AUTHOR=To Naoya , Sanada Ippei , Ito Hikaru , Prihandana Gunawan S. , Morita Shinya , Kanno Yoshihiko , Miki Norihisa TITLE=Water-Permeable Dialysis Membranes for Multi-Layered Microdialysis System JOURNAL=Frontiers in Bioengineering and Biotechnology VOLUME=3 YEAR=2015 URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2015.00070 DOI=10.3389/fbioe.2015.00070 ISSN=2296-4185 ABSTRACT=
This paper presents the development of water-permeable dialysis membranes that are suitable for an implantable microdialysis system that does not use dialysis fluid. We developed a microdialysis system integrating microfluidic channels and nanoporous filtering membranes made of polyethersulfone (PES), aiming at a fully implantable system that drastically improves the quality of life of patients. Simplicity of the total system is crucial for the implantable dialysis system, where the pumps and storage tanks for the dialysis fluid pose problems. Hence, we focus on hemofiltration, which does not require the dialysis fluid but water-permeable membranes. We investigated the water permeability of the PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. Sufficiently, water-permeable membranes were found through