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The categorization of benign and malignant patterns in digital mammography

is a critical step in the diagnosis of breast cancer, facilitating early detection

and potentially saving many lives. Diverse breast tissue architectures often

obscure and conceal breast issues. Classifying worrying regions (benign and

malignant patterns) in digital mammograms is a significant challenge for

radiologists. Even for specialists, the first visual indicators are nuanced and

irregular, complicating identification. Therefore, radiologists want an advanced

classifier to assist in identifying breast cancer and categorizing regions of

concern. This study presents an enhanced technique for the classification of

breast cancer using mammography images. The collection comprises real-

world data from King Abdullah University Hospital (KAUH) at Jordan University

of Science and Technology, consisting of 7,205 photographs from 5,000

patients aged 18–75. After being classified as benign or malignant, the pictures

underwent preprocessing by rescaling, normalization, and augmentation. Multi-

fusion approaches, such as high-boost filtering and contrast-limited adaptive

histogram equalization (CLAHE), were used to improve picture quality. We

created a unique Residual Depth-wise Network (RDN) to enhance the precision

of breast cancer detection. The suggested RDN model was compared with

many prominent models, including MobileNetV2, VGG16, VGG19, ResNet50,

InceptionV3, Xception, and DenseNet121. The RDN model exhibited superior

performance, achieving an accuracy of 97.82%, precision of 96.55%, recall of

99.19%, specificity of 96.45%, F1 score of 97.85%, and validation accuracy of

96.20%. The findings indicate that the proposed RDN model is an excellent

instrument for early diagnosis using mammography images and significantly

improves breast cancer detection when integrated with multi-fusion and

e�cient preprocessing approaches.

KEYWORDS

mammogram dataset, residual network, CNN, deep learning, processing images, breast

cancer
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1 Introduction

Breast cancer is the most frequent malignancy diagnosed in

women, ranking among the threemost common cancers worldwide

(Harbeck and Gnant, 2017). With an estimated 2.3 million new

cases, accounting for 11.6% of all cancer cases, and 666,000

deaths, which was ∼6.9% of all cancer deaths that involved

women in 2022 (Bray et al., 2024). This disease occurs when

the breast tissue grows abnormally and divides uncontrollably,

resulting in excessive growth of cells and leading to the formation

of a tumor (Balakumaran et al., 2010). The etiology of breast

cancer is attributed to a combination of multiple risk factors,

these include a previous diagnosis of breast cancer, genetic

factors as positive family history, some hormonal risk factors

including, nulliparity, early menarche, delayed menopause, the use

of hormone replacement therapy, as well as environmental factors

as tobacco use, alcohol intake, obesity and sedentary lifestyle,

Conversely, factors linked to a reduced risk of developing breast

cancer are multiparity, a history of breastfeeding, regular physical

activity, and weight loss (Admoun and Mayrovitz, 2022).

The clinical manifestation of breast cancer can vary widely,

ranging from asymptomatic breast masses to palpable lumps, skin

changes, or nipple discharge (Sung et al., 2021). An early detection

of breast cancer can significantly improve the disease treatment

outcomes and increase the survival rate by 85% (Balakumaran

et al., 2010; Zeeshan et al., 2018). The diagnostic approach of a

breast lesion is performed using a triple assessment, a standardized

method consisting of three critical components: clinical breast

examination, imaging studies, and biopsy (Nigam and Nigam,

2013). The utilization of imaging modalities is a fundamental

approach for the detection, assessment, and response to therapy

in patients with breast cancer (Jafari et al., 2018). Among the

most used methods in the decade is mammography. A technique

that requires a radiologist’s careful examination to detect potential

breast cancer characteristics (Kalpana and Selvy, 2024).

A mammogram is an X-ray machine that emits a short burst

of X-rays that passes through the breast tissue to a detector on the

opposite side. The detector can be either a photographic film plate,

which records the x-ray image on film, or a solid-state detector, that

sends electronic impulses to a computer, resulting in a digital image

(Screening and Board, 2024). Other imaging modalities include

ultrasonography (US) and magnetic resonance imaging (MRI)

while these techniques have their benefits, mammograms remain

the gold standard for breast cancer screening for multiple reasons.

Firstly, Mammograms are particularly sensitive in detecting subtle

abnormalities in breast tissue that may be missed by other

imaging techniques. Secondly, mammograms offer an excellent

spatial resolution, allowing for precise localization of detected

lesions. These factors contribute to the continued dependence on

mammograms as the primary screening tool for breast cancer

(Screening and Board, 2024).

On the other hand, literature has shown several limitations

facing human radiologists in reading mammograms, with reported

sensitivity and specificity rates ranging from 77% to 87% and 89%

to 97%, respectively (Ribli et al., 2018). As a consequence, Double

reading has been advocated in the majority of screening programs,

leading to a significant increase in the time burden on human

radiologists (Suh et al., 2020). Furthermore, a notable constraint

referred to as tissue overlap occurs when distinct breast tissues,

merely separated by projection direction, are represented at the

same position in the 2D mammographic image. Consequently,

normal tissues may conceal the presence of a malignant disease,

diminishing sensitivity. The representation of unique normal

tissues may resemble a concerning lesion, hence diminishing

specificity. Their effects considerably reduce the precision of

2D mammography, particularly in breasts with substantial fibro-

glandular tissue (i.e., thick breasts), which occurs in roughly fifty

percent of the screened population and accounts for one-third of

undetected cancers (Sechopoulos et al., 2021).

These challenges and limitations have spurred the exploration

of deep-learning techniques for medical image analysis (Kalpana

and Selvy, 2024). The recent improvements in digital imaging,

imaging modalities, and computer development have led to

increased interest in breast cancer research area (Mokni et al.,

2021). Using AI-based computer-aided detection (CAD) systems

allows for the analysis of medical images using machine learning

techniques and advanced algorithms to detect potential anomalies.

These systems can process large volumes of data efficiently, detect

subtle patterns that may be missed by the human radiologist, and

provide objective assessments (Liu et al., 2023). The proposed

Machine learning-based CAD system can help radiologists

interpret these images more accurately, thereby enhancing breast

cancer’s diagnostic process and supporting faster patient care

decision-making (Alshammari et al., 2021). Results from a study by

demonstrated that an AI-CAD system could accurately differentiate

between benign and malignant breast lesions, even in challenging

cases (Nasser and Yusof, 2023). In addition, a meta-analysis by

found that AI-CAD systems significantly improved the detection

of breast cancer by achieving a sensitivity of 93.1%, and specificity

of 68.7% when compared to human interpretation alone (Liu et al.,

2023).

The study’s contributions include the following:

• A breast cancer mammography dataset was collected from

King Abdullah University Hospital and is referred to in this

research as (KAUH-BCMD).

• The collected data was compared to breast cancer

mammography image datasets and is described in Section 2.4.

• Several fusionmethods, including high-enhanced filtering and

contrast-limited adaptive histogram equalization (CLAHE),

have been employed to improve image quality.

• To improve breast cancer diagnosis accuracy, a novel residual

depth network (RDN) is created that blends residual learning

with depth-separable convolutions to improve computational

efficiency and accuracy. This design employs an inverted

residual bottleneck architecture, which significantly extends

the feature space while requiring a minimal number

of parameters.

