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Antimicrobial resistance (AMR) is widely acknowledged as a global health problem,
yet the available solutions to this problem are limited. Nanomaterials can be used
as potential nanoweapons to fight against this problem. In this study, we report an
easy one-pot low-temperature synthesis of Ag-ZnO nanoparticles (AZO NPs) and
their targeted antibacterial activity against methicillin-resistant Staphylococcus aureus
(MRSA) strains. The physical properties of the samples were characterized by X-ray
diffractometry (XRD), transmission electron microscopy (TEM), and X-ray photoelectron
spectroscopy (XPS). Furthermore, minimum inhibitory concentration (MIC), zone of
inhibition (ZOI), and scanning electron microscopy (SEM) images for morphological
characterization of bacteria were assessed to evaluate the antibacterial activity of AZO
NPs against both Gram-negative [Escherichia coli (E. coli) and Acinetobacter baumannii
(A. baumannii) standard and AMR strains] and Gram-positive (S. aureus, MRSA3, and
MRSA6) bacteria. The AZO NPs showed comparatively better antibacterial activity
against S. aureus and MRSA strains than Gram-negative bacterial strains. This cost-
effective and simple synthesis strategy can be used for the development of other metal
oxide nanoparticles, and the synthesized nanomaterials can be potentially used to fight
against MRSA.

Keywords: low-temperature solution synthesis, Ag-ZnO nanoparticles, antibacterial activity, Gram-positive
bacteria, MRSA

INTRODUCTION

Antimicrobial resistance (AMR) is the ability of a given microbe to resist the effects of multiple
antibiotics (Huijbers et al., 2015; Prestinaci et al., 2015). AMR is easily recognized in hard-to-treat
pathogens and has become an alarming issue complicating health care and many other sectors
(Eliopoulos et al., 2003; Jasovsky et al., 2016). For instance, methicillin-resistant Staphylococcus
aureus (MRSA) is one of the most well-known AMR bacterial species for which immediate
intervention is necessary, but even the long considered last-resort antibiotic vancomycin cannot
be used in the treatment of MRSA infections since vancomycin-resistant S. aureus (VRSA) strains
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have emerged (Naskar and Kim, 2019; Naskar et al., 2020). In
addition, AMR S. aureus species are one of 12 families of priority
pathogenic bacteria listed by the World Health Organization
(WHO) for which antibiotics are urgently needed (World Health
Organization [WHO], 2017). Several new currently approved
oxazolidinone class antibiotics, including Sivextro (Hall et al.,
2018), tigecycline (Hall et al., 2018), and LCB01-0371 (Jeong
et al., 2010) to eradicate S. aureus species resistant to last-resort
antibiotics have been developed. However, it is possible that
bacteria might continue to evolve to evade this new class of last-
resort antibiotics, and it takes much time to find other alternatives
and their mechanism of action in response to a newly generated
resistant strain. Therefore, new alternatives to antibiotics are
desperately needed for the fight against AMR pathogens.

In this present scenario, nanomaterials have emerged as
both viable and versatile alternatives to current antibiotics
to fight against AMR bacteria as it showed effectiveness in
low dosages also where chances of bacteria getting resistance
is also less (Regí et al., 2019). The main advantage of
nanoparticles as antibacterial agents (i.e., nanoweapons) is
that they function via a multiple target approach compared
to the single target approach of antibiotics to inhibit the
growth of bacteria (Naskar et al., 2016; Baptista et al., 2018).
Therefore, it is harder for bacteria to attain resistance toward
nanoparticles. A large surface area to volume ratio is also
one of the major advantages of nanoparticles for their use in
various biomedical applications including antibacterial activity
(Navya and Daima, 2016; Naskar et al., 2018). Among such
nanomaterials, metal- and metal oxide-based nanoparticles
have been preferred by researchers to combat AMR bacterial
cells (Wang et al., 2017). However, silver (Ag) nanoparticles
(NPs) have been the most effective and promising antibacterial
candidates since ancient times due to their inhibitory and
antibacterial properties against microorganisms, including 16
major species of bacteria (Lee and Jun, 2019). Moreover,
zinc oxide (ZnO) NPs are another well-known antibacterial
nanomaterial (Sirelkhatim et al., 2015; Hassan et al., 2017;
Kumar et al., 2017; Naskar et al., 2017). ZnO nanoparticles
have been recognized as a safe material by the US Food
and Drug Administration [(21CFR182.8991) (Food and Drug
Administration (FDA), 2015)]. Therefore, Ag-ZnO (AZO) NPs
can be a potential alternative to conventional antibiotics in the
fight against AMR bacteria.

