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The cell membrane-coating strategy has opened new opportunities for the development
of biomimetic and multifunctional drug delivery platforms. Recently, a variety of gold
nanoparticles, which can combine with blood cell membranes, have been shown
to provide an effective approach for cancer therapy. Meanwhile, this class of hybrid
nanostructures can deceive the immunological system to exhibit synergistic therapeutic
effects. Here, we synthesized red blood cell (RBC) and platelet membrane-coated
gold nanostars containing curcumin (R/P-cGNS) and evaluated whether R/P-cGNS
had improved anticancer efficacy. We also validated a controlled release profile under
near-infrared irradiation for the ability to target melanoma cells and to have an
immunomodulatory effect on macrophages. RBC membrane coating provided self-
antigens; therefore, it could evade clearance by macrophages, while platelet membrane
coating provided targetability to cancer cells. Additionally, the nutraceutical curcumin
provided anticancer and anti-inflammatory effects. In conclusion, the results presented
in this study demonstrated that R/P-cGNS can deliver drugs to the target region
and enhance anticancer effects while avoiding macrophage phagocytosis. We believe
that R/P-cGNS can be a new design of the cell-based hybrid system for effective
cancer therapy.

Keywords: gold nanostars, blood cell membrane, biomimetic, immune escape, controlled release, targeted
therapy

INTRODUCTION

Cell membranes are useful materials that are often employed in the drug delivery field.
Inspired by their nature, many approaches to developing multifunctional drug carriers
have been reported, which include so-called biomimetic drug delivery systems (Banskota
et al., 2017). For instance, coating a variety of synthetic materials, including carbon,
poly (lactic-co-glycolic acid) (PLGA), graphene, and gold nanoparticles with natural cell
membranes such as those of cancer cells, stem cells, white blood cells, red blood cells
(RBCs), and platelets (PLTs) have been widely used in the drug delivery field (Gao
et al., 2017; Zhang et al., 2018a; Zhen et al., 2019). Cell membranes share properties
with lipid-based nanoparticles and leverage these biological functions. Moreover, membrane-
coated biomimetic drug delivery systems can load hydrophobic drugs into the phospholipid
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bilayer without any conjugation just as many lipid-based
nanoparticles can. Hence, the membrane-coating strategy not
only significantly increases the biocompatibility of nanoparticles
but also improves their bioavailability (Fang et al., 2018).

Photothermal therapy (PTT) is a relatively non-invasive and
safer method compared with conventional cancer treatment
strategies due to its high accuracy (Okuno et al., 2013). Among
PTT agents, gold nanoparticles are a promising candidate for
cancer therapy because they are highly adjustable to surface
modification, particle size, particle shape, and uniformity (Huang
et al., 2007). All of these properties offer a variety of functions
in biological systems and influence treatment efficacy. Gold
nanoparticles are usually modified with polyethylene glycol
(PEG) to enhance solubility, stability, and immune escape;
however, there are many concerns about the PEGylation
technique (Knop et al., 2010; Ishida and Kiwada, 2013; Zhang
et al., 2017). PEGylation can activate the human complement
system after repetitive administration, and the presence of
anti-PEG antibodies may limit the therapeutic efficacy of gold
nanoparticles. Instead of PEGylation, RBC membranes can offer
a greater ability for immune escape (Piao et al., 2014), as RBC
membrane proteins act as immunomodulatory antigens that help
to avoid phagocytosis.

The exact mechanism of high temperature-mediated killing
of tumor cells remains unclear. PTT can cause cellular necrosis
at temperatures above 42◦C, which can also be highly toxic to
normal cells around the tumor region (Zhang et al., 2018b).
Eventually, other approaches to broaden the application of
gold nanoparticles are needed. For instance, the biomimetic
strategy can combine PTT with currently available anticancer
therapies such as chemotherapy to achieve improved therapeutic
outcomes with increased safety (Hua et al., 2017). Biomimetic
gold nanoparticles can enhance therapeutic efficacy under
lower temperatures. Natural cell membranes are vulnerable to
temperature changes, allowing the chemotherapeutics to be
released from the membranes as the temperature is slightly
increased (Roach et al., 2013; Kwon et al., 2015; Ebrahimi et al.,
2018). This not only maximizes therapeutic effects but also
prevents injury to adjacent healthy cells.