• The model used in this research was compared with several

pre-trained models.

The rest of this work is organized as follows. Section 2

covers related classification research. Section 3 discusses the basic

strategies and methods used in the proposed scheme. Experimental

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2025.1529848
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Al-Mnayyis et al. 10.3389/fdata.2025.1529848

results are presented in Section 4, along with a comparison of the

proposed strategy with existing methods. Section 5 summarizes the

conclusions we have reached through our investigation and Section

6 provides a plan for our future work.

2 Literature review

Breast cancer diagnosis has been gradually improved by the

application of deep learningmodels across various forms ofmedical

imaging, including mammography, ultrasound, and histology.

This section examines related research on CNN architecture,

hybrid models, and pre-trained models that have achieved high

classification accuracy in breast cancer detection, demonstrating

the effectiveness of integrating diverse data and improving feature

extraction procedures.

2.1 Deep learning and machine learning in
breast cancer diagnosis

Breast cancer diagnosis, especially in resource-limited settings,

despite challenges like false positives. Recent AI applications

focus on lesion detection, segmentation, classification, and cancer

risk prediction, addressing limitations and exploring prospects

in medical imaging (Vocaturo and Zumpano, 2021). Deep

learning has revolutionized breast cancer image analysis by

enabling segmentation, feature extraction, classification, and

detection directly from raw medical images across various

modalities, including ultrasound, mammography, MRI, and digital

breast tomosynthesis (Debelee et al., 2020). Machine Learning

and Deep Learning techniques in breast cancer detection and

classification using various imaging modalities like mammography,

histopathology, ultrasound, and MRI. potential, limitations, and

future directions of AI in clinical decision-making for breast

cancer diagnosis, emphasizing the need for external validations and

accessible datasets (Dar et al., 2022).

In Gagliardi et al. (2024a) convolutional neural networks

(CNNs), including variants like ResNet, VGG, and Inception

models, for breast ultrasound image classification. These models

achieved accuracies between 85% and 88%, often requiring

substantial training times or relying on small datasets, which

limited generalization. While Gagliardi et al. (2024b) focuses

on leveraging deep learning models for breast ultrasound image

analysis, highlighting their dual capability in classification and

segmentation. Using the BUSI dataset, the study evaluates multiple

models, identifying the best-performing one with over 90%

accuracy, 92% precision, 90% recall, and a 90% F1 score. The

proposed method enhances diagnostic effectiveness by providing

tumor mass masks alongside classifications, demonstrating

potential for clinical application.

In Shahid and Imran (2025) reviews the advancements

in deep learning for breast cancer detection, highlighting its

potential to achieve accuracies up to 93.8%, surpassing traditional

methods. It also discusses challenges, emerging trends, and

future directions for improving breast cancer diagnosis using

AI. In Mahesh et al. (2025) introduces an optimized framework

using EfficientNetB7 and targeted augmentation strategies to

improve breast ultrasound image classification, achieving 98.29%

accuracy. The approach addresses overfitting, image distortions,

and class imbalances, offering a robust tool for early breast cancer

detection. While Manna et al. (2025) proposes the GradeDiff-

IM model, combining multiple ML models and deep learning

for cancer grade classification, achieving accuracies of 98.2% for

G1, 97.6% for G2, and 97.5% for G3. The stacking ensemble

approach outperforms single ML and DL models, improving grade

classification accuracy.

The Keogan (2025) uses Fourier-transform infrared (FTIR)

chemical images of breast cancer tissue to train deep learning

models for predicting disease recurrence, achieving an ROC AUC

of 0.64. The results suggest that all-digital chemical imaging

offers a promising, label-free approach for histopathological

prognosis in breast cancer. In Natarajan et al. (2025) proposes the

Dynamic Harris Hawks Optimized Gated Recurrent Unit (DHH-

GRU) framework for breast cancer prediction, achieving 98.05%

accuracy on the Wisconsin Diagnostic Breast Cancer dataset. By

combiningGRU for temporal data andHarris HawksOptimization,

the method demonstrates superior performance compared to

existing techniques.

2.2 CNN on mammogram beast dataset

These studies illustrate many advanced techniques for

identifying breast cancer in mammograms through deep learning

methodologies. The initial work employs a CNN model and

preprocessing techniques to develop a deep learning system that

precisely and effectively classifies lesions in mammograms as

malignant or non-malignant. The MIAS dataset had sensitivity,

specificity, accuracy, and AUC of 98%, 92.6%, 95.3%, and 0.974%,

respectively, whereas the INbreast dataset exhibited values of

96.55%, 96.49%, 96.52%, and 0.98%, respectively (El Houby and

Yassin, 2021). The second study introduces a deep bottleneck

convolutional neural network optimized with Bayesian techniques,

yielding a maximum accuracy of 96.5% with a sensitivity rate

of 96.45% when tested on the INbreast dataset, demonstrating

high precision in breast cancer diagnosis (Jabeen et al., 2024).

In another approach, a CNN optimized with Particle Swarm

Optimization (PSO) achieved success rates of 98.23% and 97.98%

on the DDSM and MIAS datasets, respectively, highlighting the

effectiveness of this technique for automated predictions (Aguerchi

et al., 2024). Additionally, a computer-aided diagnosis model

that combines CNNs with a pruned ensembled extreme learning

machine (HCPELM) achieved an accuracy of 86% using the MIAS

dataset, surpassing other benchmark models and showcasing

its utility in early detection (Sureshkumar et al., 2024). Finally,

the Fusion of Hybrid Deep Features (FHDF) approach, which

combines multiple CNN architectures like VGG16, VGG19,

ResNet50, and DenseNet121, attained maximum accuracy rates

of 98.706%, 97.734%, and 98.834% on the MIAS, CBIS-DDSM,

and INbreast datasets, respectively, proving to be a robust

solution for early tumor detection (Al-Hejri, 2024). Collectively,

these studies highlight the significant advancements in deep

learning techniques for enhancing breast cancer classification

and diagnosis.
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2.3 Hybrid models on mammogram breast
dataset

This compilation of research illustrates various innovative

methodologies in breast cancer detection utilizing machine

learning and deep learning techniques. The first study introduces

Quantum SpinalNet (Q-SpinalNet), which employs a Non-Local

Means Filter for preprocessing and ETSegNet for segmentation of

mammogram images, achieving an accuracy of 90.3%, with a True

Negative Rate (TNR) of 90.9% and a True Positive Rate (TPR)

of 90% (Sathish, 2024). Another study emphasizes the application

of artificial intelligence in digital mammography, utilizing Haar

wavelet feature extraction followed by classification with a hybrid

deep neural network, achieving an area under the curve (AUC)

of 0.92 for early breast cancer detection (Karthiga et al., 2024).

