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Background: Longitudinal movement parameter analysis of hemiparetic patients over

several months could reveal potential recovery trends and help clinicians adapting

therapy strategies to maximize recovery outcome. Wearable sensors offer potential for

day-long movement recordings in realistic rehabilitation settings including activities of

daily living, e.g., walking. The measurement of walking-related movement parameters of

affected and non-affected body sides are of interest to determine mobility and investigate

recovery trends.

Methods: By comparing movement of both body sides, recovery trends across the

rehabilitation duration were investigated. We derived and validated selected walking

segments from free-living, day-long movement by using rules that do not require

data-based training or data annotations. Automatic stride segmentation using peak

detection was applied to walking segments. Movement parameters during walking were

extracted, including stride count, stride duration, cadence, and sway. Finally, linear

regression models over each movement parameter were derived to forecast the moment

of convergence between body sides. Convergence points were expressed as duration

and investigated in a patient observation study.

Results: Convergence was analyzed in walking-related movement parameters in an

outpatient study including totally 102 full-day recordings of inertial movement data

from 11 hemiparetic patients. The recordings were performed over several months

in a day-care centre. Validation of the walking extraction method from sensor data

yielded sensitivities up to 80% and specificity above 94% on average. Comparison

of automatically and manually derived movement parameters showed average relative

errors below 6% between affected and non-affected body sides. Movement parameter

variability within and across patients was observed and confirmed by case reports,

reflecting individual patient behavior.

Conclusion: Convergence points were proposed as intuitive metric, which could

facilitate training personalization for patients according to their individual needs. Our

continuous movement parameter extraction and analysis, was feasible for realistic,

day-long recordings without annotations. Visualizations of movement parameter trends
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and convergence points indicated that individual habits and patient therapies were

reflected in walking and mobility. Context information of clinical case reports supported

trend and convergence interpretation. Inconsistent convergence point estimation

suggested individually varying deficiencies. Long-term recovery monitoring using

convergence points could support patient-specific training strategies in future remote

rehabilitation.

Keywords: free-living, inertial measurement units, stroke, rehabilitation, trend, unsupervised

INTRODUCTION

Analyzing movement parameters in patients with a hemiparesis
over weeks and months could help clinicians to understand
behavioral changes and reveal potential recovery trends beside
classical clinical assessments. Wearable motion sensors can
continuously assess affected and non-affected body sides during
an extended stroke recovery process and could therefore
enable rehabilitation experts to plan goal setting and therapy
adaptations. Continuous measurement and analysis may
facilitate devising personalized therapy and maximize recovery
outcome. The importance of unsupervised movement parameter
analysis over weeks and months was emphasized by Patterson
et al. (2010) and further discussed by Marschollek et al. (2012),
highlighting general benefits in health-care using wearable
sensors due to “long-term, objective measurement under
daily-life, unsupervised conditions.” However, to date, wearable
sensors and automatic movement parameter analysis for free-
living trend analysis in patients after stroke received limited
attention.

Research has shown that movement-related features derived
using wearable inertial measurement sensor units (IMUs),
including 3-axis accelerometers, gyroscopes, and magnetic field
sensors, can be used to estimate clinical scores according
to clinically supervised assessments e.g., the Wolf Motor
Function Test (WMFT) (Wade et al., 2010), the Fugl-Meyer-
Assessment (FMA) (Del Din et al., 2011) or the National
Institute of Health Stroke Score (NIHSS) motor index (Gubbi
et al., 2013). Clinical assessments, that include wearable
sensors, focus on selected, specifically designed, and isolated
motor function tasks, where patients are specifically asked
to perform certain tasks (reaching, grasping, and similar) in
controlled lab-like settings, guided and assessed by clinicians.
Typically, the tool-chain to analyse wearable sensor data involved
pattern classification (Parnandi et al., 2010; Patel et al., 2010)
and regression (Hester et al., 2006; Del Din et al., 2011)
techniques, to derive objective, quantitative measurements, and
estimates of clinical scores. While, clinical assessments and their
corresponding scores may be replicated with estimations using
wearable sensors, mainly short-term measurements derived
in lab-controlled settings were investigated. Especially in the
rehabilitation of hemiparetic patients, e.g., after stroke, where
recovery can be a gradual process over weeks, months, and
even years, continuous measurement and quantification are
needed.

Various sensor technologies have been used and motion
sensors including accelerometers (Moe-Nilssen and Helbostad,
2004; Zijlstra, 2004; Senden et al., 2009; Sant’Anna and
Wickström, 2010) or gyroscopes (Greene et al., 2010; Abaid
et al., 2013; Fraccaro et al., 2014) were frequently described
for gait and movement analysis. Parisi et al. (2016) applied a
Shimmer3 IMU, attached to the lower trunk, for movement
analysis in stroke patients. Results of their investigation showed
high correlation (Pearson, r ≥ 0.82) between spatio-temporal
features derived from the IMU and an optical reference system.
Beside motion sensors, stationary optical systems (Whittle, 1996;
Boutaayamou et al., 2015) and pressure sensor systems (Chen
et al., 2005; Sant’Anna and Wickström, 2010) were used to
investigate gait cycles. Wearable sensors were also deployed
to analyse movement parameters in patients suffering from
Parkinson’s disease (PD) (Hundza et al., 2014), cerebral
palsy (Strohrmann et al., 2013), impacts of surgical interventions,
e.g., hip arthroplasty (Aminian et al., 1999) or for behavior
analysis of the elderly (Hollman et al., 2011; Fraccaro et al.,
2014). Often sensor technology for movement analysis studies
were tailored to derive and investigate gait cycles in controlled
clinical settings, e.g., using a treadmill (Abaid et al., 2013; Evans
and Arvind, 2014), where patients followed instructions given
by clinicians. These controlled settings allowed experts to take
annotations, but resulted in limited amount of sensor data
due to time and cost required. Generalization to realistic daily
life settings remain unclear (Salarian et al., 2004; Chen et al.,
2005). In particular, solutions for transferring lab-controlled
analysis approaches to free-living are required to monitor
recovery trends over multiple weeks and months. Algorithms to
derive movement parameters including stride length, velocity or
distance, typically include peak detection approaches (Aminian
et al., 1999; Greene et al., 2010; Sant’Anna and Wickström,
2010; Hundza et al., 2014) and involve determining thresholds,
either empirically or using experts knowledge. An extensive
discussion on sensors and gait segmentation was provided by
Taborri et al. (2016). In contrast, in this work we present
a longitudinal observation study in a day-care centre, and
investigate unsupervised approaches for mobility analysis,
suitable for free-living.