Considering its systemic toxicity and highly selective delivery,
PTT agents are often used via intratumoral injection, and then
subjected to irradiation by an external near-infrared irradiation
(NIR) laser to generate heat for effective photothermal killing
(Zhang et al., 2015). However, clinical applications of traditional
PTT could be limited by the unpredictable tumoral nature; thus,
a systemic approach is very meaningful. Well-fabricated gold
nanoparticles can be localized to the desired tumor region via
passive targeting, meaning the photothermal effect aids tumor
penetration as well as killing the tumor (Zou et al., 2016).
Nevertheless, gold nanoparticles without any functionalization
are incapable of active targeting. To solve this problem, PLT
membranes have been used to offer direct targeting (Jing et al.,
2018). It has been demonstrated that PLT can recognize cancer
cells as well as adhere to the damaged tumor vasculature or
rapidly growing tumor vessels (Gay and Felding-Habermann,
2011; Goubran et al., 2014; Ortiz-Otero et al., 2018). Based on
these rationales, in this study, we demonstrate the influence

of versatile gold nanoparticles on therapeutic effects, cancer-
targeting effects in melanomas, and immune escape ability
from macrophages.

MATERIALS AND METHODS

Preparation of Gold Nanostars (GNS)
Gold nanostars were prepared using a seed-mediated growth
method (Yuan et al., 2012). All glassware and stirring bars were
treated with aqua regia, rinsed with distilled water, and dried at
100◦C. The seed gold nanoparticles were synthesized through
citrate reduction of HAuCl4. Trisodium citrate dihydrate solution
(1 wt%, 15 mL) was added to a reaction flask containing the
boiling HAuCl4·3H2O solution (1 mM, 100 mL) under vigorous
stirring. The reaction solution was heated for 15 min until the
color turned from colorless to light red. Then, the solution was
cooled and filtered using a 0.45 µM cellulose acetate membrane
syringe filter. For GNS synthesis, the seed solution (30 µL) was
added to the 20 mL glass vial containing the HAuCl4·3H2O
(0.25 mM, 10 mL) and HCl (1 M, 20 µL) solutions at room
temperature (RT) under stirring. Then, AgNO3 solution (3 mM,
100 µL) and ascorbic acid (100 mM, 50 µL) were quickly and
simultaneously added to the reaction solution. This was stirred
for 30 s until the color turned from light red to greenish-blue. The
surface of GNS was functionalized with NH2-PEG-SH solution
(4.5 mM, 200 µL). Finally, PEGylated GNS were centrifuged at
4,500 × g for 15 min, and then dispersed in distilled water.

Preparation of Blood Cell
Membrane-Coated GNS
Fresh mouse blood was collected from C57BL/6 mice by cardiac
puncture for RBC and PLT isolation. RBCs and PLTs derived
from this blood source were used in this study. To isolate RBCs
and PLTs, the blood sample was centrifuged at 100 × g for
20 min at RT. Then, the blood was separated into PLT-rich
plasma (PRP) supernatant and RBC sediment. The resulting PRP
was centrifuged again at 100 × g for 20 min at RT to remove
remaining blood cells. Then, PLTs were pelleted by centrifugation
at 800 × g for 20 min at RT, and the pelleted PLTs were re-
suspended in PBS (pH 7.4). PLT membranes were prepared by
a repeated freeze-thaw method, and the resultant PLT membrane
solution was centrifuged at 14,000 × g for 20 min. After washing
three times, final PLT membrane samples were obtained and
used to coat GNS.

Red blood cell ghosts (RBCs without hemoglobin) were
prepared by treating RBCs in a hypotonic solution. RBC pellets
obtained from the previous step were re-suspended in a 25% PBS
solution and vigorously mixed by pipetting. RBCs were pelleted
by centrifugation at 14,000 × g for 20 min at RT, re-suspended
with PBS, and this process was repeated until all hemoglobin
was released from the RBCs. RBC membranes were prepared by
sonication, and the final RBC membrane samples in PBS were
used to coat GNS.