In a different approach, a hybrid model combining the quantum-

inspired binary Grey Wolf Optimizer (IQI-BGWO) with Support

Vector Machine (SVM) techniques, tested on the MIAS dataset,

achieved remarkable performance metrics: a mean accuracy of

99.25%, sensitivity of 98.96%, and specificity of 100% (Bilal

et al., 2024). Addressing the pressing need for effective diagnostic

systems, another study proposes an automated computer-aided

diagnosis system that enhances mammogram contrast and employs

the EfficientNet-B4 architecture, yielding classification accuracies

of 98.459% on the INbreast database and 96.175% on the CBIS-

DDSM database (Chakravarthy et al., 2024). Finally, a novel neural

network approach combines feature extraction from AlexNet

and ResNet18 to improve the classification and segmentation

of mammographic images, demonstrating enhanced accuracy in

differentiating between benign and malignant cases, trained on

a dataset of 2,138 images (Makovetskii et al., 2024). Together,

these studies highlight the rapid advancements in computational

techniques aimed at enhancing breast cancer diagnosis and

improving patient outcomes.

2.4 Pre-trained model on mammogram
breast dataset

This collection of research highlights significant advancements

in breast cancer detection methodologies utilizing various machine

learning and deep learning techniques. The first study introduces a

breast cancer diagnosis model based on 3Dmammography images,

achieving a remarkable accuracy of 96.6% through preprocessing

and segmentation methods, notably employing the Adaptive

Thresholding with Region Growing Fusion Model (AT-RGFM)

optimized by the Modified Garter Snake Optimization Algorithm

(MGSOA) (Umamaheswari and Babu, 2024). In another approach,

a Convolutional Neural Network (CNN) model based on the

VGG16 architecture showcases an impressive average identification

rate of 96.945% for classifying breast X-ray mammography images

into benign and malignant categories, utilizing data collected

from the Medical Imaging Department of Ganzhou People’s

Hospital and Jinan University’s Sixth Affiliated Hospital (Liu

et al., 2024). Further, a novel detection method leveraging the

ResNet50 framework combined with heat mapping and Grad-

Cam visualization achieved an accuracy of 0.8920 on the FDDM

dataset and an even higher 0.9830 on the MIAS dataset (Gharaibeh

et al., 1943). Another study emphasizes a dual-branch model

that processes mammograms from both Cranial Caudal (CC)

and Mediolateral Oblique (MLO) views, attaining a top accuracy

of 95.86% using the CBIS-DDSM dataset, indicating significant

improvements in breast cancer classification capabilities (Boudouh

and Bouakkaz, 2024). Lastly, the introduction of StethoNet, a

deep learning framework trained on the Chinese Mammography

Database (CMMD), demonstrated robust performance across

multiple datasets, achieving AUC values of 90.7% for CMMD,

83.9% for INbreast, and 85.7% for Vindr-Mammo (Lamprou

et al., 2024). Collectively, these studies underscore the potential of

integrating advanced computational techniques to enhance early

detection and diagnosis of breast cancer, ultimately contributing to

improved patient outcomes.

2.5 A some of the current mammography
repositories

Both public and private mammography databases are used by

breast cancer researchers. In this section, a few frequently used

mammography datasets are briefly reviewed.

2.5.1 The dataset of the mammographic image
analysis society (MIAS)

Among the oldest is the MIAS dataset. The dataset is

proprietary and owned by a UK research organization. There are

161 instances and 322 photos encompassing benign, malignant, and

normal mammograms. Images with annotations depicting circles

around the region of interest are provided in the file (Suckling et al.,

2015).

2.5.2 The INbreast dataset
The breast research group rendered its mammography dataset,

termed INBREAST, freely available. The data, produced by the

Breast Center at CHSJ Porto Hospital of St. John (CHSJ), was

released in 2010. The study comprised a total of 410 photos,

consisting of 115 DICOM-formatted examples and 90 photographs

captured from two perspectives (CC, MLO). Twenty-five examples

(two photographs for each case) were sourced from patients who

underwent breast surgery, whereas 90 cases (four images per case)

were derived from women who had bilateral breast procedures.

The BI-RADS algorithm was used to classify bulk, calcification, and

normal pictures in the INBREAST dataset. The dataset (Moreira

et al., 2012) is no longer accessible.

2.5.3 The curated breast imaging subset
(CBIS-DDSM) dataset

The CBIS-DDSM dataset represents an enhanced iteration of

the DDSM (Heath et al., 1998). The objective of this dataset is to

improve DDSM picture segmentation. The CBIS-DDSM evaluates

segmentation methodologies and revises ROI annotations. Breast

cancer detection models may be trained and evaluated using
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TABLE 1 A summary of the mammography datasets.

Dataset MIAS
(Suckling
et al., 2015)

INbreast
(Moreira
et al., 2012)

(CBIS-
DDSM) (Lee
et al., 2017)

CSAW-S
(Matsoukas
et al., 2020)

(KAU-BCMD)
(Alsolami
et al., 2021)

(DMID)
(Oza et al.,
2024)

(KAUH-
BCMD)

Original UK Portugal USA Sweden KSA India Jordan

Year 1994 2010 2017–2018 2020 2021 2023 2024

Number of cases 161 cases 115 cases 6,775 cases 172 cases 1,416 cases 225 cases 5,000 cases

Number of images 322 images 410 images 10,239 images 338 images 5,662 images 510 images 7,205 images

Views MLO MLO, CC MLO, CC NA MLO, CC MLO, CC MLO, CC

Image type file PGM DICOM, XML DICOM DICOM DICOM and JPG

formats

DICOM, TIFF DICOM and

JPG formats

BI-RADS NO YES YES YES YES YES NO

Ground truth YES NO YES YES YES YES YES

Patient information NO YES YES, Age NO YES, Age NO YES, Age

Dataset type Private Public Public Public Public Public Public

a dataset of over 1,000 images, categorized into two types of

abnormalities: mass and calcification (Lee et al., 2017).

2.5.4 The CSAW-S dataset
The CSAW-S dataset (Matsoukas et al., 2020) addresses

the challenge of limited data by providing 342 mammograms

annotated with expert radiologist labels for cancer, along with

additional non-expert annotations of breast anatomy (e.g., skin,

pectoral muscle, nipple). While these non-expert labels may be

imperfect, they significantly enhance segmentation performance

when combined with expert annotations. Experiments demonstrate

that a network trained solely on expert labels is outperformed

by one that incorporates these complementary non-expert

annotations, thus transforming the task into a multi-class problem.

2.5.5 The King Abdulaziz University Breast
Cancer Mammogram Dataset (KAU-BCMD)

The first extensive dataset in Saudi Arabia that focuses on a

significant number of mammography scans is the King Abdulaziz

University Breast Cancer Mammography Dataset (KAU-BCMD)

(Alsolami et al., 2021). Gathered from King Abdulaziz University’s

Sheikh Mohammed Hussein Al-Amoudi Center of Excellence in

Breast Cancer, it contains 1,416 cases, each of which has two views

of the left and right breasts, for a total of 5,662 mammogram

images according to the Breast Imaging Reporting and Data System

(BIRADS). Three seasoned radiologists have carefully commented

and examined it, making it a useful resource that covers a range of

imaging modalities and cancer grades pertinent to Saudi women.

