-SNE visualization
of the original and optimal feature space, respectively. As can be
seen from Figure 2B, the positive (true 5hmC sites) and negative
(non-5hmC sites) samples in the original feature space are mixed
up, indicating that the original feature space cannot separate
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FIGURE 1 | Parameter and kernel optimization of the SVM. (A) Visualization of classifier parameter optimization based on grid search; (B) ROC curves of different
kernels in SVM.

true 5hmC sites from non-5hmC sites well. In contrast, after
feature optimization (see Figure 2C), the positives and negative
samples in feature space are distributed in relatively clear clusters.
This demonstrates that feature optimization is able to remove
some irrelevant features and learn the most representatives of
true 5hmC sites.

Feature Contribution Analysis
To specify which features are important for the prediction of
5hmC, we further analyzed the importance of different features in
our feature set. The details regarding how to calculate the feature
importance can be referred to section “Feature Optimization.”
Figure 2D illustrates the importance scores (F-value) of the
top 20 features, and the detail of all the features can be found
in Supplementary Material. As shown in Figure 2D, amongst
the top 20 features, most of the features are k-mer spectrum
(3-mer and 2-mer) while only 4 of the 20 are binary features,
indicating that there exist significant compositional differences
between the positive and negative samples. In particular, the
sequential patterns “GGG” and “GG” are the most important
features, indicating that the compositions of the guanine (G)
nucleotide are discriminative features for the prediction of 5hmC.

TABLE 1 | Five-fold cross validation results of different features and their
combinations.

Features ACC (%) SN (%) SP (%) MCC

A 62.3 61.8 62.8 0.246

B 64.0 63.4 64.5 0.279

C 53.3 53.5 53.2 0.066

A + B 64.0 62.7 65.3 0.280

A + C 55.4 55.9 54.8 0.107

B + C 55.8 57.1 54.5 0.116

A + B + C 56.1 57.6 54.7 0.122

A, 2-mer spectrum; B, 3-mer spectrum; C, binary vector; +,
operation of combining.

This observation is different from the fact that DNA 5mC is
often found in contexts of CG or C × G (Kumar et al., 2018).
We further used Two Sample Logos (TSL) (Vacic et al., 2006),
a web-based application to calculate and visualize differences
between two sets (the positive and negative) of aligned samples
of nucleotides. Figure 2E depicts the TSL visualization of the
positive and negative samples in our dataset. We observed that
the enrichment of nucleotides is significantly different in specific
positions along the sequences between the positive and negative
samples. For example, the adenine (A) nucleotide is enriched at
38th position in the positive set while not in the negative set.
This demonstrates that the compositional features might have the
positional preference. Therefore, exploring positional features is
probably helpful for the further performance improvement.

Comparison of Our Feature Set With
Existing Feature Algorithms
In this section, we compared the proposed features and four
sequence-based feature descriptors, including PCP (physical–
chemical properties), MMI (multivariate mutual information),
PseDNC (pseudo dinucleotide composition), and PseEIIP
(electron-ion interaction pseudopotentials of trinucleotide). The
compared feature descriptors explore sequential information
from different aspects. For example, PCP uses the physical–
chemical properties of dinucleotides and explores the correlation
between any two nucleotides using auto-covariance and cross
covariance transformations (Liu et al., 2015; Wei et al.,
2019). MMI calculates the multivariate mutual information of
nucleotides (Wei et al., 2019). Pse-DNC can capture the local
and global characteristic patterns by integrating the sequence-
order information with PCP (Chen et al., 2014). More details of
the feature descriptors can be referred to (Wei et al., 2019). We
evaluated all the feature descriptors including our feature set on
the same data set with five-fold cross validation. Since our feature
set is optimized using the feature optimization strategy, for the
purpose of fair comparison, we also used the same strategy to
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FIGURE 2 | Feature analysis results. (A) ACC curve of the feature selection; (B,C) represent the distribution visualization of the samples (positive and negative) in
feature space before and after feature optimization, respectively; (D) F-values of the top 20 most important features. Note that the x-axis represents the specific
features and the y-axis represents the F-value. Note that b92 denotes the 92th feature of the binary vector, b25 denotes the 25th feature, and so forth; (E) TSL (Two
Sample Logos) visualization of the positives and negatives in the dataset used in this study.

optimize the four compared feature descriptors. The obtained
results by using different features were reported in Table 2.