Curcumin was dissolved in methanol and then diluted in a
1:100 ratio of a warm PBS solution. RBC and PLT membranes
(RBC/PLT; 0.5:0.5 protein w/w ratio) were mixed with 500 µL
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of curcumin in PBS (0.1 mg/mL). The resultant mixture
was sonicated in a water bath for 5 min and subsequently
extruded 10 times through an 800 nm membrane filter using
an Avanti extruder to encapsulate curcumin. Then, GNS were
mixed with the blood cell membranes and kept for 30 min
at RT. After incubation, the mixture was extruded 10 times
through a 400 nm membrane filter to coat the GNS with blood
cell membranes containing curcumin. The coated GNS were
subsequently centrifuged at 4,000 × g for 15 min to remove excess
blood cell membranes. These RBC and PLT membrane-coated
GNS containing curcumin (R/P-cGNS) were then characterized
and used for further experimentation.

Physicochemical Characteristics of
R/P-cGNS
The morphology of R/P-cGNS were characterized using a
transmission electron microscope (JEOL-2100F, JEOL Ltd.,
Tokyo, Japan). An aliquot of R/P-cGNS solution was placed on
a carbon-coated 400 mesh copper grid for 10 min. The solution
was removed by gentle tapping, washed two times, negative-
stained with uranyl acetate, and then dried. The prepared
samples on the grid were observed with an electron microscope.
The hydrodynamic size and zeta potentials of R/P-cGNS
were measured using a Malvern Zetasizer (Nano ZS, Malvern
Instruments Ltd., Malvern, United Kingdom). The absorption
spectra of each component of R/P-cGNS were also measured in
a microplate reader to verify successful membrane coating and
curcumin encapsulation. The curcumin encapsulation rate and
release profiles were measured for 1 h after sample incubation
with 1% SDS to fully isolate curcumin from the membrane.
Thereafter, the absorbance of the solution was measured using
UV-vis spectrophotometer (Infinite M200 Pro, TECAN Group
Ltd., Männedorf, Switzerland) at a wavelength of 424 nm
(Supplementary Figure S1).

Photothermal Properties the Prepared
Materials
Thermographic images of water, blood cell membranes, GNS,
and R/P-cGNS were captured to verify photothermal conversion.
Each sample was exposed to an 808 nm NIR laser for 5 min,
and the temperature changes were recorded at every time-point
using a digital thermal image detector. Subsequently, NIR light-
controlled drug release was also evaluated following 808 nm NIR
laser irradiation. The curcumin release from R/P-cGNS (50 ppm)
in a glass tube was monitored with and without irradiation.
The concentration of released curcumin was calculated using a
spectrophotometer at 424 nm.

Flow Cytometry and Confocal
Microscopy
Quantitative cellular uptake of different drug formulations
(free curcumin, R-cGNS, P-cGNS, and R/P-cGNS) in B16-
BL6 melanoma cells (ATCC, Manassas, VA, United States)
was verified by flow cytometry (BD Accuri C6 Plus; BD
Bioscience, San Diego, CA, United States) 3 h after treatment.
Subsequently, the drug distribution pattern of curcumin in the

cancer cells was observed by confocal fluorescence microscopy
(BZ-8000; KEYENCE, Osaka, Japan) using the same conditions.
Co-localization of R/P-cGNS and lysosome was confirmed by
staining LysoTracker Green DND-26 (Invitrogen, Carlsbad, CA,
United States) 3 h after treatment. The laser irradiation group was
exposed to NIR laser for 5 min after 1 h of treatment, and then
incubated for an additional 2 h.

In vitro Cytotoxicity
B16-BL6 cells (5 × 103, 100 µL) were incubated in 96-well plates
at 37◦C with 5% CO2 for 24 h. Then, media with the different
drug formulations (curcumin, GNS, R-cGNS, P-cGNS, and R/P-
cGNS) were added to the wells. Following drug addition, each
condition was treated with and without NIR laser irradiation and
further incubated for 72 h. Cellular viability was measured by the
MTT assay at 595 nm. The cytotoxicity of GNS and free curcumin
on B16-BL6 cells was also tested.