Several methods like sol–gel (Lu et al., 2011) hydrothermal
(Zhang and Mu, 2007) co-precipitation (Md Subhan et al., 2014),
and plasma-assisted chemical vapor deposition (Simon et al.,
2011) have been successfully reported for the synthesis of AZO
NPs. However, all of these processes use high temperature and
high pressure with long reaction times and multiple steps, which
limit the use of AZO NPs in various applications (Matai et al.,
2014). Very few reports, in fact, are available regarding the single
step and low temperature synthesis of AZO NPs for the killing
of AMR pathogens (especially MRSA pathogens) despite the
immense potential for AZO NPs as antibacterial agents.

In the present work, a simple one-pot low-temperature
synthesis method was developed to successfully synthesize AZO
NPs from simple metal precursors and hydrazine hydrate.

The antibacterial activity of the synthesized nanoparticles was
evaluated for AMR strains of Gram-positive bacteria, including
MRSA strains, and Gram-negative bacteria.

MATERIALS AND METHODS

Synthesis of ZnO (ZO) and Ag-ZnO (AZO)
NPs
Initially, a fixed quantity (1 g) of zinc nitrate hexahydrate
(Zn[NO3]2·6H2O, Merck) and requisite amount of silver nitrate
(AgNO3, ACS, ≥99.9%) [0 and 5 atomic percent (at%) with
respect to Zn] was uniformly dispersed in 50 mL of deionized
water (DW) with continuous stirring for 60 min at room
temperature. In the next step, 1 mL of hydrazine hydrate
(N2H4·H2O, Merck, 99–100%) was added dropwise to the
reaction mixture with continuous stirring. Subsequently, the
mixture was ultrasonicated for 10 min in a water bath
ultrasonicator. Now, gray colored precipitation was clearly visible
in the reaction beaker. The same steps, i.e., dropwise addition
of hydrazine hydrate and ultrasonication, were repeated until
the pH of the medium reached eight. Afterward, the precipitate
of solid materials was separated by centrifugation and DW and
ethanol were used for washing. Finally, the samples were dried
in an oven at ∼60◦C for 24 h. The products were designated as
ZO and AZO where the at% used in the precursors was 0 and
5, respectively.

Characterization
Material Properties
X-ray diffraction (XRD) using an X-ray diffractometer (D8
Advance with DAVINCI design XRD unit, Bruker) with nickel
filtered Cu Kα radiation source (λ = 1.5406 Å) was used
to evaluate the structures of ZO and AZO. The diffraction
patterns were collected in the 2θ range of 20–80◦. Moreover, the
microstructure of the representative sample of AZO was assessed
by transmission electron microscopy (TEM; Bruker Nano
GmbH). Carbon coated 300 mesh Cu grids were used for placing
the samples. An Axis Supra Scanning X-ray photoelectron
spectroscopy (XPS) microprobe surface analysis system was used
to assess a representative sample of AZO by scanning the binding
energy ranging from 200 to 1,200 eV to determine the chemical
state of elements. The C 1s peak position at 284.5 eV was used as
the binding energy reference.