Rehabilitation strategies, particularly those investigated with
patients after stroke, emphasize the importance of walking as
predictor for rehabilitation outcome and describe walking as
major rehabilitation goal, to regain mobility and subsequently
increased independence (Olney and Richards, 1996; Gordon,
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2004; Duncan et al., 2005). Although concepts of life-
long learning were controversially discussed, Dobkin argued
that continuous (walking)-progress in patients after stroke is
realistic (Dobkin, 2004). Longitudinal studies, using wearable
sensors, may help to understand the life-long learning of patients
with a hemiparesis by objective measurements of behavioral
changes and recovery trends. Faralli et al. (2013), and Takeuchi
and Izumi (2013) further emphasized the importance of a
comprehensive and intensive rehabilitation to regain or improve
motor function by different processes, i.e., neurogenesis (new
neuron production) and plasticity (reorganization). Further, it
has been shown that realistic rehabilitation, including activities
of daily living (ADL) and task-specific practice, e.g., described in
the Extended Barthel Index (EBI) assessment, were beneficial to
support and induce recovery (Winstein et al., 2016). Movement
quality could be evaluated in daily life using activity monitoring,
indicating when patients were active as shown by van Meulen
et al. (2016). However only 201min of data derived from two
patients were analyzed. So far, longitudinal studies analyzing
recovery trends in hemiparetic outpatients during extended
rehabilitation periods in a day-care centre were not investigated.

We analyse walking movement and mobility behavior
in free-living, regarding inter- and intra-patient differences,
and investigate whether recovery trends in patients with a
hemiparesis during a multi-week outpatient rehabilitation period
could be interpreted. In particular, this paper provides the
following contributions:

1. We evaluate walking-related movement parameters of 11
outpatients after stroke or brain tumor extraction from
day-long recordings derived in a free-living rehabilitation
setting of a rehabilitation day-care centre. A total of 102
recording days were acquired over several months. We show
that wearable motion sensors capture walking characteristics
related to patients’ individual behavior, therapy schedules, and
health conditions.

2. We present a longitudinal movement parameter study and
analysis during walking using wearable motion sensors. We
extract walking segments, determine strides, and compare
affected and non-affected body sides to describe movement
changes. In the present work, we highlight the bilateral trend
analysis and discuss potential for free-living analysis. We
detail our analysis for three typical patients using clinical case
reports.

3. We investigate potential recovery trends in hemiparetic
patients by comparing body sides and propose a new,
regression-based approach to quantify movement parameters
using convergence points.

METHODS

We first detail our evaluation study followed by the description
of the bilateral trend analysis.

Evaluation Study
Participants
We included 11 patients with a hemiparesis in our study (5
females, aged 34–75 years, 4 wheelchair users). Inclusion criteria

were: stroke or brain tumor extraction with subsequent upper
and/or lower motor function deficits, including wheelchair
reliant patients. The inclusion of wheelchair users was of interest
to demonstrate patients’ continuity and potential recovery trends
using wearable sensors. Due to the longitudinal study design,
we expected to observe changes in walking behavior of initially
wheelchair-dependent patients toward independent walking.
Patients were excluded if presenting additional motor function
impairments caused by neurological diseases. Walking aids, e.g.,
sticks or foot orthosis, were not an exclusion criteria. Overall,
eight patients after stroke and three patients after brain tumor
extraction were included in the study. Study participants visited
the day-care centre at the rehabilitation clinic Reha Rheinfelden
in Switzerland. All patients signed a written consent form
for study participation and publication of results before data
recording began. The study was approved by the Swiss cantonal
Ethics committee of the canton Aargau, Switzerland (Application
number: 2013/009). During the data recording period from
December 2013 toMay 2014, patients spent between 16 to 79 days
at the day-care centre. Days after stroke or brain tumor extraction
spanned from 48 to 335 days. Patients’ details, including EBI-
scores, are summarized in Table 1.

The EBI is a clinical assessment, primarily used to estimate
the level of independence in accomplishing daily activities
and divided in 16 categories including mobility (walking and
stairs), transfers (e.g., bed to chair and back), feeding, dressing,
grooming, and similar (Prosiegel et al., 1996). Each category
was scored, using a scale from zero (patients’ need full support)
to four (patients’ are independent of any support). The EBI
was estimated twice, first at the begin of the rehabilitation as
outpatient, second shortly before the patient’s final discharge. In
this observation study no therapy interventions of pathological
gait changes and subsequent analysis were intended.

Study Design
Each patient at the day-care centre received a personalized
therapy schedule according to their expected needs, considering
the level of independence and health state. The day-care
centre specialized on therapy programmes, promoting the re-
integration of patients into independent free-living. Patients
followed their daily routines, which was partly determined by
their therapy schedule, but included free time too. Patients
were accompanied and observed by the study examiner for 2–
3 times a week. The examiner followed the patients for up to
8 h per recording day and annotated activities online with the
Android open-source smartphone framework CRNTC+ (Spina
et al., 2013). Activity annotations were approved by two
examiners after data post-processing. Scheduled therapies were
not interrupted or skipped and all annotations were in agreement
with the patient and clinicians. The study time spread over 1–
3 months (39.5 day on average) including 9.3 recording days
on average per patient and a total of 102 recording days.
For the study, we defined an annotation catalog with a total
of 51 activities, including activity primitives, walking, walking
up/downstairs, arm and leg flexion/extension, arm rotation,
writing, using phone, drinking, and similar, to describe the
patients activities. For the present investigation, only walking
annotations were used in further analysis. Typical, activity
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TABLE 1 | Patient information.

ID Cause of

impairment

Locomotion

(type)

Gender Affected

(side)

Age

(years)

Rehab

(days)

Rec.