For colony formation assays, B16-BL6 cells (5 × 102 cells,
200 µL) were prepared in tubes and treated with different drug
formulations. Each condition was immediately exposed with and
without NIR laser irradiation and seeded onto six-well plates.
After 24 h, the cells were replaced with fresh medium and
incubated for 10 days. After the 10-day culture, visible colonies
were fixed with 100% methanol, washed with water, stained with
0.5% crystal violet in 25% methanol for 5 min, and washed with
water until the excess dye was removed. After drying overnight,
colony numbers were assessed visually. Pictures were taken using
a digital camera.

Gold Uptake by Macrophages
The immune escaping ability of various GNS formulations from
phagocytosis was verified in the murine macrophage cell line,
RAW264.7. To observe the nano-sized gold nanoparticles in the
cytoplasm, a high concentration of GNS (100 ppm) was used to
treat the macrophages, and their morphological changes and gold
uptake were subsequently visualized with an optical microscope
4 h after incubation. The macrophages were fixed with 100%
methanol and stained with 0.5% crystal violet in 25% methanol.
Lipopolysaccharide (LPS) was used as a positive control.

To measure the actual uptake rate of gold atoms by
macrophages, inductively coupled plasma-mass spectrometry
(ICP-MS; iCAP 7000 Series, Thermo Fisher Scientific, Waltham,
MA, United States) was used. Macrophages treated with
each GNS sample 4 h after incubation were dissolved in
aqua regia (a 3:1 mixture of hydrochloride and nitric acid),
and the gold concentration was calculated compared with a
gold standard curve.

Immune Responses
RAW264.7 cells were seeded in 6-well plates at a density of
5 × 105 cells/mL and incubated for 24 h. After incubation, the
cells were treated with various concentrations of curcumin or
various formulations of GNS for 2 h, and then stimulated with
LPS (500 ng/mL) for an additional 6 h. A total of 1 mL of
the cell culture supernatant was collected and levels of TNF-α,
MCP-1, and IL-6 were detected using commercial mouse ELISA
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kits (430904, 432704, and 431304; BioLegend, San Diego, CA,
United States) in accordance with the manufacturer’s protocols.

Animal Study
The experiment was approved by the Institutional Animal
Care and Use Committee (IACUC) of Kumamoto University
(#A28-003) and conducted following protocols in accordance
with the guidelines.

Statistical Analysis
Data were analyzed by one-way or two-way analysis of variance
(ANOVA) using Prism 7 (GraphPad Software, Inc., La Jolla,
CA, United States). In all cases, the significance level was set
at ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 or †p < 0.05, and
†††p < 0.001 between the experimental groups; n.s. represents no
significant difference.

RESULTS

Preparation and Characterization of
R/P-cGNS
To prepare R/P-cGNS, we first extracted cell membranes
from RBCs and PLTs. Given the hydrophobicity profile of
curcumin, it was encapsulated into the prepared blood cell
membranes. Then the GNS were coated with these membranes
via electrostatic interaction to fabricate R/P-cGNS containing
curcumin as illustrated in Figure 1A and Supplementary Figure
S2. The surface modification of the gold nanoparticles using each
functional blood cell membrane brought different advantages
such as immune escape ability and cancer-targeting. Therefore,
we used the different GNS designs for ease of comparison.
In the following study, GNS was used as the control. The
functions of R-cGNS and P-cGNS were compared to R/P-cGNS;
designs without curcumin were R-GNS, P-GNS, and R/P-GNS,
respectively. TEM observations were used to characterize the
morphology of GNS and R/P-cGNS. After coating with blood
cell membranes, R/P-cGNS showed a uniform star shape with a
membrane shell around GNS, indicating successful membrane
coating (Figure 1B). SDS-PAGE protein analysis of P-cGNS,
R-cGNS, and R/P-cGNS also proved that blood cell membranes
were successfully coated onto GNS (Supplementary Figure S3).
As shown in Figure 1C, the average hydrodynamic diameters
of R/P-cGNS were slightly increased from 134.1 ± 1.2 nm in
diameter to 162.1 ± 3.0 nm in diameter after membrane coating.
The pattern of particle size distribution and the low polydispersity
index (PDI) of 0.26 clearly verified no aggregation of particles
(Supplementary Figure S4). Additionally, in response to the
serum proteins in the 10% FBS solution, the particle size of
R/P-cGNS remained constant, which implies that the particles
possess colloidal stability (Supplementary Figure S5). The
surface charge of R/P-cGNS (−23.7 ± 0.3 mV) decreased
by over 50 mV compared with bare GNS (31.9 ± 0.2 mV)
after membrane coating because the outer membrane surface
exhibited a negative surface charge (Figure 1C). Additionally,
the characteristic peaks of GNS (814 nm), blood cell membranes