Growth of Bacteria for Evaluation of the Antibacterial
Activity
Generally, antibacterial activity was evaluated according to a
previous report (Naskar et al., 2020) using BBLTM Mueller-
Hinton Broth (MHB, Becton Dickinson) grown bacterial strains
including E. coli (ATCC 25922), A. baumannii (ATCC 19606),
S. aureus (ATCC 25923); AMR strains of E. coli (1368),
A. baumannii (12001); and different MRSA clinical isolates
(Shin et al., 2019). Briefly, the MHB medium was used for
the inoculation of single colonies of bacteria, which were
incubated at 37◦C overnight, followed by dilution of the cells
to an optical density of 0.5 McFarland turbidity standard
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using SensititreTM Nephelometer (Thermo Scientific). The cell
cultures were used within 30 min after dilution to prepare
samples for minimum inhibitory concentration (MIC) assay
(section “MIC for Evaluation of the Antibacterial Activity”)
or scanning electron microscopy (SEM) analysis (section
“Morphological Characterization of Bacteria”) to assess the
antibacterial activity of NPs (ZO and AZO) and characterize cell
morphology, respectively.

MIC for Evaluation of the Antibacterial Activity
All bacteria were incubated overnight in the MHB medium.
The number of cells was determined with a SensititreTM

Nephelometer to a 0.5 McFarland standard and diluted at a
ratio of 1/1,000 in MHB. The ZO and AZO samples (5 mg/mL
each) were prepared by serial dilution with DW to obtain
concentrations from 250 to 10 µg/mL. Then, 90 µL of the
targeted bacterial medium was inoculated with 10 µL of
each diluted sample. The bacterial cells were incubated by
shaking at 500 rpm for 16 h at 37◦C. The MIC was evaluated
after this process.

Agar Well Diffusion Method for Evaluation of the
Antibacterial Activity
The antibacterial activity of ZO and AZO against the bacterial
strains of E. coli, A. baumannii, S. aureus, MRSA3, and MRSA6
was further evaluated with the agar well diffusion method. First,
500 µL of cultured bacterial cells were mixed with 25 mL
of MHB-agar, poured into sterile petri dishes (φ = 90 mm),
and solidified. Then, five holes, 6 mm in diameter each, were
aseptically punched through the surface with a sterile plastic rod.
Afterward, 20 µL of ZO or AZO (5 mg/mL), polymyxin B or
kanamycin (5 mg/mL, Sigma-Aldrich), or DW was added for
the experimental group, the positive control for Gram-negative
or -positive strains, and the negative control group respectively.
The plates were then incubated for 24 h at 37◦C. Finally, the
antibacterial activities were evaluated by measuring the diameter
of the zone of inhibition (ZOI) around the wells using a ruler.

Morphological Characterization of Bacteria
At first, prepared bacterial cells through the same process as
described in section “Growth of Bacteria for Evaluation of the
Antibacterial Activity” were diluted at a ratio of 1/1,000 in the
MHB medium according to MIC assay. 900 µL of prepared cells
were incubated with 100 µL of the three final concentration 0, 10,
and 20 µg/mL of AZO for 16 h at 37◦C with vigorous shaking.
After that, the incubated cells were harvested by centrifugation
at 12,000 rpm for 1 min to get a pellet. Then this pellet was
resuspended in 500 µL of phosphate buffered solution (pH
7) containing 2% formaldehyde and 1% glutaraldehyde, and
centrifuged again. Subsequently, the obtained cell pellet was
washed twice with DW and resuspended in 1 mL of DW for
further experimentation. A 5 µL aliquot was taken from the
suspension and deposited on a silicon wafer (5 mm × 5 mm in
size, Namkang Hi-Tech Co., Ltd.) to dry at room temperature.
Finally, the air-dried wafer was subjected to SEM analysis using
VEGA3 (TESCAN), a versatile tungsten thermionic emission
SEM system, according to the manufacturer’s protocol.

RESULTS AND DISCUSSION

Material Properties
Phase Structure
XRD was used to analyze the crystalline phase of samples.
Figure 1 shows the XRD patterns of as-synthesized ZO and
AZO samples. The obtained XRD patterns of the samples
were consistent with hexagonal ZnO (h-ZnO) (JCPDS 36-1451)
(Saloga and Thünemann, 2019). Moreover, some additional
peaks can be seen at ∼38.1◦, ∼44.3◦, ∼64.5◦, and ∼77.4◦ for
AZO samples, which corresponded to the crystal planes of
cubic Ag (JCPDS 04–0783) along (111), (200), (220), and (311),
respectively (Nogueira et al., 2014). Therefore, the formation of
AZO NPs was successfully confirmed.