As seen in Table 2, our feature set performs better than
other sequence-based feature descriptors in terms of ACC and

TABLE 2 | Five-fold cross validation results of the proposed feature set with other
sequence-based feature descriptors.

Features ACC (%) SN (%) SP (%) MCC

PCP 63.97 68.73 59.21 0.2807

MMI 61.56 63.14 59.97 0.2312

PseDNC 62.84 61.33 64.35 0.2569

PseEIIP 64.27 69.64 58.91 0.2872

Our feature set 65.48 67.67 63.29 0.3100

The bold value indicates the highest value of this column.

MCC, with exceptions of SN and SP. The ACC and MCC of
our feature set is 65.48% and 0.31, respectively, which are 1.2%
and 0.023 higher than that of the runner-up feature descriptor –
PseEIIP, with the ACC of 64.27% and MCC of 0.2872. It is worth

TABLE 3 | Comparative results of SVM and four well-known classifiers on the
dataset used in this study.

Classifiers ACC (%) SN (%) SP (%) MCC

GBDT 63.60 63.90 63.29 0.2719

KNN 58.46 56.95 59.97 0.1693

NB 63.37 63.00 63.75 0.2674

RF 60.27 62.08 58.46 0.2056

SVM (this study) 65.48 67.67 63.29 0.3100

The bold value indicates the highest value of this column.
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FIGURE 3 | Performance of different classifiers evaluated with five-fold cross validation. (A) ROC curves of different classifiers. (B) PR curves of different classifiers.

noting that our SN and SP are 67.67% and 63.29%, slightly worse
than the best descriptor – PseEIIP in SN and PseDNC in SP,
respectively. Although our SN and SP are not the best, they
are more balanced as compared to PseEIIP and PseDNC, thus
contributing to the highest overall performance. This indicates
that our feature set is more effective to distinguish true 5hmC
sites from non-5hmC sites. In addition, since the majority of
our feature set is k-mer spectrum features, this also demonstrates
that the sequential patterns is capable of better capturing the
characteristics of 5hmC sites as compared to other information
like PCP and nucleotide mutual information, and so on.

Comparison With Different Classification
Algorithms
To measure the effectiveness of SVM, we compared its
performance with multiple well-known classifiers, like gradient
boosting decision tree (GBDT) (Liao et al., 2018), k-nearest
neighbor (KNN), logistic regression (LR), naive Bayes (NB)
(Feng et al., 2013), and random forest (RF) (Lv et al., 2019;
Ru et al., 2019; Wei et al., 2017). For fair comparison, we
trained the classifiers on the same dataset with our feature set,
and then fine-tuned the classifiers one by one to achieve the
optimal performance. The models are also evaluated by five-
fold cross validation, and the evaluation results are presented
in Table 3. We can see that the SVM achieves ACC of 65.48%,
SN of 67.67%, SP of 63.29%, and MCC of 0.31, respectively,
outperforming the other four classifiers in two out of the four
metrics: MCC and ACC. To be specific, our ACC and MCC are
higher than that of the runner-up GBDT by 1.88% and 0.0381,
respectively. Additionally, we further intuitively compared the
performance of different classifiers using ROC and PR curves
as shown in Figures 3A,B, respectively. The results demonstrate
that the SVM classifier has the better discriminative power to
distinguish the 5hmC sites from non-5hmC sites than the other
four classifiers in this study.

Webserver Implementation
For the convenience of researchers, we established an easy-to-
use webserver that implements our predictor, which is freely

available at http://server.malab.cn/iRNA5hmC. Below, we give
researchers a step-by-step guideline on how to use the webserver
to get the desired prediction results. Firstly, users need to submit
their query RNA sequences into the input box. Note that the
input sequences should be in FASTA format. After that, users can
specify the prediction confidence from 0 to 1. Otherwise, under
default setting, the query sequence is predicted as true 5hmC
sequence if the prediction confidence is >0.5. Afterward, clicking
on the “Submit” button, users can obtain the desired results on
the screen of the computer.

CONCLUSION

In this study, we have proposed a computational predictor
namely iRNA5hmC to predict RNA 5hmC sites using machine
learning. To the best of our knowledge, this is the first RNA
5hmC predictor that enables to make predictions based on RNA
primary sequences only, without any other prior experimental
knowledge. In particular, we have established an easy-to-use
webserver for researchers to make the proposed predictor more
impactful and have the potential to be complementary tool to the
high-throughput sequencing methods. However, we have to see
there still has some aspects, such as the relatively low predictive
performance, and small-size dataset, which need to be improved
in our future work.
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