(300–700 nm, or 950–1000 nm), and curcumin (424 nm) in
absorption spectra demonstrated that the membrane coating
and drug encapsulation of R/R-cGNS had been successful
(Figure 1D). The drug encapsulation efficiency and drug loading
capacity were 71.6 ± 12.5% and 4.8 ± 0.8%, respectively
(Supplementary Figure S6).

Photothermal Properties and Drug
Release of R/P-cGNS
To investigate the effect of NIR laser irradiation on R/P-
cGNS, temperature changes were measured using a digital
thermal image detector (Figure 2A). There was no significant
temperature change of water or RBC/platelet membranes over
time, while the temperature curves of GNS and R/P-cGNS
exhibited a rising pattern, which clearly indicated that GNS could
generate hyperthermia under NIR irradiation and that membrane
coating did not affect the photothermal effects of the GNS
(Figure 2B). Within 2 min, the temperature increased to more
than 42◦C, which can induce photothermal therapeutic effects
for cancer. The cumulative release profile of the drug suggested
that hyperthermia can make blood cell membranes unstable,
which then released the encapsulated curcumin. Driven by laser
irradiation and the subsequent temperature increase, curcumin
was rapidly released from R/P-cGNS, while no significant drug
release was detected without laser irradiation (Figure 2C). These
results indicated that R/P-cGNS could provide a controlled drug
release under NIR laser irradiation, achieving both the expected
photothermal and chemotherapeutic effects.

Targeting Ability of R/P-cGNS
B16-BL6 cells were incubated with an equal amount of curcumin,
which was loaded in different GNS designs, and their drug
delivery efficiencies on cancer cells were compared by flow
cytometry (Figure 3A). The cells treated with curcumin exhibited
a yellow color and we observed a distinct peak that was shifted
to the right. A comparative analysis of curcumin uptake in B16-
BL6 cells revealed that free curcumin showed the highest mean
fluorescence intensity (MFI) value because it rapidly diffused
into the cells in vitro (Figure 3B). GNS with PLT membrane
represented a higher MFI value compared with that of GNS
with a RBC membrane only, which was a result of the cancer-
targeting ability. The MFI value of P-cGNS was slightly higher
than that of R/P-cGNS, but there was no significant difference,
which is assumed to be because PLT membrane contents for
P-cGNS were twice as high as that of R/P-cGNS. These results
indicated that R/P-cGNS has a targeting ability comparable to
P-cGNS on cancer cells.

Cellular Uptake and Distribution Profile
of R/P-cGNS
To evaluate the cellular uptake of curcumin, the fluorescence
properties after free curcumin, P-cGNS, R-cGNS, and R/P-
cGNS treatment of B16-BL6 cells were examined by confocal
microscopy (Figure 3C). Significant cellular uptake of curcumin
was observed in the free curcumin-treated group, and it
was evenly distributed in the cytoplasm; few R-cGNS could
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FIGURE 1 | (A) Schematic illustration of R/P-cGNS. (B) Representative transmission electron microscopy images of GNS and R/P-cGNS showing the membrane
coating structure (scale bar, 100 nm). (C) Particle size and surface charge of GNS and R/P-GNS, before and after coating with blood cell membranes. Error bars
represent the mean ± SD (n = 3). (D) UV-vis absorption spectroscopy of GNS (black), PLT membrane (blue), RBC membrane (green), free curcumin (orange), and
R/P-cGNS (pink).