Morphology and Microstructure
Transmission electron microscopy (TEM) was conducted
systematically to further investigate the formation of ZO/AZO
nanoparticles. The TEM image of the AZO sample and the
corresponding HRTEM and HAADF images are shown in
Figures 2a–d, respectively. The HRTEM image (Figure 2c) of
the AZO sample shows distinct lattice fringes with an interplanar
distance of 0.28 nm, corresponding to the (100) plane of
hexagonal ZnO (Ren et al., 2016). This observation confirmed
the presence of hexagonal ZnO in the AZO sample. Moreover,
HRTEM showed lattice fringes having an interplanar distance of
0.23 nm (Figure 2c), which can be matched with (111) of Ag
NP (Sareen et al., 2015). Therefore, the TEM characterization of
the microstructure of the AZO sample confirmed the presence
of both nanoparticles of ZnO and Ag, which corroborated with
the XRD result (Figure 1). Additionally, the TEM with energy-
dispersive X-ray (TEM-EDX) spectral analysis of the AZO sample
confirms the presence of Zn and O and corroborates that ZnO
NPs were formed (Figure 2b). The presence of Ag suggests the

FIGURE 1 | XRD patterns of ZO and AZO samples.
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FIGURE 2 | TEM image (a,b) and HRTEM image (c) of AZO sample where (c1) and (c2) show the HRTEM images of the particles of Ag and ZnO, respectively with
(b inset) TEM-EDS spectrum, (d) HAADF image, and elemental mappings of (e) Ag, (f) Zn, and (g) O.

FIGURE 3 | XPS binding energy spectra of AZO (A) Zn 2p and (B) Ag 3d core levels.

formation of Ag NP in the Azo sample. The presence of C and Cu
in the TEM-EDX spectrum can be attributed to the carbon coated
Cu grid used for the TEM measurements. The elemental mapping
result of Ag (Figure 2e), Zn (Figure 2f) and O (Figure 2g) for the
representative AZO sample reveals the distribution Ag, Zn, and
Au elements in the sample.

XPS Spectra
The oxidation state of the chemical elements present in the
AZO sample was evaluated by XPS analysis, and the binding

energy signals of the Zn 2p and Ag 3d core levels are shown
in Figure 3. Two strong signals were observed in the binding
energy signals of Zn 2p at 1021.4 and 1044.4 eV (Figure 3A),
which can be assigned to the binding energies of Zn 2p3/2
and Zn 2p1/2, respectively (Jiamprasertboon et al., 2019).
The presence of zinc as Zn2+ in the nanomaterial was also
confirmed by the energy difference calculated between Zn 2p3/2
and Zn 2p1/2 binding energy levels, which was ∼23.0 eV
(Jiamprasertboon et al., 2019). Furthermore, the formation of Ag
nanoparticles was also evaluated by the binding energy signals
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TABLE 1 | Antibacterial activity of ZnO samples.

Bacteria cells Minimum inhibitory
concentration (µg/mL)

(i) ZO (ii) AZO

Standard strains

(a) E. coli ATCC 25922 250 100

(b) A. baumannii ATCC 19606 >250 250

(c) S. aureus ATCC 25923 50 25

AMR strains

(d) E. coli 1368 >250 250

(e) A. baumannii 12001 >250 250

(f) MRSA3 100 50

(g) MRSA6 100 50

Minimum inhibitory concentration (MIC) of ZO and AZO samples against both
Gram-negative and -positive bacteria cells including their AMR strains. Data shown
here is one of the representative from n = 3.

of Ag 3d (Figure 3B). The binding energy signals (Figure 3B)
appearing at 367.6 and 373.8 eV in the XPS curve of the
AZO sample can be assigned to Ag 3d5/2 and Ag 3d3/2,
respectively (Nguyen et al., 2018). This observation confirmed
the formation of Ag NPs in the AZO sample. Moreover, two
low intensity signals can also be seen at ∼371 and ∼378 eV.
These low intensity peaks can be attributed to a trace amount
of Ag+ ions present in the sample (Naskar et al., 2016).
Therefore, the presence of metallic silver and vey less Ag+

could be effectively used against bacterial cells for antibacterial
activity. This material property is successfully correlated with
the antibacterial activity of this sample in later section of
antibacterial activity.