(days)

DAS

(days)

EBI⋆

compl

EBI 1compl EBI⋆

walk

EBI 1walk

1 Stroke Wheelchair M Left 57 79 11 335 51 +8 1 +1

2 Stroke Walk M Right 47 18 8 135 63 +1 4 0

3 Stroke Wheelchair M Right 53 77 10 164 51 +10 0 0

4 Stroke Walk F Left 52 16 7 295 60 +1 4 0

5 Stroke Walk F Left 74 35 10 134 50 +7 2 +1

6 Stroke Walk M Left 38 66 11 90 63 +1 3 +1

7 Stroke Wheelchair M Right 64 28 9 164 56 +3 0 0

8 Brain

tumor

Walk M Left 34 28 11 84 64 0 4 0

9 Stroke Walk F Left 72 30 7 116 48 +5 2 +2

10 Brain

tumor

Wheelchair F Left 68 30 9 274 48 +9 0 0

11 Brain

tumor

Walk F Left 55 28 9 152 57 0 4 0

Mean 56.3 39.5 9.3 176.6 55.5 3.6 2.2 0.5

SD 13.1 23 1.5 85.3 6.3 4.0 1.7 0.7

Locomotion describes the patients’ mobility (walker or wheelchair user), Rehab is the rehabilitation duration, Rec. is the number of study recording days, DAS are the days after stroke

or brain tumor extraction (duration between stroke event or brain tumor extraction and rehabilitation entry). EBI scores at rehabilitation entry are denoted as: EBI⋆ compl for complete

assessment; EBI⋆ walk for subcategory walking. EBI score differences between the first and last assessment are denoted as: 1compl for complete assessment; 1walk for subcategory

walking.

routines such as eating/leisure, cognitive training, medical fitness,
kitchen work, motor training, and resting were defined as
reference for potential subsequent behavior description. In the
present analysis, we focus on walking and subsequent mobility
behavior, and use the activity annotations for validation only.
Patient therapies and incidents were documented daily in case
reports according clinical guidelines, including strolls, sports,
resting phases or when patients felt unwell.

Sensors and Data Recording
Shimmer3 IMU sensors, including a 3-axis accelerometer, a 3-
axis gyroscope, and 3-axis magnetometer1 were attached to the
patients when they arrived at the clinic in the morning. We
defined sensor positions and orientation to guarantee a fixed
reference system, aligning to patients’ movements in x-, y-, and
z-axis. Sensor position and orientation were regularly checked
during recordings to avoid variation in orientation estimates or
measurement offsets. Shimmer IMUs are small in size (L ×W ×
H = 51 × 34 × 14 mm3), thus suitable for day-long recordings.
Shimmer IMUs were configured to log sensor measurements
with a sampling frequency of 50Hz to the internal SD-card. The
accelerometers range was set to ± 4 g. Sensors were attached
to both wrists, upper arms, and thighs using Velcro straps. For
the analysis of the walking behavior, including the upper body
sway, and the subsequent bilateral trend analysis only thigh
and upper arm sensors were considered necessary as illustrated
in Figure 1. Our pre-investigations showed that accelerometer
data provide sufficient information for unsupervised EBI score
estimation (Derungs et al., 2015) and activity routine discovery

1Shimmer, DCU Alpha, Old Finglas Road, Glasnevin Dublin 11, Ireland.

in hemiparetic patients (Seiter et al., 2015). Moreover, the
recent systematic review of wearable sensors for walking
parameter estimation by Taborri et al. (2016), showed that
accelerometer data provide sufficient information for walking
segment extraction and stride segmentation. Using orientation
estimates, which require all IMU sensor modalities, did not
show advantages. Moreover, accelerometers are more power-
efficient compared with gyroscopes, thus ideal for longitudinal
studies and long-term monitoring applications. Sensors were
only temporary removed during the recording day for special
therapies (e.g., lymph drainage massages or water therapies) and
finally detached at the end of the recording day.

Bilateral Trend Analysis
For our bilateral trend analysis approach we implemented
a state-of-the-art data processing tool-chain to derive and
evaluate movement parameters. Our four-stage approach for
the bilateral trend analysis consists of (1) data preprocessing,
(2) walking segment extraction, (3) stride segmentation including
movement parameter extraction, and (4) regression-based
recovery trend analysis. All data processing and analysis were
done using MATLAB2. Figure 2 illustrates the walking analysis.
Subsequently, each processing stage is described.

(1) Data preprocessing: We time-synchronized and merged
the data of all body-worn IMUs based on their time stamps.
A non-overlapping sliding windowing of 1 s (50 samples),
was applied to both thigh-worn sensors raw inertial data,

2MATLAB, Release 2013b, The MathWorks, Inc., Natick, Massachusetts, United

States.
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FIGURE 1 | Sensor placement. Wheelchair patient with sensor positions

highlighted (S1, S2, S3, and S4). Data from the wrist-worn sensors were not

considered in the present analysis.

to extract acceleration features f , including mean (µk) and
variance (σ 2

k
), where k represents the sensors x-, y-, and z-axis.

Sensor data of the corresponding body side were re-labeled
with Aff (affected side, impaired by the stroke or brain tumor
extraction) and NonAff (non-affected, healthy side).

(2) Walking extraction: The walking extraction method was
used to localize and select sensor data segments in walkers
and wheelchair users, which likely contain walking. To extract
potential walking segments (WS), we applied a logic equation
to previously derived acceleration features f , according the
indicator function 1WS in Equation 1.

1WS = µy,NonAff > θ1 ∧ µz,NonAff < θ2 ∧ σ 2
y,NonAff > θ3 (1)

NonAff denotes the non-affected side, indices y an z describe
the vertical and anteroposterior axis, respectively. Thresholds
were derived experimentally according to the method described
in Derungs et al. (2015) by evaluating data of all participants.
Thresholds θ1 and θ2 were 8

m
s2
and 4 m

s2
, respectively. Threshold

θ3 were 0.25 (
m
s2
)2 for wheelchair users and 0.7 (m

s2
)2 for walkers.

Due to the coarse parameter settings, we do not expect
performance changes for patients, who have not been analyzed
in the present dataset. In addition, viability of thigh-worn sensors
for step detection has been demonstrated by Godfrey et al. (2016).
Due to the higher acceleration, we used sensor data from the
non-affected side to derive walking segments within all day-long
recordings.