2.5.6 The Digital Mammography Dataset For
Breast Cancer Diagnosis Research (DMID)

The Digital Mammography Dataset for Breast Cancer

Diagnosis Research (DMID) (Oza et al., 2024) contains 225

cases with a total of 510 mammographic images. Each image is

annotated for breast mass segmentation analysis, making this

dataset a valuable resource for researchers focusing on breast

cancer diagnosis and detection. It contains many images. Table 1

provides a comparison between different mammography datasets.

2.5.7 Other datasets
The MIRacle dataset (Antoniou et al., 2009) comprises

mammography pictures from radiologists, which are employed

for machine learning purposes. Two hundred-four photos from

169 cases are presented. This dataset has two modalities:

radiologist evaluation and classification. The Italian Magic 5

dataset was compiled from multiple hospitals. There are 967

cases, contingent upon the pathogenic kind (Tangaro et al.,

2008). A digital mammography dataset from the radiology

department of the university hospital in Nijmegen, Netherlands,

was released, although it is currently inaccessible (Karssemeijer

et al., 2012). A total of 197 images in two perspectives that

were saved in image cytometry standard (ICS) format make

up the LLNL dataset (Karssemeijer et al., 2012). The file also

contains biopsy results and patient information. The IRAM dataset

(Oliveira et al., 2008) integrates multiple datasets. It has numerous

images. Table 2 presents a comparison of various mammography

datasets. The academic community has access to around 25% of

mammography datasets.

3 Methodology

This section outlines a thorough approach of classifying breast

cancer using information obtained from King Abdullah University

Hospital. The input photographs underwent preprocessing to

enhance quality and consistency, including many phases including

rescaling, normalization, and augmentation. A multi-fusion image

processing technique was used to enhance feature extraction,

including inversion, adaptive CLAHE histogram equalization, and

high-boost filtering. The classification model used a proposed

Residual Depth-wise Network (RDN), integrating residual learning

with depth-wise separable convolutions to enhance computational

efficiency and precision. This design has an inverted residual

bottleneck architecture, which considerably enlarges the feature
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space while using a few parameters. The integration of these

advanced methodologies enhances model efficacy while reducing

resource requirements, making it a viable choice for breast

cancer diagnosis in medical imaging. Figure 1 illustrates the

research process and the approaches used for the training and

testing of breast cancer diagnosis (benign and malignant). The

ultimate prediction differentiates between benign and malignant

breast tissue.

3.1 KAUH-BCMD dataset

3.1.1 Mammography data description
The mammography dataset used in this study was collected

from King Abdullah University Hospital, Jordan University of

Science and Technology, between early 2019 and late June 2024.

The collection, segmentation, and diagnosis of images took 3

months, starting from July to September 2024, by clinicians

from the hospital. It was named King Abdullah University

Hospital Breast Cancer Mammography Dataset (KAUH-BCMD).

The mammography dataset includes 7,205 images collected from

5,000 cases aged 18–75 years. The image size in JPG format is 720

× 720 pixels. Table 3 shows the distribution of images within each

category. The images are divided into two groups: malignant and

benign. Some of the images collected from the hospital are shown

in Figure 2.

3.1.2 Value of the dataset mammography
Screening mammography is the primary method for early

identification of breast cancer since it is the only imaging

modality that has consistently been shown to reduce mortality.

Mammography can detect cancer up to 4 years before it

develops clinically (Tabár et al., 2001). These systems, which use

computer technology to identify abnormalities in mammograms

(calcifications, masses, architectural distortions, etc.) that

radiologists use as second opinion criteria, can be extremely

useful in the early detection of breast cancer and contribute to a

cost-effective reduction in the death rate among women with the

disease (Sampat et al., 2005). This dataset of breast mammography

pictures can be used to train machine learning algorithms capable

of recognizing and detecting cancer.

3.1.3 Materials and techniques used to collect
data

Images were collected and archived by medical professionals

from King Abdullah Hospital to verify and correct inaccurate

diagnoses and to segment images into benign and malignant files.

The device used for screening was a mammography machine

from IMS Giotto, a subsidiary of GMM Group. The apparatus

produces superior images despite a low signal-to-noise ratio. The

dataset has 5,000 instances, each including 7,205 mammograms

from two different perspectives (CC and MLO) of either the

right or left breast. The preponderance of the benign images in

our dataset can be attributed to screening programs provided

to the general public by the hospital from which the cases

were collected. The global standard for the transfer, preservation,
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FIGURE 1

Methodology workflow.

and presentation of medical imaging data is known as Digital

Imaging and Communications inMedicine (DICOM). Images were

saved in DICOM format, a common format for mammography.

Table 4 also provides a summary of the data connectors and how

they work.

3.1.4 Ethical considerations
Researchers acknowledge that patients have a right to privacy

regarding their personal and medical affairs. To accomplish

this, the researcher made sure that the hospital and patients

were aware of the goals of the study. Furthermore, the disease

status and personal information of each patient are confidential.

Approval from the Institutional Review Board (IRB) was granted

to Jordan University of Science and Technology (IRB number

21/171/2024). Furthermore, administrative approval from King

Abdullah University Hospital (KAUH) was secured to examine

the computerized medical records. This study utilized de-identified

data for image interpretation and analysis, therefore negating the

necessity for patient permission. This study adhered to the ethical
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criteria of the Helsinki Declaration, ensuring the protection of

patient data privacy and confidentiality.

3.2 Data preprocessing

A crucial stage in the creation of any machine learning model,

especially those that use images, is data preparation. The following

steps were taken to make data preparation easier. For the dataset to

be considered valuable, several requirements must be consistently

met in recent years. The photos were compressed to 224 ×

224 pixels using TensorFlow image processing techniques. This

guarantees that every image sent to the model has consistent

dimensions (Mavridis et al., 2024). Each image was assessed and

deconvoluted by specialists at (KAUH). After dividing the image

data by 255, pixel values were normalized to a range of 0–1. By

keeping the input data consistent, this stage speeds up training

(Huang et al., 2023). Because of their imbalance, the datasets were

normalized using image preprocessing. We included fewer low-

quality photos than high-quality ones to make sure the model

treated both groups fairly and did not overestimate the importance

TABLE 3 Breast cases and the number of images in each case.

Case Number of images

Benign 6,200

Malignant 1,005

Total 7,205

of the former (Demircioglu, 2024). To assess the models, the

dataset is finally split into three sections: 10% for testing, 10%

for validation, and 80% for training. This enables us to assess the

model’s performance using new data.

TABLE 4 Data assembly specifications.

Specifications table

Subject area Medicine

More specific subject area Radiology and Imaging

Type of data Images

Date of the scan It is an identification code that distinguishes

the records

Breast type Left or right breast

Breast view CC or MLO

Data format JPG

Experimental factors Every picture is categorized as either benign

or malignant

Experimental features Machine learning and deep learning models

are developed using medical pictures to

quickly and accurately classify and identify

breast cancer

Data source location King Abdullah University Hospital,

University of Science and Technology, Irbid,

Hashemite Kingdom of Jordan

Data accessibility https://www.kaggle.com/

mohammadaminalqasem

FIGURE 2

Samples of mammography breast images dataset. (A) Benign. (B) Malignant.
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This section provides an overview of the preprocessing

techniques used to make the dataset more suitable before fitting

into the Residual Depth-wise Network (RDN) model.