Antibacterial Activity
MIC and ZOI
The MIC values (Table 1) of the ZO and AZO samples
were measured to evaluate the antibacterial effectiveness of
the samples against standard strains of bacteria (E. coli
[ATCC25922], A. baumannii [ATCC19606], and S. aureus
[ATCC25923]) and AMR strains (E. coli 1368, A. baumannii
12001, MRSA3, and MRSA6). MIC determination clearly
showed that the AZO sample was comparatively more effective
against Gram-positive bacteria than Gram-negative bacteria.
Although the AZO sample was effective against Gram-
negative bacteria, its MIC was considerably very high against
generic and AMR strains (100–250 µg/mL). However, the
AZO sample was much more effective against Gram-positive
bacterial cells; the MIC value for S. aureus and its AMR
strains MRSA3 and MRSA6 were in the range of 25–
50 µg/mL.

In additional to the MIC determination, the agar well diffusion
method was also used to further evaluate the antibacterial activity
of AZO NPs. Initially, agar plates with bacterial cells were loaded
with the synthesized NPs (20 µL at 5 mg/mL) and incubated
for 24 h at 37◦C. After that, the ZOI was measured. The
bacterial growth inhibition capacity of the ZO and AZO samples

FIGURE 4 | Zone of inhibition (ZOI) of ZnO samples against (a) E. coli, (b) A. baumannii, (c) S. aureus, (d) MRSA3, and (e) MRSA6. (i), (ii), (iii), and (iv) represents
ZO, AZO, Antibiotics, and deionized water, respectively in all the figures. Diameter of ZOI is also displayed in the Table 2 (average from n = 3).
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TABLE 2 | Zone of inhibition (ZOI) diameter of ZnO samples against (a) E. coli, (b)
A. baumannii, (c) S. aureus, (d) MRSA3, and (e) MRSA6 was measured from n = 3
and one of the representative data was shown.

Bacteria cells Zone of inhibition (mm)

(i) ZO (ii) AZO (iii) Antibiotics (iv) DW

(a) E. coli ATCC 25922 N.D. N.D. 17a N.D.

(b) A. baumannii ATCC 19606 N.D. N.D. 19a N.D.

(c) S. aureus ATCC 25923 11 14 37b N.D.

(d) MRSA3 11 14 12b N.D.

(e) MRSA6 11 13 N.D. N.D.

N.D. indicates that the zone of inhibition was not detected. Antibiotics, aPolymyxin
B or bKanamycin was used as a control for Gram-negative or -positive bacteria,
respectively. DW, deionized water. Data shown here is one of the representative
from n = 3.

against E. coli (Figure 4a), A. baumannii (Figure 4b), S. aureus
(Figure 4c), MRSA3 (Figure 4d), and MRSA6 (Figure 4e) is
provided in Table 2. The ZO and AZO NPs were unable to
form an inhibition zone against Gram-negative bacterial cells
of E. coli (Figure 4a) and A. baumannii (Figure 4b). These
results support the MIC data (Table 1) for Gram-negative
bacterial cells, from which it can be concluded that a more
concentrated dispersion of AZO NPs would be necessary to
obtain an inhibition zone i.e., to be effective against Gram-
negative bacterial cells in the agar well diffusion antimicrobial
determination. The ZOI against AMR strains (E. coli 1368,
A. baumannii 12001) of Gram-negative bacterial cells was not
determined, as it was assumed to be higher than the AZO sample,
which was above the limit of detection for the concentration
of AZO NPs used.