(3) Stride segmentation andmovement parameters: Selected
walking segments were further processed to derive individual
strides and movement parameters. We derived the following
movement parameters: stride count, normalized stride
count (sum of all derived strides during the day divided
by the recording duration), and the mean and standard
deviation (SD) of stride duration, cadence, and sway. To
analyse natural walking, we omitted walking segments derived
during physiotherapy sessions.

We used an autocorrelation filter to remove unlikely walking
segments, a second filter excluded erratic walking segments
containing less than five consecutive strides. Next, walking
segments were filtered using a median filter. Peak detection was
applied on both thighs’ acceleration data derivative using an
iterative Hill-climber approach to find the highest peaks that
segments individual strides (Aminian et al., 1999). The resulting
strides of both thighs were verified with an iterative algorithm.
Similar to the previous walking extraction, the algorithm used the
higher acceleration signal amplitude of the non-affected thigh to
locate the first stride. Starting with the first stride, the algorithm
iterated over all strides on the non-affected side. In each iteration
the algorithm ensured that one peak, maximum of the affected
sides’ acceleration data, was found. Additional peaks with lower
amplitudes, detected on the affected side, were removed. The last
stride could be found on either side, thus the resulting stride
count for the affected and non-affected body sides could differ by
one stride per walking segment. The stride duration was limited
by upper (3 s) and lower (0.25 s) boundaries.

Subsequently, the cadence (C) for the affected and non-
affected sides were calculated for every walking segment
according to:

C =
nStrides

tWS
(2)

where nStrides refers to the number of strides within the walking
segment and tWS is the duration of the walking segment. We
defined the cadence as strides per minute according to Whittle
(2007). Cadence, which is inversely proportional to stride
duration, was calculated as additional movement parameter for
comparison to related work. Sway (S) was extracted from the
upper arm sensors’ acceleration data according to the isolated
strides. Sway was derived for each body side individually as lateral
upper body movement perpendicular to the anteroposterior
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FIGURE 2 | Bilateral trend analysis stages: (1) Data preprocessing: time-synchronization, merging, feature extraction, and re-labeling of IMU sensor data. (2) Walking

extraction: Localizing of walking segments using logic rules. (3) Stride segmentation and movement parameters: Removing unlikely WS, stride segmentation (hill climb

algorithm) on sensor data of affected and non-affected sides, alternating stride sequence verification, and movement parameter calculation. (4) Illustration of a

sequential recovery trend analysis: conceptual representation of movement parameters across the rehabilitation duration. Linear trend lines on the affected and

non-affected side are used to derive convergence points per movement parameter.
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walking direction as sum of the positive and negative acceleration
within each stride according to:

S =
∑n

i =1(xi > 0 + xi < 0)

n
(3)

where xi denote acceleration samples along the x-axis and n the
total number of samples within a stride.

(4) Recovery trend analysis: Movement parameters were
analyzed as sequential observations over the rehabilitation
duration, to investigate differences in daily walking behavior.
Recovery trends were evaluated by linear regression
models, applied to movement parameters (mean and
SD) of affected and non-affected sides. The SD was used to
illustrate the variability of each movement parameter across
multiple recordings during the longitudinal rehabilitation.
Regression slopes between body sides determined if recovery
trends converge (difference between body sides decrease),
diverge (difference between body sides increase) or remain
parallel during the rehabilitation. The recovery trend was
considered parallel, if Pearson correlation between body
sides was positive and the significance level p < 0.05.
Convergence (CP) was estimated while extrapolating
and comparing recovery trends using the time variable t
according to Equation 4. The regression models were:
yNonAff = αNonAff + βNonAff t (non-affected side) and
yAff = αAff + βAff t (affected side) where all parameters
α and β denote the regression models’ offsets and slopes;
tmax = 3,650 days (10 years).

CP : αNonAff + βNonAff t = αAff + βAff t

for t = 1, . . . , tmax
(4)

Convergence, expressed in days, quantifies movement parameter
similarity. Recovery trends between affected and non-affected
body sides can be considered as measure of training need. A
cut-off limit of 10 years was used to indicate converging, parallel
or diverging recovery trends. Continuous convergence estimates
were derived using a growing window of recording days to
determine movement parameter recovery trends, starting at two
days. The recovery trends’ goodness of fit were evaluated using
R2-values. To determine statistical significance of differences
between body sides andmovement parameters, T-tests (p < 0.05)
were used.

EVALUATION METHODS

We initially evaluated the performance of the walking extraction
and the subsequent stride segmentation algorithm to derive
movement parameters.

Walking Extraction
We validated the walking detection using recordings where
corresponding walking annotations were available i.e., 69 out of
102 recorded days for all patients, including 54 of 63 days for
walking patients, and 15 of 39 days for wheelchair dependent
patients. Sensitivity and specificity were determined according

to truth table quantities. Specifically, true positive (TP) denotes
walking detection when annotated, true negative (TN) no
walking detected when no walking annotated, false positive (FP)
walking detected when not annotated, and false negative (FN) no
walking detected when annotated. The walking extraction was
evaluated using sensitivity and specificity. Sensitivity ( TP

TP+FN )
was used to evaluate that the walking detection was sensitive
across all patients while specificity ( TN

TN+FP ) was used to rule
out non-walking activities. In contrast to precision, which
is referenced to the positive class, specificity is referenced
to the negative class, here non-walking segments. A correct
representation of the non-walking segments are of primary
interest for the movement parameter analysis.

Movement Parameter Validation
A manual stride annotation was performed by an expert to
obtain a movement parameter reference. For each patient a
walking segment was chosen from the day where patients walked
most. Manual stride annotation was performed offline using
MATLAB’s ginput function. Characteristic acceleration peaks
were used as annotation criteria. Resulting stride duration for
individual strides were saved and subsequently the average stride
duration within the walking segment was calculated. Manual
stride annotation was repeated once by the same expert for
the same walking segments of each patient to evaluate intra-
rater variation. The automatically derived movement parameters
stride count, stride duration, and cadence were subsequently
compared with the movement parameter reference according to
the expert’s manual annotation. An example of the acceleration
data and the resulting stride segmentation derived by our
algorithm is illustrated in Figure 3.