3.2.1 Adaptive CLAHE (contrast limited adaptive
histogram equalization)

Adaptive CLAHE is a technique that improves visual contrast

by altering it locally rather than globally. This method solves the

limitations of standard Histogram Equalization (HE), which can

result in over-enhancement in some regions and loss of information

in others.

3.2.1.1 Adaptive histogram equalization

In image processing, histogram equalization (HE) is a

technique used to improve contrast. The fundamental idea behind

histogram equalization (HE) is to modify an image’s pixel values in

order to provide a more consistent distribution across all potential

values. The first stage in histogram equalization (HE) is to create the

histogram of the image, which visually represents the frequency of

each pixel value in the image (Rao, 2020). The pixel values are then

reallocated to provide amore uniform distribution of the histogram

across the entire spectrum of possible values (Doshvarpassand

et al., 2022). The histogram equalization approach consists of

two components:

1. Calculating the cumulative distribution function (CDF) of

the image.

2. Using the CDF to transform the pixel values of the image into

a new range (Majeed and Isa, 2021). The histogram data are

aggregated from the leftmost bin to the rightmost bin to derive

the cumulative distribution function (CDF).

3. The CDF value is multiplied by the maximum pixel value,

and the outcomes are rounded to the nearest integer, therefore

transforming the pixel values to the new range.

HE can be used for both color and grayscale images, which

makes it suitable for mammogram-type breast cancer images.

The following formula applies to HE. Let H(k) be the frequency

histogram of the input image x, which has n rows and m columns.

Let k be in the range from 0 to I-1, where I is the number

of intensity levels. Equation 1 used to calculate the normalized

frequency histogram.

N
(

k
)

=
H(k)

n×m
(1)

Utilize Equation 2 the normalized histogram’s cumulative

distribution function (or CDF) is calculated.

CDF
(

j
)

=

j
∑

k=0

N(k), for j = 0, 1, . . . , I − 1 (2)

Employ Equation 3 to determine each pixel’s new

intensity values.

P = round(I − 1)× CDF(x) (3)

Assign a new intensity value to each pixel in the specified image.

The HE formula converts the original image intensity levels into

new values utilizing the cumulative distribution function of the

histogram. Distributing the intensity values throughout the full

spectrum enhances the image’s contrast (Chen et al., 2023).

3.2.1.2 Adaptive CLAHE

CLAHE limits contrast enhancement by initially truncating the

histogram at a specified clip limit and subsequently redistributing

the clipped values among the bins. The approach is adaptable since

it handles each local region (or window) of the image separately.

CLAHE can improve local contrast by breaking the image into

smaller tiles and applying histogram equalization on each one (Oza

et al., 2024). The steps for CLAHE can be described as follows:

• Step 1: Create tiny overlapping areas (tiles) in the image.

• Step 2: Compute the histogram for each region.

• Step 3: Clip the histogram to a predefined limit and

redistribute the clipped pixel values evenly.

• Step 4: Compute the Cumulative Distribution Function (CDF)

and apply the equalization to map the pixel values.

• Step 5: Interpolate between adjacent tiles to avoid artifacts.

The CLAHE transfer function is derived from the cumulative

histogram, where the clipping valueC is applied to limit the amount

of contrast stretching. The transformation function for CLAHE in

a local region L is defined as:

f (g) =
L− 1

n

L
∑

g=0

H(g) (4)

where n is the total number of pixels in the window, and H(g)

represents the region’s pixel value histogram. CLAHE outperforms

classic AHE by regulating the level of enhancement via the clip limit

C and eliminating artifacts such as over-amplified noise (Roy et al.,

2024).

3.2.2 Inverted
Inverted Image Processing refers to the process of reversing

an image’s color values. Each pixel’s intensity is deducted from

the highest intensity value (255 in an 8-bit picture). Inverting

an image is beneficial for some image analysis tasks, such as

highlighting darker spots in light backdrops or reversing the effects

of underexposure in photos. The equation for image inversion is:

Iinverted(x, y) = 255− I(x, y) (5)

where I(x, y) represents the original pixel value at coordinates (x, y),

and Iinverted(x, y) is the inverted pixel value (Yang, 2008).

3.2.3 High-boost filtering
High-boost filtering is a technique for sharpening photographs

that amplifies high-frequency components while retaining low-

frequency information. It is an improvement on high-pass filtering
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in that instead of deleting all low-frequency components, we keep

them and amplify the high frequencies for a sharper output.

3.2.3.1 High-pass filters

A high-pass filter removes low-frequency components (such

as smooth or steady areas) while retaining high-frequency

components (edges and fast intensity variations) from an image.

The fundamental equation for a high-pass filter is:

High Pass(f (x, y)) = f (x, y)− Low Pass(f (x, y)) (6)

where f (x, y) is the original image and Low Pass(f (x, y)) is the

low-pass filtered image (smoothing operation like Gaussian blur)

(Esmaeilzehi et al., 2024).

3.2.3.2 High-boost filtering

High-boost filtering enhances the high-frequency components

while keeping some of the low-frequency information. This is done

by applying a high-pass filter with a gain factor A. The high-boost

filter is given by:

High Boost = A · f (x, y)− Low Pass(f (x, y)) (7)

To balance the filter, we can rewrite it as:

High Boost = (A− 1) · f (x, y)+High Pass (8)

Where A is the amplification factor. By adjusting A, the

intensity of sharpening can be controlled. This formula illustrates

the operation of high-boost filtering: the original image’s high-

frequency components are amplified by multiplying it by A, and

the edges are further enhanced by deleting the low-pass image

(Soniminde and Biradar, 2024).

Figure 3 shows the original grayscale medical image that

was preprocessed using CLAHE (Contrast-Limited Adaptive

Histogram Equalization). The stronger contrast in the original

image may have made it difficult to see fine details within the

tissue. In comparison, the CLAHE-processed image has higher

local contrast, making it easier to detect details and textures.

CLAHE improves contrast in specific areas of the image. It also

improves the overall balance of the image by highlighting smaller

details without exaggerating background noise.

Figure 4 shows the post-processing stages. The After CLAHE

image continues to emphasize detail by increasing contrast. The

After Inverted Color Map image reflects pixel intensity, making

previously dark areas appear lighter and vice versa. This reflection

can sometimes help you see certain features or abnormalities

more clearly. CLAHE and reflection are combined in the After

CLAHE and Inverted Color Map picture. This image shows details

highlighted using different highlighting techniques, which aids in

visual inspection. These images illustrate how different methods of

medical image processing can help clarify distinct components for

greater understanding.

Figure 5 demonstrate a grayscale medical image

(mammogram) with improved rephrasing using various

methodologies and accompanying visual representations. The

original image and histogram indicate that there are more dark

hues than light ones. Histogram Equalization improves the overall

contrast of an image by spreading out the brightness levels more

evenly, resulting in a balanced histogram. CLAHE (Contrast

Limited Adaptive Histogram Equalization) increases an image’s

local brightness and contrast while making noise less visible. The

histogram reveals a somewhat different distribution of brightness

levels. A separate Adaptive CLAHE is utilized to emphasize certain

locations, with its histogram altered to fit. Finally, Image Inversion

adjusts the brightness of the pixels, making dark areas appear

lighter.