However, the AZO sample was effective in inhibiting the
growth of Gram-positive bacterial cells including S. aureus
(Figure 4c), MRSA3 (Figure 4d) and MRSA6 (Figure 4e). This
observation corroborated the MIC determinations (Table 1).
The effectiveness of the synthesized sample of AZO against
the MRSA strains substantiates its potential to be used as
a nanoweapon against AMR Gram-positive bacterial cells.
Additionally, the MIC and ZOI data indicate that Gram-
positive bacteria are better targets for AZO NPs than Gram-
negative bacteria.

Morphological Characterization of Bacteria
Given the antimicrobial efficacy of AZO NPs against Gram-
positive bacteria, the morphological features of standard and
AMR strains of S. aureus (standard, MRSA3, and MRSA6) before
and after exposure to AZO nanoparticles were evaluated by
SEM. The SEM images of bacterial cells treated or untreated
with AZO NPS is shown in Figure 5. In the untreated
S. aureus cells, a smooth and intact surface was clearly visible
(Figure 5a). On the other hand, some morphological changes
such as membrane damage were seen in S. aureus treated
with different concentrations of AZO (Figures 5b,c). Similar
activity was seen in MRSA strains (MRSA3 and MRSA6) when
comparing the untreated groups (Figures 5d,g), which both
exhibited smooth surfaces, with the groups treated with different

FIGURE 5 | Scanning electron microscopy (SEM) images of bacterial cells.
Samples of S. aureus (a) untreated and treated with (b) 10 µg/mL and (c)
20 µg/mL of AZO. Samples of MRSA3 either (d) untreated or treated with (e)
10 µg/mL and (f) 20 µg/mL of AZO. Samples of MRSA6 either (g) untreated
or treated with (h) 10 µg/mL and (i) 20 µg/mL of AZO. Red circles indicate
areas of cell membrane disruption.

concentration of AZO NPs for MRSA3 (Figures 5e,f), and
MRSA 6 (Figures 5h,i) which showed wrinkling and damage
of the cell walls. Considerable damage was observed upon
binding of the nanoparticle to the bacterial cell membrane
(Figures 5e,f,h,i) to confirm the antibacterial effectiveness
of AZO NPs. Therefore, the efficacy of AZO NPs against
S. aureus and MRSA strains was successfully approved by the
SEM micrographs.

It is well known that Ag and ZnO NPs are established
antibacterial agents; however, very little is known about their
mechanism of antibacterial activity. In this study, we explored
one possible mechanism of Ag and ZnO NP antibacterial activity.
It has been shown that some of the antibacterial activity of Ag and
ZnO NPs may be attributed to a direct interaction between AZO
NPs and the bacterial cell wall (Matai et al., 2014). The bacterial
cell wall is generally negatively charged (Ghosh et al., 2012),
which enables electrostatic interaction with the Zn2+ and Ag+
present in AZO NPs (which were identified in our ZO and AZO
NPs by TEM analysis and XPS). Disruption of the bacterial cell
membrane by Ag-ZnO NPs can be another potential mechanism
for antibacterial activity (Naskar et al., 2020), which we have
corroborated here using SEM. Membrane damage generally
results in increased inhibition of DNA/plasmid replication by
Zn2+/Ag+ ions and the production of proteins/enzymes that
affect bacterial cell functioning and contribute to cell death.
Moreover, membrane disruption can also cause leakage of the
intracellular material, which may shrink the cell and ultimately
result in cell lysis (Yasir et al., 2019).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 March 2020 | Volume 8 | Article 216

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00216 March 17, 2020 Time: 16:34 # 7

Naskar et al. Antibacterial Activity Against MRSA

CONCLUSION

In summary, we have developed a new strategy for the
one-pot synthesis of Ag-ZnO (AZO) nanoparticles using
a low-temperature solution technique. The synthesized
AZO sample showed admirable antibacterial activity against
S. aureus bacteria including their AMR (MRSA) strains.
Moreover, the antibacterial activity of the AZO sample
was more specific toward Gram-positive bacteria than
Gram-negative bacteria. This cost-effective simple synthesis
strategy can be used as a platform to develop different
metal oxide nanomaterials, which can be further used for
targeted biomedical applications and may be useful as
antibacterial agents to address the ever-increasing problem
of AMR bacteria.
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