Bilateral Trend Analysis
Movement parameters were visualized as sequential observations
across the rehabilitation duration. The movement parameter
visualization provides an overview on the patients’ daily variation
and could be used by clinicians to interpret walking behavior.
The normalized stride count, related with patients’ mobility,
shows the extent and variability of daily stride performances. For
consistency with all movement parameters in this investigation,
we present values derived from affected and non-affected body
sides. Differences in stride count between affected and non-
affected side were not considered as indication for recovery.

RESULTS

We present results of the walking extraction and movement
parameter analysis including data derived from all study
participants. Subsection Bilateral trend analysis includes
information from case reports to detail walking behavior of three
patients exemplarily.

Walking Extraction
Extracting walking segments from the patients’ data is essential
to subsequently estimate movement parameters. Therefore we
validated the walking segment extraction performance. Table 2
summarizes the truth table quantities of the walking segment
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FIGURE 3 | Walking segment with stride segmentation. (Top) Acceleration time series signals of the affected and non-affected side including signal offsets for

visualization. (Bottom) Zoomed-in walking segment including algorithm-derived stride segmentation (dashed lines).

extraction. On average, recorded movement data provided
3.45% (all patients), 4.42% (walkers), and 1.75% (wheelchair
users) walking annotations for the validation. Sensitivity was on
average 69.3% (including all patients). Sensitivity for walkers
was 79.9% and 50.7% for wheelchair users. Generally, increased
sensitivity was found for walkers, due to higher mobility
and walking events, compared to wheelchair users. Average
specificity was greater than 94%, confirming that extracted
walking segments were mostly correct. Results showed that
the unsupervised walking segment extraction was sensitive to
walking segments of walkers and wheelchair users even when
only few walking events occurred.

Movement Parameters
Validation results and relative errors are summarized in Table 3.
Comparing the automatic stride segmentation with the experts’
manual stride reference, the following average relative errors
were found; 2.26% (stride duration), −2.76% (cadence), and
3.67% (stride count) at the affected side; 3.96% (stride duration),
−5.41% (cadence), and −0.79% (stride count) at the non-
affected side. The underestimation of average cadence values was
attributed to a biased manual walking segment extraction based
on the visual interpretation of walking segment boundaries.
Higher deviations were found for patient ID1 (28.10%, stride
duration) and ID8 (−20.82%, cadence). For ID1 only few strides
could be used for the segmentation, rendering the statistics
unreliable. For patient ID8 the cadence was high, while the stride
duration was low, suggesting that the patient walked fast but
with short stride length. The repetition of the manual stride
annotation by the same expert yielded average intra-rater changes

below 1%, thus we consider the manual reference reliable.
Relative errors for movement parameters stride count, stride
duration, and cadence, were below 6% on average. We attributed
the errors to the few falsely detected strides. Average differences
between affected and non-affected sides were; 0.18 strides (stride
count), 0.07 strides/min (cadence), and 0 s (stride duration)
using a manual stride segmentation. Using the automatic
stride segmentation, differences were 1 strides (stride count),
0.69 strides/min (cadence), and 30ms (stride duration).

Figure 4 illustrates the movement parameter stride duration
derived from one recording day (patient ID6, walker). A median

filter (order =
√
Strides) applied to the affected and non-

affected strides showed that both body sides had similar stride
durations, indicating a balanced walking style. The patients’
walking behavior during the day, including sections, where the
patient moved faster can be observed around strides 50, 100, and
280.

All movement parameters were summarized in Figure 5. For
ID9 (walker), a maximum of 891 strides (affected side) and
924 strides (non-affected side) were found. Walkers, including
patients ID2, ID4, ID5, ID6, ID8, ID9, and ID11, performed
significantly more strides than wheelchair users (p < 7.3×10−5).

The stride duration and sway, showed no clear pattern
to distinguish between walker and wheelchair users. Stride
duration, (Figure 5B) was on average 0.6% lower at the affected
side for patients ID1, ID7, and ID10 (wheelchair users). Walkers
and one wheelchair user (ID3) showed 2.8% higher values at the
affected side on average. Cadence was on average 12.2% higher
for all patients in the non-affected side (Figure 5C). For patients
ID2 and ID6 the sway was significantly higher at the non-affected
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TABLE 2 | Validation results of the walking extraction.

ID TP TN FP FN Sens. Spec. Annot. Rec.

(%) (%) (%) (%) (%) (%) (days) (days)

1 1.49 96.15 0.44 1.92 40.22 99.54 4 11

2 4.79 87.04 5.92 2.25 69.99 93.64 5 8

3 0.27 96.30 3.25 0.18 63.11 96.74 3 10

4 1.81 94.03 3.02 1.14 76.17 96.94 6 7

5 2.60 92.52 4.06 0.83 72.30 95.80 10 10

6 3.76 88.68 6.72 0.84 86.80 93.02 10 11

7 0.06 99.01 0.90 0.02 75.88 99.10 3 9

8 2.07 89.23 8.56 0.15 88.83 91.28 8 11

9 4.73 90.38 3.82 1.07 80.91 95.95 7 7

10 0.70 96.64 0.30 2.36 23.55 99.69 5 9

11 4.12 88.21 6.86 0.81 84.29 92.82 8 9

Average—All patients Sum

2.40 92.56 3.99 1.05 69.28 95.87 69 102

Average—Walker (IDs: 2, 4, 5, 6, 8, 9, 11) Sum

3.41 90.01 5.57 1.01 79.90 94.21 54 63

Average—Wheelchair (IDs: 1, 3, 7, 10) Sum

0.63 97.03 1.22 1.12 50.69 98.77 15 39

Truth table quantities per patient are shown. The validation was performed for available walking annotations. Sens., sensitivity of the walking extraction; Spec., specificity of the walking

extraction rejecting non-walking activities; Annot., recording days that include walking annotations; Rec., total recording days.

side (p = 0.042), remaining patients showed significantly higher
sway in the affected side (p = 0.0003). Averaged movement
parameters were summarized in Table 4.

Bilateral Trend Analysis
The bilateral trend analysis across movement parameters
revealed differences and variability between patients during the
recording period. We subsequently present an interpretation of
the recovery trends using case reports for three typical patients
representing the study population: a wheelchair user (ID1) and
two walkers of different age (ID6, ID9). The corresponding
diagrams are shown in Figure 6, while Table 5 summarizes case
report data of the patients’ therapy programme. To illustrate
the diversity in motion parameters across all study patients, we
included remaining patient diagrams in the Appendix (Figures
S1–S3 in Supplementary Material).