bind to cancer cells, and the fluorescent signal was weak.
Conversely, when curcumin was delivered by P-cGNS or R/P-
cGNS, the signal was relatively strong. Moreover, strong dot-
shaped yellow fluorescence signals of curcumin were observed
at the corresponding locations of GNS in bright field imaging,
which demonstrates that the GNS was successfully attached to
cancer cells (Supplementary Figure S7). Unlike free curcumin
which is internalized into the cytoplasm through cytosolic
diffusion, to clarify the intracellular uptake of R/P-cGNS, we
tracked the location of R/P-cGNS by fluorescence labeling
of the cellular compartment; R/P-cGNS was entrapped into
endosome/lysosome 3 h after treatment, while curcumin could
be successfully released from the vesicles by laser irradiation
(Supplementary Figure S8).

Cytotoxic Properties of R/P-cGNS
Prior to proceeding to cytotoxicity test, the biocompatibility of
GNS and the IC50 value of curcumin was evaluated. B16-BL6
cells were treated with bare GNS for 48 h, and the cytotoxicity
of GNS was negligible even at the concentration of 30 ppm
(Supplementary Figure S9). The IC50 value of curcumin was
32.6 µM as verified under the same condition (Supplementary
Figure S10). Based on these results, the chemo/photothermal

cytotoxicity potential of all GNS formulations without or
with laser irradiation was evaluated by the MTT assay
(Figure 4A). B16-BL6 cells were treated with curcumin at the
IC50 concentration for 48 h. The free curcumin treatment group
showed a considerable chemotherapeutic effect compared with
the other groups, and NIR laser irradiation showed only a
negligible therapeutic effect. Conversely, all groups irradiated
by NIR laser after treatment of GNS formulations displayed
significant cell death. The targetability of PLT membranes was
further investigated and compared with R-cGNS. P-cGNS and
R/P-cGNS showed higher cytotoxicity than R-cGNS. The cell
viability was 36.4% for P-cGNS and 42.9% for R/P-cGNS, which
was even lower than that of free curcumin (48.2%).

Long-Term Therapeutic Effects of
R/P-cGNS
Colony formation assays show only the metabolically active and
viable cells after over 10-day incubation; thus, this is a valuable
tool for overcoming the limitations of short-period evaluations
using the MTT assay. Figure 4B shows the long-term therapeutic
effects of GNS formulations and revealed the inhibition of
colony formation of B16-BL6 cancer cells. A similar pattern to
the MTT assay results was observed in the colony formation
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FIGURE 2 | (A) Thermal digital images and (B) temperature increase curves of water (black), GNS (green), blood cell membranes (blue), and R/P-cGNS (pink) under
NIR laser irradiation, as measured at different time points. (C) Curcumin release profiles from R/P-cGNS under NIR laser irradiation or without NIR laser irradiation
(***p < 0.001, w/o laser vs. with laser). Error bars represent the mean ± SD (n = 3).

assays. Together these results indicated that R/P-cGNS could
combine the photothermal effects of gold nanoparticles with
the chemotherapeutic effects of curcumin under laser stimuli,
leading to improved therapeutic effects in short- and long-
term treatments.

Immune Escaping Ability of R/P-cGNS
Each of the GNS formulations was used to evaluate the
phagocytic ability of macrophages. RAW264.7 murine
macrophages were incubated with GNS formulations, and
then intracellular gold nanoparticles were observed using light
microscopy (Figure 5A). High concentrations of intracellular
gold nanoparticles were observed as black spots in the cytoplasm
of the cells. We found that macrophages treated with GNS