3.3 Pre-trained models

Pre-trained deep learning architectures have been developed

and improved upon using large datasets. Consequently, they can

extract extensive and meaningful data from the input. These

models provide a strong basis for many applications, such as

picture classification, language translation, and object recognition.

Pre-trained models can significantly reduce training time and

effort when working with tiny or new datasets because their

performance can be adjusted to the desired outcome by “training

by optimization” or “fine-tuning.” This article classifies breast

cancer mammography images using seven pre-trained models and

contrasts them with the methodology described in the study.

VGG16 might be a deep convolutional neural structure

consisting of 16 weight layers, including 3 fully associated layers

and 13 convolutional layers. After ReLU enactments and max-

pooling layers to reduce spatial measurements, it creates a 224

× 224 × 3 (RGB) input image using various convolutional

components. With 1,000 neurons and a softmax actuation, the

ultimate yield layer is suitable for categorizing images into 1,000

groups, as demonstrated by the ImageNet dataset (Belaid and

Loudini, 2020).

VGG19 the 19 layers of the VGG19 model consist of 16

convolutional layers, 3 pooling layers, and output layers. The

model’s simple, successive layer structure preserves consistency

and symmetry while enabling it to identify complex patterns and

features in images. It uses tiny (3 × 3) filters to capture minute

details in photos (Simonyan and Zisserman, 2014).

MobileNetV2 has 53 layers, consisting of rearranged remaining

squares with depthwise divisible convolutions and direct

bottlenecks. It takes an input picture of 224 × 224 × 3 (RGB)

and produces a yield reasonable for the assignment, such as a

1,000-class softmax for ImageNet classification (Xiaolong et al.,

2020). Its plan centers on proficiency, making it perfect for versatile

and embedded devices.

ResNet50 consists of 50 layers, with 1 × 1, 3 × 3, and 1 ×

1 convolutions for the remaining bottleneck pieces. A 224 × 224

× 3 (RGB) input image is used to generate a 1,000-class softmax

forecast for ImageNet classification, or it can be modified for other

tasks (Hossain et al., 2022).

InceptionV3 could be a 48-layer deep learning CNN designed

to effectively capture highlights at various scales using Beginning

modules. Concatenation follows the parallel application of 1× 1, 3

× 3, and 5 × 5 convolutions with max pooling in each module.
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FIGURE 3

Original grayscale medical image pre-processed using CLAHE technology.

FIGURE 4

Image processing stages.

input 299 × 299 × 3 (RGB) image. For ImageNet classification,

produce a 1,000-class softmax; it can also be used for other tasks. It

is renowned for modifying computational productivity, profundity,

and width (Sharma et al., 2023).

Xception (Extreme Inception) is a CNN with 36 convolutional

layers, organized into passage, center, and exit stream modules.

It replaces standard convolutions with depthwise distinct

convolutions to progress effectiveness and execution. Input picture

of 299 × 299 × 3 (RGB). Yield 1000-class softmax for ImageNet

classification or versatile for other assignments. Xception offers a

more profound, more effective engineering motivated by Initiation,

optimized for tall performance (Salim et al., 2023).

DenseNet121 121 layers arranged in thick squares, maybe a

CNN, where each layer is connected to another layer within the

same piece. Compared to traditional systems, this structure reduces

the amount of parameters and emphasizes reuse. ∗∗Input: 224 ×

224× 3 (RGB) image. ∗∗Yield: flexible for other tasks or 1,000-class

softmax for ImageNet classification. DenseNet121 is renowned for

its effectiveness; it uses fewer parameters while maintaining high

accuracy across the thick network (Kateb et al., 2023).
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FIGURE 5

Below is a grayscale medical image with enhanced resampling using di�erent methodologies and accompanying visual representations.

3.4 Proposed residual depth-wise network
(RDN) models

The proposed method for image enhancement and analysis

images involves a systematic approach that improves the quality

of the images, expands the collection, and emphasizes key features.

This process gets images ready for better analysis, making sure the

data given to the model is clear and uniform. After preparing the

data, we use histogram analysis and other methods like Contrast

Limited Adaptive Histogram Equalization (CLAHE) and Sobel

edge detection to improve and separate important areas, making

it easier to identify features. Figure 6 presents the Residual Depth-

wise Network (RDN) Model architecture.

We recommend employing a Convolutional Neural Network

(CNN) architecture specifically tailored to handle the processed

images for the modeling phase. This layer configuration

demonstrates the operation of this architecture. Each stage in

the model, particularly the convolution and pooling layers,

benefits from the rich and diverse feature sets produced

during preprocessing, enhancing robustness and accuracy in

subsequent tasks.

3.4.1 Implementation note-residual depth-wise
network (RDN) model layers
• Input Layer to serve as the passage point for pictures into

the organize. Input: An RGB picture of measuring 128 × 128

pixels. Yield Shape: (128, 128, 3) representing 128× 128 spatial

dimensions with 3 color channels (R, G, B).

• Convolutional Layers to detect feature patterns by sliding

filters (kernels) across the image. Typically employs filters of

size 3 × 3, with the number of filters increasing in deeper

layers to capture complex features. Layer: Conv2D (32, 3,

3, activation = “relu”). Output Shape: Input: (128, 128, 3).

Output: (126, 126, 32), after applying the 32 filters and

reducing spatial dimensions by 2 pixels on each side.
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FIGURE 6

Residual depth-wise network (RDN).

• ReLU (Rectified Linear Unit) Activation, non-linearity to aid

the network in learning complex patterns. Outputs: zero

for negative values and retains positive values unchanged,

mitigating issues with gradient vanishing.

• Layer DepthwiseConv2D with specific kernel size (3, 3). Input

Shape: (128, 128, 3) for an RGB image. Output Shape: After

applying depthwise filters, the spatial dimensions change

based on kernel size and padding, but the number of channels

remains the same per individual channel convolution. For

example, with padding set to “same,” the output shape would

remain (128, 128, 3), but it could change based on padding and

stride configuration.

• Batch Normalization of the output from the previous

layer, expediting training and providing some regularization.

Output Shape: Remains unchanged from input.

• Pooling Layers (Max Pooling): to reduce spatial dimensions,

enhancing computational efficiency while focusing on

prominent features, utilizes a 2 × 2 filter to halve each

dimension. Layer: MaxPooling2D (pool_size = (2, 2)).

Output for input: (126, 126, 32) is (63, 63, 32). Achieving

down sampling of the spatial dimensions.

• Dropout Layer: Mitigates overfitting by randomly setting a

fraction of the input units to zero during training. Commonly

set between 0.2 and 0.5 for the dropout rate. Layer: Dropout

(0.5). Output Shape: Unchanged from input.

• Flatten Layer: Converts 2D feature maps into a 1D vector for

input into the dense layers. yielding a 1D vector containing

all features.

• Fully Connected (Dense) Layer: Executes high-level reasoning

based on features extracted by convolutional and pooling

layers. The first dense layer typically has more units to capture

complex interactions, while the last layer’s unit count aligns

with the number of output classes.