1. ID1: The patient was wheelchair-dependent, however
progressed during the 79-day rehabilitation period toward
an independent walker. Progress indicators can be found
during recording days 9, 10, and 11 (e.g., the normalized
stride count increased toward the rehabilitation discharge).
The sway mean revealed a significant difference between body
sides (p = 0.015), while the other movement parameters were
balanced.

2. ID6: The variation in normalized stride count ranged from
minimal 79 strides to a maximum of 188. Stride duration
mean and SD showed no statistical significant differences
during the rehabilitation, suggesting balanced walking. The
cadence mean, was significantly higher in the non-affected

side (p = 0.0001), but differences between affected and non-
affected sides were stable. Cadence SD showed no significant
differences. Sway mean at day 7 appeared to be an outlier.

3. ID9: Stride extraction varied between 86 and 221 strides per
day. However, cadence mean was significantly higher at the
non-affected side (p = 0.017), while cadence SD showed no
significant difference. Moreover, movement parameter trends
indicate that decreasing stride duration led to increasing
cadence. On average, sway mean was 53% higher at the
affected side (significant, p = 0.008), although the sway SD at
the affected side decreased significantly over time (p = 0.016),
suggesting that upper body deficits affected walking pattern.

We derived R2-values of recovery trends showing fits up to
0.9, e.g., for stride duration mean (ID1) and ranging between
0.4 and 0.9 for sway (ID9). Remaining movement parameters
showed R2-values lower than 0.4, caused by data variance.
Patients’ case reports, summarized in Table 5, indicated that
daily recording durations, therapy schedules, therapy type, and
transfers between therapy locations influenced daily walking
durations and resulting stride count. Individual behavior and
medical incidents influenced walking behavior too, as shown
in the case reports. For example, ID6 (recording day 7) had
two therapy sessions and suffered from a headache, thus forced
resting phases, resulting in reduced walking.

Figure 7 shows the continuous convergence estimation as
box plots for each movement parameter. Convergence was
not guaranteed and some CP’s were limited by the 10 years
cut-off. For example, ID1 showed increased mobility toward
the end of the rehabilitation, thus convergence was reached.
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However, results revealed inter-patient variability within and
across movement parameters.

DISCUSSION

Walking Extraction
The approach presented in this work investigated walking
to derive movement parameters and compared body sides.
Although, patients included in our study varied in age, gender,
type of locomotion, and cause of impairment, which all affected
walking patterns, walking extraction performance resulted in an
average sensitivity of ∼ 70% across all patients. The detection
was sufficiently sensitive to extract walking segment from each
patient even if only few walking events occurred. For the
movement parameter estimation from walking, our walking
segment extraction does not require perfect sensitivity. Instead,
specificity must be maximized to accurately estimate movement
parameters. The average specificity in our analysis was above
94%, which demonstrates that non-walking activities weremostly
rejected. Further, our rule-based algorithm does not require any
data-based training and could be used for remote monitoring,
were data annotation is infeasible. In our investigation, sensors
were placed at anatomical landmarks, i.e., above the knee, and
did not require adjustment to pre-defined angles. Due to the
diversity in our study population, we are confident that the
coarse threshold setting used in walking segment extraction
remains viable for other, yet unseen, patients with hemiparesis
and could tolerate natural positioning offset and orientation
variability. However, further investigations are needed to
quantify the orientation variability effect and potentially develop
compensation methods. Our approach promotes rapid sensor
attachment and could facilitate self-attachment of sensors
by patients in remote home monitoring settings without
guidance, e.g., by integrating sensors in clothing. With the
natural readjustment of clothing, orientation variability may be
reduced too.

Movement Parameters
Wide inter- and intra-patient variability and inconsistent walking
styles, including asymmetries and irregularities render stride
segmentation using peak detection challenging (Parisi et al.,
2016). For consistency across all movement parameters, we
calculated and illustrated normalized stride counts for both body
sides too. Our algorithm ensured that stride count differences
between affected and non-affected body sides did not exceed one
stride per individual extracted walking segment. Consequently,
summation of walking segments per recording day could result in
stride count differences grater one. Stride count differences were
not considered as recovery trend indication. The stride count
parameter was intended to illustrate extent and variation in daily
movement and mobility behavior.

Our choice of movement parameters and analysis of
differences between body sides is motivated by patients’
compensation strategies. Patients with a hemiparesis, e.g.,
after stroke, often develop compensation strategies including
shoulder and trunk rotations to cope with functional limitations
and moreover show disturbed balance, which is influencing
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FIGURE 4 | Extracted strides derived from one recording day. Strides are marked for the affected side (637 strides) and non-affected side (667 strides). The stride

differences were due to the processing of walking segments, as described in the main text. Stride durations were smoothed, using a median filter. Vertical lines

indicate starting and ending of individual walking segments.

FIGURE 5 | Movement parameters. (A) Stride count norm. over recording days; significantly more strides in walkers compared to wheelchair users were found

(p < 7.3× 10−5). (B) Stride duration differed on average 2.2% between body sides. (C) Cadence was on average across all patients 12.2% higher at the

non-affected side. (D) The sway showed significant differences between body sides (p < 0.0011).

movement of affected and non-affected body sides (Di Fabio
et al., 1986; Bourbonnais and Noven, 1989). Related work
involving measurements in controlled settings further showed
that patients with a hemiparesis may develop abnormal walking
patterns due to muscle weakness (de Quervain et al., 1996;
Chen et al., 2005). Abnormal walking patterns and asymmetries
could influence all phases of the gait cycle including stride

duration (sum of swing- and stand-duration), stride velocity,
cadence, and similar (Titianova et al., 2003; Moe-Nilssen and
Helbostad, 2004; Patterson et al., 2010). Although stride duration
and cadence are confirmed as relevant movement parameters for
recovery indication in the literature, results from our free-living
study showed no clear recovery trends in movement parameters.
Stride parameter related to impairments of patients after stroke,
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e.g., scuffing, fatigue, or imbalance could be investigated to
further understand the recovery process. However, in the present

TABLE 4 | Summary of extracted movement parameters averaged over all

patients.