accumulated more gold than blood cell membrane-coated GNS
(Figure 5B). The surface coating of GNS with RBC membranes
significantly inhibited phagocytosis (2.7-fold, ***p < 0.001)
compared with GNS with PLT membranes. Additionally,
R/P-cGNS (1.7-fold, ***p < 0.001) significantly improved the
immune escaping ability to a similar extent as R-cGNS. These
results indicated that R/P-cGNS had a comparable immune
escaping ability to R-cGNS for macrophages. As shown in
Figure 5A, control macrophages were round, whereas, after
LPS stimulation, the macrophages changed into a spiky shape,
suggesting that they were activated and ready to engulf foreign
materials. This macrophage activation was also induced after
GNS treatment. In general, activated macrophages produce
cytokines such as TNF-α, IL-6, and MCP-1. The results of
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FIGURE 3 | (A) Histogram plots of the fluorescence intensities showing cellular uptake of curcumin (orange), P-cGNS (blue), R-cGNS (green), and R/P-cGNS (pink)
at a concentration of 25 µM curcumin. (B) The mean fluorescence intensities of different curcumin treatment groups with regard to the background level of untreated
cells (black). Error bars represent the mean ± SD (n = 3) (***p < 0.001 vs. R-cGNS; n.s., no significant difference, P-cGNS vs. R/P-cGNS). (C) Confocal images of
different curcumin treatment groups in B16-BL6 cells.
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FIGURE 4 | (A) Cell viability of B16-BL6 cells after incubation with different curcumin treatment groups under NIR laser irradiation or without NIR laser irradiation
(n.s., no significant difference and ***p < 0.001, w/o laser vs. with laser; †††p < 0.001 and †p < 0.05, vs. R-cGNS under NIR laser irradiation). Error bars represent
the mean ± SD (n = 5). (B) Colony formation assays to determine the long-term effects of different curcumin treatment groups on cell proliferation.

FIGURE 5 | (A) Detection of blood cell membrane-coated GNS on RAW264.7 macrophages by optical microscopy and their morphological changes after 4-h
exposure. (B) Quantitative analysis of GNS uptake using ICP mass spectrometry (***p < 0.001, vs. each group). (C) Analysis of the immunomodulatory activity of
macrophages following treatment of immunostimulants such as GNS, R-GNS, P-GNS, R/P-GNS, and LPS (***p < 0.001, *p < 0.05, and n.s., no significant
difference vs. control). Error bars represent the mean ± SD (n = 3).
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FIGURE 6 | Quantification of the cellular production of cytokines in 264.7 macrophages following treatment with different GNS formulations (***p < 0.001,
**p < 0.01, and *p < 0.05, vs. GNS; n.s., no significant difference, R-GNS vs. R/P-GNS). Error bars represent the mean ± SD (n = 3).

counting the number of activated macrophages and measuring
the levels of pro-inflammatory cytokines clearly showed that
R/P-cGNS, as well as R-cGNS, inhibited macrophage activation
and balanced inflammatory responses (Figures 5C, 6).

DISCUSSION

There has been sufficient success in fabricating gold nanoparticles
over the past decade that they can no longer be called a
new attempt. However, combining the functionality of natural
cell membranes from different origins has been insufficiently
studied. In this work, we coated GNS with RBC and PLT
membranes to simultaneously take advantage of immune
evasion and cancer cell targeting abilities. The results of our
experiments provide the underlying data for using RBC and
PLT membranes together. We confirmed that RBC and PLT
membrane-coated GNS could improve cancer targeting, alleviate
immune responses, escape phagocytosis, and enhance anticancer
effects. The use of gold nanoparticle coated with only a single
membrane was slightly more effective than R/P-cGNS in some
experiments; however, R/P-cGNS retained the functionality of
both blood cell membranes. Considering the complex biological
environment, R/P-cGNS might warrant further animal studies
(Nel et al., 2009). The major immunomodulatory protein on
the surface of blood cells is CD47, which is well known to
give a “don’t eat me” signal (Burger et al., 2012). Although
CD47 antigen, an important “self-recognition” protein, not
only exists on RBCs, it is highly expressed on the surface
of RBCs, helping to circulate RBCs in the bloodstream. The
CD47 antigen enables cells to avoid phagocytosis by binding to
the inhibitory receptor signal regulatory protein alpha (SIRPα)
on macrophages, unlike PEGylation, which is a commonly
used method to conceal the properties of nanoparticles by the
hydration effect of PEG (Rao et al., 2015). According to the study
by Hu et al. (2011) RBC membranes camouflaged nanoparticles
have a prolonged circulation time in the blood compared with
PEGylated nanoparticles by deceiving the immune system. In
this study, we also found that RBC membrane coating can
help to escape from macrophage phagocytosis; furthermore, the
CD47-SIRPα interaction can directly regulate immune responses
(Figures 5, 6). Additionally, curcumin can act as an anticancer
drug as well as an anti-inflammatory drug; thus, it can induce