• Output Layer (sigmoid for Classification): Produces

probabilities for each class in a classification task. Layer:

Dense (num_classes, activation= “softmax”) for classification.

where each value denotes the probability of each class.

Given a 128 × 128 RGB input image and employing standard

layer configurations, the transformations of shapes would progress

as follows in Table 5.

Each layer builds upon the previous one, progressing

from basic feature extraction to high-level pattern recognition

and classification.

3.5 Evaluation measures

Accuracy was calculated by dividing the fraction of accurately

detected data instances by the total number of occurrences. This

allowed us to measure the model’s efficacy. The accuracy equation

is presented below. True Positive (TP) refers to data that has a

positive impact and is appropriately classed with the target label.

True Negative (TN) refers to data with a negative impact that is

appropriately classified as such by the target label. When False

Positive (FP) data are incorrectly labeled as positive, the target
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TABLE 5 Layer configurations.

Layer Output shape

Input layer (128, 128, 3)

Conv2D (32 filters, 3× 3) (128, 128, 32)

DepthwiseConv2D (3× 3) (128, 128, 32)

Conv2D (32 filters, 1× 1) (128, 128, 32)

Shortcut (Conv2D, 1× 1) (128, 128, 32)

Add Layer (Skip connection) (128, 128, 32)

Conv2D (64 filters, 1× 1) (128, 128, 64)

DepthwiseConv2D (3× 3) (128, 128, 64)

Conv2D (64 filters, 1× 1) (128, 128, 64)

Flatten (128× 128× 64)

Dense (1 unit, Sigmoid) (1)

label suffers. False Negative (FN) statistics, on the other hand, are

properly classified as negative and carry the required classification.

The evaluation measures are supplied in the equations from

Equations 9-13.

• Accuracy: calculate the percentage of accurately identified data

by combining true negatives TN and true positives TP.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

• Precision: calculate the true positive ratio by adding the true

positives and false positives FP together.

Precision =
Tp

Tp + Fp
(10)

• Recall (Sensitivity): evaluate the proportion of genuine

positives to the total of true positives plus false negatives FN.

Recall =
Tp

TP + FN
(11)

• Specificity: is a metric used to assess how well categorization

models perform, particularly when working with binary data

or in the medical industry.

Specificity =
TN

TN + FP
(12)

• F1 Score: Measure harmonic means of precision and recall.

F1 − Score = 2×
precision× Recall

Precision+ Rrecall
(13)

The number of cases correctly categorized as positive is referred

to as “true positives” (TP). True negatives (TN) are accurate

estimations of negative cases. Positive cases that were wrongly

found are known as false positives or FPs. False negatives, or FN,

refer to the number of cases that were incorrectly projected to be in

the negative group. The percentage of correct forecasts including

true positives and true negatives to all predictions is known as

accuracy (Yacouby and Axman, 2020).

3.6 Computing environment

The coding and development operations for this work were

carried out on a computer with the following specifications:

• Processor: Intel Core i5-12600

• RAM: 32 GB

• Operating System: [Windows 11]

• Other Specifications: [GPU RTX 4070]

3.7 Limitations

Numerous constraints must be acknowledged when gathering

data from a hospital. To safeguard patient privacy and adhere

to regulatory regulations, it is imperative to omit identifying

information, clearly articulate the study’s aim, and secure the

data against unauthorized access. Ethics committees and pertinent

authorities must also grant the requisite authorization. Moreover,

data minimization principles must be observed, necessitating the

retention of only critical information and the specification of its

retention duration before destruction. AI models are vulnerable to

biases stemming from skewed or unrepresentative datasets. This

study utilized a substantial and varied dataset of mammography

pictures from patients aged 18–75 with differing breast densities;

yet, inherent biasesmay persist. The underrepresentation of specific

demographic groups may affect the model’s generalizability. A

significant problem of AI-based systems in healthcare is their “black

box” characteristic, which constrains trust and interpretability. The

incorporation of explainable AI (XAI) methodologies is essential to

mitigate this constraint.

4 Results and discussion

A method using a multi-fusion processing approach is

proposed. Multi-fusion image processing technique is used to

improve feature extraction, including inverse, CLAHE adaptive

histogram equalization, and high-boost filtering. The classification

model uses a proposed residual depth network (RDN), which

integrates residual learning with depth-separable convolutions

to enhance computational efficiency and accuracy. The process

also involves training seven pre-trained neural network models:

MobileNetV2, VGG16, VGG19, ResNet50, InceptionV3, Xception,

and DenseNet121 while evaluating their performance against

the proposed RDN model using six metrics. Precision, Recall,

Sensitivity, and Specificity F1-score Precision Validation.
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TABLE 6 Performance comparison of deep learning models for breast cancer classification using KAUH-BCMD.

Model Accuracy Precision Recall
(sensitivity)

Specificity F1 score Validation accuracy

MobileNetV2 92.90 87.89 99.52 86.37 93.39 93.47

VGG16 95.48 91.58 1.00 90.81 95.51 95.32

VGG19 77.26 80.99 71.29 93.23 75.86 75.48

ResNet50 87.82 92.69 82.02 93.55 87.08 85.16

InceptionV3 62.58 67.69 48.23 76.94 56.29 64.27

Xception 93.31 89.29 98.39 88.23 93.61 93.71

DenseNet121 95.24 91.43 99.84 90.65 95.41 95.24

RDN 97.82 96.55 99.19 96.45 97.85 96.20

FIGURE 7

Comparing performance metrics of di�erent models.

Table 6 shows the performance characteristics of deep learning

models that classify breast cancer mammogram images into

benign and malignant categories. Accuracy, precision, recall

(sensitivity), specificity, F1 score, and cross-validation accuracy

are the metrics used to evaluate the models’ performance.

The RDN model outperformed the other trained models

when classifying breast cancer mammography pictures. The

model demonstrated its efficacy in effectively categorizing

benign and malignant patients with a 97.82% accuracy rate,

96.55% precision, 99.19% recall, and 96.45% specificity.

With a 97.85% F1 score, accuracy and recall are strongly

balanced, indicating that CBC-MA is reliable. DenseNet121

and VGG16 are excellent choices for classifying breast cancer

images. DenseNet121 achieved a high accuracy of 95.24%

and an exceptional recall of 99.84%. Their results showed

that VGG16 performed excellently, achieving an accuracy of

95.48% and a perfect recall of 100%, meaning it correctly

identified all malignant cases. Therefore, these two models are

recommended as a secondary choice after the Residual Depth-wise

Network (RDN).

MobileNetV2, Xception, and ResNet50 have shown good

performance. MobileNetV2 achieved commendable performance

with 92.90% accuracy and 99.52% recall, demonstrating its strong

ability to identify fraudulent cases. The F1 score of 93.39%

indicates a strong balance between accuracy and recall. Xception

showed excellent performance with 93.31% accuracy 98.39% recall,

and 88.23% specificity, reflecting a well-balanced effectiveness.

ResNet50 achieved 87.82% accuracy, 92.69% precision, and

93.55% specificity, demonstrating its effectiveness in reducing

false positives.