Averaged movement parameters

Body

side

Statistic

feature

Stride

count

total

Stride

count

normalized

Stride

duration (s)

Cadence
(

strides
min

)

Sway
(

m
s2

)

Aff Mean 3880 425 1.40 39.41 2.34

SD 3372 347 0.35 9.06 0.93

Min 66 7 1.10 18.19 1.30

Max 9187 891 2.36 52.61 4.20

NonAff Mean 4059 445 1.38 44.01 1.16

SD 3521 361 0.37 10.02 0.43

Min 79 7 1.07 22.77 0.72

Max 9592 924 2.38 62.35 1.84

Stride count total (sum of all strides) and normalized count (total stride count divided by

recording days) showed high SD due to different walking behavior of wheelchair users

and walkers.

observation study such extended parameter analysis were not
intended.

Advanced stride segmentation algorithms to derive
movement parameter exist, however, validation were restricted
to lab-controlled settings. How such algorithms perform
in free-living remains unclear, hence our approach utilizes
established methods for subsequent bilateral movement analysis.
Although, the extent of our validation was limited, and false
strides could be detected, we found that our averaged movement
parameters stride duration (1.40± 0.35 s affected side, 1.38±
0.37 s non-affected side) and cadence (39.41± 9.06 strides/min
affected side, 44.01± 10.02 strides/min non-affected side),
were similar to published values. In a lab recording study
with six hemiparetic patients after stroke, (Chen et al., 2005)
measured stride durations of 1.47± 0.21 s and cadences of 83.4±
12.8 steps/min. Cadence was expressed in steps per minute, thus
the value is doubled, compared to strides per minute. Moreover,
Chen et al. showed that movement parameters (stride duration
and cadence) in patients after stroke were similar to healthy
controls. Fraccaro et al. (2014) found averaged stride duration
of (1.1 – 1.18 s) and cadence of (99.62 –129.07 steps/min) while
analyzing healthy older adults using Shimmer sensors. Further,
the validation of automatically derived movement parameters
with the experts’ manual stride reference renders the influence of

FIGURE 6 | Bilateral trend analysis. Left column: wheelchair user (ID1, age = 57 years, 11 recording days), middle column: walker (ID6, age = 38 years, 11 recording

days), right column: walker (ID9, age = 72 years, 7 recording days). Top to bottom: extracted movement parameters: normalized stride count, stride duration (mean

and SD), cadence (mean and SD), and sway (mean and SD). Recording days where walking was extracted relative to study begin are indicated by markers, dashed

lines indicate recovery trends.
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TABLE 5 | Case reports for the three selected patients, including personal therapy schedules.

ID Day Dur (h) Therapy schedule, (* see Notes) Notes

1 1 5.6 ST, ET, CT, S, R, ST, PT, IT,

2 7.4 ST, ET, ET, PT, S, CT, ST

3 6.0 ET, PT, ST, R, V, CT, IT

4 7.5 S, ET*, S, CT, R, PT*, S, SpT, IT Walking attempts

5 7.7 V, ET, S, ET, PT, S ST, S

6 7.8 R, PT*, S, ET*, SpT, R, SpT*, S Walking attempts

7 7.8 SpT, ET, SpT, S, R, ST, SpT, PT, R

8 6.9 R, ET, PT, SpT, IT

9 4.9 ST, DT, ST, S Walking

10 6.6 ST, PT, ET, ST IT Walking

11 3.3 ET, ST, DT Walking

6 1 5.3 ET, DT, PT, V, ST, PT, IT

2 6.6 ET, DT, ET, PT, ST, IT

3 6.4 ST, ST, PT*, IT, Walking-tests

4 5.8 PT, ET, DT, V, ST, IT

5 6.9 ET, PT, DT, ST, IT

6 6.5 PT, ST, ST Exhaustion

7 6.8 PT, ST Rests, headache

8 7.7 PT, S, ET, PT, S, ET* ST, V, IT Walking

9 5.7 PT, S, ET* Walking, stroll

10 5.6 PT, ST, IT, S

11 4.2 V, PT, IT, ET, ST

9 1 4.5 V, PT, DT, ST

2 7.5 PT, ST, ET, DT, BT, V, IT Walking

3 6.4 ET*, PT, DT*, R, SpT, IT Walking

4 7.8 CT, PT, DT, BT, R, ST, V Head bumped

5 7.3 CT, V, PT*, SpT, IT Walking exercises

6 8.0 DT, PT, DT, BT, V, IT, ST

7 8.0 CT, PT, DT, BT, ET, SpT, IT

ET, ergotherapy; PT, physiotherapy; DT, training of ADL, e.g., lay the table; ST, self training, e.g., drawing, CT, cognitive training; IT, intense training in the gym; S, socializing; R, resting;

SpT, special therapy, e.g., lymph drainage; V, visit , e.g., physician; BT, balance training.

FIGURE 7 | Continuous convergence estimates. Across all patients, variance was observed in the movement parameters. ID1 showed low median CP, suggesting

movement parameter convergence between body sides toward discharge. For ID6 and ID9 convergence trends differ by movement parameter. The CP analysis can

help to identify patient-specific therapy needs.

falsely detected strides on the subsequent recovery trend analysis
negligible.

Sway was determined from bilateral upper arm sensors
as variation of the trunk position perpendicular to the
walking direction. We expected that the upper arm position is
advantageous regarding sensor wearing comfort and provides

larger sway amplitude compared to a waist-worn sensor that
is closer to the centre of mass. Wearing comfort is crucial for
day-long recordings. In particular, sensors at the lower trunk
might affect the patients’ activities, e.g., when using toilets,
sitting, or resting. Orientation variability could result in reduced
acceleration amplitudes and thus modify the sway estimate.
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Similar to the thigh sensor position, visual inspection during
the recordings did not reveal a large orientation variation of
the upper arm sensors and no readjustment was made during
recordings. Nevertheless, further evaluations are needed, e.g.,
using an optical reference system, to investigate sensor alignment
and the effect on sway amplitude. Based on garment fitting
simulations, Harms et al. (2012) showed that the angular
variability of clothing-integrated sensors and closely fitting
garments can remain below 15◦, thus would constrain sway
amplitude variation below ± 5%. Different strategies were
described in the literature to reduce the influence of a varying
sensor orientation. For example, Kunze and Lukowicz (2008)
proposed a combination of acceleration and gyroscope data
to compensate for sensor placement variances. However, for
long-term recordings, gyroscopes are inappropriate due to the
increased power-consumption compared to accelerometers.