immunosuppression even when R/P-cGNS are caught through
macrophage phagocytosis (Supplementary Figure S11; Fadus
et al., 2017). Over the past quarter-century, curcumin has
attracted great attention due to its multitude of functions.
Extensive clinical trials have addressed the efficacy of this versatile
drug in cancer patients (Gupta et al., 2013). Despite considerable
therapeutic efficacy, poor bioavailability has been a limitation
to its use in humans. Since curcumin is sparingly soluble in
aqueous solution at approximately 0.1 mg/mL, efforts are needed
to improve the solubility of curcumin. According to Kurien et al.
(2007), the solubility of curcumin in water could be maximized
by dissolving first in methanol and then diluting with water or
even using heat. Furthermore, the use of the cell membrane
can improve the bioavailability of curcumin using lipid-based
nanoparticles that capture hydrophobic drugs, and also allow
intravenous injection (Kim et al., 2018). We also showed that
curcumin has additional therapeutic benefits by using R/P-cGNS
for cancer therapies including photothermal effects, controlled
drug release at elevated temperature, and the targeting of cancer
cells through PLTs. Recently, many trials have been implemented
to study the use of the tumor-targeting properties of PLTs
(Dehaini et al., 2017; Wang et al., 2019). PLTs primarily play
an important role in hemostasis; the initial stage of hemostasis
begins with the binding of activated platelets to the damaged
vessels exposing von Willebrand factor (vWF), which prevents
excessive bleeding (Yun et al., 2016). Thereafter, membrane
proteins such as glycoprotein IIb/IIIa and glycoprotein Iba
specifically bind to biomolecules like P-selectin, CD44, and vWF
(Hu et al., 2015). These biomolecules are highly expressed in
some types of cancer, including melanoma, hematoma, and
osteosarcoma (Bauer et al., 2015). The interaction between the
platelets and cancer cells has been reported to be related to
thrombus formation and cancer metastasis (Mojiri et al., 2017).
We found a therapeutic potential of R/P-cGNS on melanoma
cells in particular; the melanoma cancer cell line B16-BL6 is
reported to be effective in the treatment of curcumin and also
to have a high expression level of vWF, which is the main target
of PLTs. The results in Figure 3 reflect that R/P-cGNS have
tumor-targeting ability because of the PLT membrane.

In this study, we prepared biomimetic GNS, R/P-cGNS,
that were very delicately designed. Although R/P-cGNS have
shown promising potential as a therapeutic strategy, it is still
confronted with many difficulties in the biological environment.
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However, we are anticipating interesting results from star-shaped
biomimetic gold nanoparticles, not sphere- or rod-shaped, from
in vivo systems. This work was inspired by the features of PLTs,
which normally circulate in the blood with a spherical shape in
an inactive state and function only when they are activated and
transform into a star shape (Jennings, 2009). We hypothesize that
our results are related to recent findings regarding the correlation
between the shape of the particles and their dynamic flow in
the blood. It has already been reported that particle shape can
affect particle bio-distribution and improve drug delivery (Tan
et al., 2013). Further research will be needed in animal models
or hemodynamic studies to explain these findings.

CONCLUSION

To find some evidence for the potential of GNS in a biological
environment, R/P-cGNS were investigated in this study. R/P-
cGNS provide a controlled release profile, better targeting to
cancer cells, immune escape, and enhanced therapeutic effects
in vitro. The combination therapy of curcumin under NIR
laser irradiation inhibited tumor growth. We also revealed that
curcumin can provide anti-inflammatory effects on macrophages.
Despite these advantages of R/P-cGNS, our system still requires
further evaluation in vivo. As RBCs and PLTs are natural sources
isolated from the blood, they might provide promising results for
future preclinical trials. In conclusion, this study demonstrated
that the newly developed blood cell membrane-coated GNS
could be a good candidate for a biomimetic system that is ideal
for cancer therapy.
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