On the other hand, among all the models, VGG19 and

InceptionV3 performed the worst. VGG19 achieved an accuracy

rate of 77.26%. While the specificity of 93.23% was quite high, the

recall rate of 71.29% indicates difficulties in correctly identifying

malignant individuals. When it comes to accuracy 62.58% and

recall 48.23%, InceptionV3 performed the worst, making it

unreliable for identifying cancer patients. The results show that the

proposed RDN model outperformed other models in classifying

breast cancer mammogram images on several metrics, such as

accuracy, precision, recall, and F1 score. It proved the best choice
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FIGURE 8

Comparing confusion matrices for di�erent models.

due to its exceptional ability to distinguish between cancerous and

benign cases.

Figure 7 illustrates the performance graphs of eight distinct

deep learning models MobileNetV2, VGG16, VGG19, ResNet50,

InceptionV3, Xception, DenseNet121, and CBC-MA employed

for breast cancer classification using mammography pictures. The

models are assessed using six performance metrics: accuracy,

precision, recall, specificity, F1 score, and validation accuracy. Each

color in the graph represents a unique metric, facilitating a more

comprehensive comparison of the models.

The RDN model performs excellently in classifying breast

cancer images, with the best accuracy, specificity, recall, F1 score,

and validation accuracy, making it the most effective model. The

InceptionV3 model has the poorest performance, especially in

recall and validation accuracy, which may lead to the under-

identification of some malignant cases. Models such as VGG16

and DenseNet121 show excellent performance and balance, with

VGG16 achieving 100% recall and demonstrating its ability to

detect all malignant cases without missing any. Models that achieve

balance across all metrics are preferred for clinical use because they

generate accurate and consistent results; therefore, RDN appears to

be the best choice.

According to the confusion matrices shown in Figure 8, the

RDN model performed better than any other model, achieving

a great balance between recall and precision with few errors

in classifying malicious and benign data. Both DenseNet121

and VGG16, which replaced RDN, showed a great ability

to classify samples accurately, albeit with small mistakes. On

the other hand, InceptionV3 performed the worst, making

many errors while trying to distinguish between malicious and

benign data, making it generally unsuitable for classification

in this situation. To improve classification accuracy, these

matrices can identify areas for improvement and evaluate the

model’s performance.
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FIGURE 9

Comparing the performance of di�erent deep learning models in terms of accuracy, training loss, and evaluation.

To illustrate the performance of different models, Figure 9

displays graphs that track training and evaluation accuracy and loss

throughout a large number of training epochs. By examining these

graphs, one can determine overfitting or inadequate generalization,

as well as how well the model learns from the data and

gets better. By comparing the performance of models like

MobileNetV2, VGG16, VGG19, ResNet50, InceptionV3, Xception,

DenseNet121, and the suggested RDN, the graphs help users

make better decisions about which model to use by identifying

which one offers the best balance between learning loss and

training and evaluation accuracy. The residual dense network,

or RDN, performed admirably. The high training accuracy

(99.7%) in the graphs indicates that the model successfully

absorbed the training data. Additionally, the excellent evaluation

accuracy of the model (96.2%) showed how well it translated to

new data.

4.1 Testing the model in clinical settings

Physicians have provided positive feedback on the use of

the model for evaluating mammograms. After applying this

model in 20 cases, the clinicians found it to be a great tool in

emphasizing clinical decisions, and they have observed promising

results. Of the 20 cases, 15 were correctly diagnosed, with the

other 5 cases showing variabilities that needed further evaluation

and investigation.

The model’s ability to quickly scan mammographic images

and to determine areas of concern provided clinicians with

a second supporting opinion and increased their confidence

in reaching the correct diagnoses. This feedback emphasized

the system’s efficiency, as it greatly decreased the time spent

on manual image reading, allowing for fast decisions on each

case, reducing clinician workload, and improving patient care
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and outcome. Also, clinicians noted that the model is highly

accurate in detecting subtle changes that may have been under-

evaluated by them. This accuracy was especially important in

borderline findings, where additional investigations were needed

to confirm or exclude certain diagnoses. The integration of the

model into the clinical investigation of the cases can further

enhance its utility and cover the deficiencies encountered in

diagnosis by either the model alone or by the clinician alone.

Overall, that feedback reflected strong recommendations of using

such a model in enhancing diagnostic accuracy and improving

clinical practice; due to its potential to improve patient care,

clinicians thought that its use would jump rapidly with the trust in

its performance.

5 Conclusion

The main contribution of this study is to present an open-

source dataset for breast cancer diagnosis using mammogram

images collected by specialized physicians from King Abdullah

University Hospital in the Hashemite Kingdom of Jordan,

referred to in this paper as (KAUH-BCMD). This dataset is

the first to be collected in the Hashemite Kingdom of Jordan,

providing AI researchers with a reliable dataset to increase

diagnostic efficiency. Moreover, multiple fusion methods, such as

high-resolution enhanced filtering and contrast-limited adaptive

histogram equalization (CLAHE), have been proposed to improve

image quality. We have constructed a unique residual depth

network (RDN) to enhance the accuracy of breast cancer detection.

The proposed RDN model has been compared with several

prominent models, including MobileNetV2, VGG16, VGG19,

ResNet50, InceptionV3, Xception, and DenseNet121. The RDN

model showed superior performance, achieving 97.82% accuracy,

96.55% precision, 99.19% recall, 96.45% specificity, 97.85%

F1 score, and 96.20% validation accuracy. This indicates its

effectiveness in diagnosing breast cancer patients.

In the future, we aspire to integrate the pertinent

mammography dataset with breast ultrasound data to

develop a multimodal CAD system for breast cancer. The

next version featuring additional photos will enhance balance

and clarity, hence assisting researchers in breast cancer

detection systems. Furthermore, according to prior and current

studies, computer vision models can benefit patients and

healthcare practitioners. Consequently, it will enhance temporal

efficiency, augment diagnostic efficacy, and expedite breast

cancer identification.

6 Future works

In the future, we hope to combine relevant mammography

datasets with breast ultrasound data to create a multimodal CAD

system for breast cancer. The next iteration, with more photos,

will improve the balance and clarity, assisting researchers in

breast cancer detection systems. Another intriguing approach is

to use federated learning frameworks, which enable decentralized

data from several sources (for example, mammography and

ultrasound centers) to build a single model without sharing

raw data. However, in future work, we intend to include more

databases, such as MIAS, INbreast, DDSM, and CBIS-DDSM,

to increase the model’s generalizability and assess it across

datasets from various populations. This will help the model

function better in practical circumstances. Furthermore, recent

and present research suggests that computer vision models can

help both patients and healthcare practitioners. As a result, they

will save time, improve diagnostic accuracy, and speed up breast

cancer detection.

We plan to collaborate with radiologists and healthcare

centers to test the model using real data taken from

daily clinical practices. We will collect expert feedback on

usability and accuracy to improve the model and ensure

its alignment with healthcare sector needs. To improve

performance, the proposed model (RDN) will be tested using

advanced architectures such as vision transformers (ViT) and

attention mechanisms.
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