Bilateral Trend Analysis
The proposed recovery trend analysis of the patients’ movement
parameters over several months including affected and non-
affected body sides in realistic day-care settings were not
addressed in the literature so far. Our study, including 11 patients
and 102 day-long recordings revealed differences between
patients and variability in movement parameters. The wheelchair
users in this study reflected the patient continuum from
initial wheelchair dependency toward independent walking. In
particular, patients ID1, ID3, ID7, and ID10, were transforming
from wheelchair users to walkers during the study duration.
Objective sensor measurements could provide clinicians valuable
information about mobility behavior and recovery trends in
unsupervised remote monitoring, even when patients are at
the boundary to walking independence and yet rarely walk.
Although van Meulen et al. (2016) proposed evaluation metrics
for daily life movements, only 201min of movement data derived
from two patients were analyzed. For the approach presented in
this current study, recordings across several days were used to
extract walking segments and analyse movement parameters.

Typically, analysis of walking-related movement parameters
used feet, ankle, or trunk mounted sensors (Aminian et al.,
1999; Moe-Nilssen and Helbostad, 2004; Zijlstra, 2004). The
present study aimed at an unobtrusive measurement during
daily activities by choosing sensor positions at thighs and upper
arms, hence suited for exercise monitoring in remote settings
too. Advantages of thigh-worn sensors, e.g., for posture analysis
were further discussed by Godfrey et al. (2016). Nevertheless
practical sensor mounting and integration must be considered.
We believe that the selected positions could be realized, e.g., using
unobtrusive shirt- and trouser-integrated sensors, similar to the
approach described by Tognetti et al. (2005). Hence, patients with
a hemiparesis may not need to handle sensors separately from
their clothes.

Analyzing rehabilitation patient progress is an open challenge.
While clinical assessments require patients to perform specific
exercises, our approach was to interpret daily free-living activity,
specifically walking.

For post acute stroke patients, the relation of affected and
non-affected body sides was first investigated by Gubbi et al.

(2013). When comparing body sides, individual anthropometric
characteristics are considered and an absolute reference to an
“ideal” movement pattern is avoided. The present investigation
showed for the first time results in an unconstrained setting.
By considering walking segments, a natural and repeatable
assessment condition for movement parameters is created,
applicable outside of clinical settings and assessments. Patients’
daily stride counts, which is related to walking behavior and
mobility, were compared against case reports for three typical
patients, as representatives of the study population, including a
wheelchair user and twowalkers of different age. Based on clinical
case reports, we found that the sensor-reported stride count was
related with type and amount of scheduled therapies. We believe
that clinicians could benefit from quantified movement analysis
using wearable sensors to devise therapy. The presented analysis
could facilitate remote monitoring applications, where patients
follow their activities in home environments.

The patient recovery progress was expressed as convergence
of individual movement parameters between body sides, and
quantified as CP estimate. The impairment of the affected
side typically results in compensations performed by the non-
affected side. We therefore expected to see changes in movement
parameters of both body sides. Due to the gradual stroke recovery
process over weeks, months, and even years, we used linear
regressions to describe convergence trends. We consider the
CP as useful metric for remote patient monitoring, where CPs
could indicate patient-specific therapy needs. In the present
study, therapy strategies were still chosen independent of CP
estimations. In the future, CPs estimated on each day could
contribute to specific, individualized therapy choices. Personal
therapy plans could be created in the clinic as well as at home,
e.g., by selecting exercises that address movement parameters
with relatively large CP estimates and continue to adjust the
personalized training programme as the patient’s CP estimates
change. For example, walking could be promoted by treadmill
training or outdoor strolls, improving the movement parameters
stride duration and cadence. Sway could be improved via balance
gaming exercises (Morone et al., 2014).

For some patients, e.g., ID1, convergence was found during
the rehabilitation period. For other patients and movement
parameters, both, recovery trends and CPs varied. Using case
reports, some influence of the daily therapy programme and
special events could be identified. Another source of variation
are mood and social stimuli, which were not monitored in
the current study. In contrast, the influence of falsely detected
strides for the movement parameter calculation and subsequent
convergence point estimation was considered negligible. By
narrowing the activity, e.g., walking at a given speed (Altini
et al., 2016), or analyzing selected exercises, a focused assessment
condition could be realized and variability in movement
parameters may be reduced. Since we extracting walking
segments in free-living behavior data, we did not require patients
to perform specific test exercises. On the other hand, constraining
the analysis to a given walking speed would have led to narrow
applicability of our approach as the walking ability of patients
with a hemiparesis varies widely. Our sequential recovery trend
analysis started with only two observations where outliers may
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affect the convergence point estimate more than after additional
observations from further monitoring days were included. Based
on the long-term therapy progress or changes in the training
plan, it is conceivable to adjust the observation window, e.g., to
include only the most recent observations.

CONCLUSION

We analyzed movement parameters of patients with a
hemiparesis during free walking over weeks and months
and compared affected and non-affected body sides to investigate
the long-term recovery process in an outpatient setting. In
particular, the mobility behavior analysis and investigation of
potential recovery trends were analyzed using algorithms which
do not depend on manually annotated data. We demonstrated
that our analysis can be used in rehabilitation settings, where
patients follow their personal daily routines. Hence, our
method could render remote monitoring in free-living feasible.
Movement parameter ranges for stride duration and cadence
confirmed previous lab study results demonstrating the usability
of thigh worn sensors. However, no consistent trend across
movement parameters and patients was found due to parameter
variability. Case reports confirmed that variability in movement
parameters was caused by patient-individual habits, amount and
type of scheduled therapies, and patients’ daily health conditions.

Comparing recovery trends between affected and non-affected
body sides regarding the movement parameters could be done
using the convergence point estimation. Although, convergence
was not guaranteed in the present study, our analysis showed
that convergence could be achieved. Hence, we believe that
convergence points provide an intuitive view on individual
patient deficits that could be assessed remotely during everyday
life and help to personalize training programmes. Furthermore,
we expect that our analysis can be extended to follow-up studies
including additional movement parameters and generalizes to
recovery trend analysis in larger hemiparetic patient populations.
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