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Neurodegenerative diseases are chronic, progressive conditions that cause

irreversible damage to the nervous system, particularly in aging populations.

Early diagnosis is a critical challenge, as these diseases often develop slowly and

without clear symptoms until significant damage has occurred. Recent advances

in radiomics and genomics have provided valuable insights into the mechanisms

of these diseases by identifying specific imaging features and genomic patterns.

Radiogenomics enhances diagnostic capabilities by linking genomics with

imaging phenotypes, o�ering a more comprehensive understanding of disease

progression. The growing field of artificial intelligence (AI), including machine

learning and deep learning, opens new opportunities for improving the accuracy

and timeliness of these diagnoses. This review examines the application of AI-

based radiogenomics in neurodegenerative diseases, summarizing key model

designs, performance metrics, publicly available data resources, significant

findings, and future research directions. It provides a starting point and guidance

for those seeking to explore this emerging area of study.

KEYWORDS
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1 Introduction

Neurodegeneration refers to the progressive loss of neuron structure or function,
impairing neurological processes such as movement, memory, and cognition (Ueha et al.,
2024; Feng, 2023). Globally, neurodegenerative diseases significantly increase mortality
and morbidity, especially among the elderly (Erkkinen et al., 2018). There are roughly
five categories of neurodegenerative diseases, includingMultiple Sclerosis (MS), Dementia,
Parkinson’s Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Creutzfeldt-Jakob
Disease. MS is a chronic demyelinating disease affecting the central nervous system (Bae
et al., 2023), which represents demyelinating diseases in the neurodegenerative category
(Przedborski et al., 2003). It involves an abnormal immune response against the myelin
sheath, disrupting nerve signal transmission and causing symptoms like fatigue, motor
dysfunction, and cognitive impairment. MS is typically diagnosed in early adulthood, with
65% of new diagnoses occurring in Canadians aged 20–49 years (Public Health Agency
of Canada, 2018a). MS is characterized by hyperintense lesions in specific brain regions
and is linked to HLA-DRB1, IL7R, and IL2RA genes. Dementia, including Alzheimer’s
Disease (AD), Dementia with Lewy Bodies (DLB), and Frontotemporal Dementia (FTD),
significantly affects memory and cognitive abilities (Arvanitakis et al., 2019). Over 402,000
seniors in Canada are living with dementia, with an incidence rate of 14.3 new cases per
1,000 seniors annually (Public Health Agency of Canada, 2017). AD is characterized by
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amyloid-beta plaques and neurofibrillary tau tangles in the brain,
leading to neuronal loss and cognitive decline (Jahn, 2013;
Migliore and Coppedè, 2022; Rajmohan and Reddy, 2017). AD
shows hippocampal atrophy, widened sulci, enlarged ventricles,
and is associated with gene APOE, APP, PSEN1, PSEN2, and
TREM2 (Andrade-Guerrero et al., 2023; Wolfe et al., 2018).
PD is characterized by motor symptoms such as tremors and
rigidity (Little et al., 2012). It results from the loss of dopamine-
producing neurons in the substantia nigra (Damier et al., 1999).
PD affects∼84,000 Canadians aged 40 and older, with an incidence
rate of 55.1 per 100,000 population (Public Health Agency of
Canada, 2018b). Non-motor symptoms in advanced stages include
cognitive dysfunction, psychiatric changes, and sensory symptoms
(Szymański et al., 2010; Jankovic et al., 2021). PD involves atrophy
in the substantia nigra and iron deposition in the basal ganglia,
with genetic markers like SNCA, LRRK2, PARK2, PINK1, DJ-
1, and α-synuclein protein. ALS, or Lou Gehrig’s disease, is a
progressive disorder affecting motor neurons, leading to muscle
weakness, atrophy, and paralysis (Morris, 2015). While most ALS
cases are sporadic, about 10% are familial (Zou et al., 2017). ALS
progresses rapidly, with a median survival time of 3 to 5 years
post-diagnosis (Testa et al., 2004). Recent studies report an ALS
incidence rate of 2.13 per 100,000 in Nova Scotia and 2.4 per
100,000 in Newfoundland and Labrador (Wolfson et al., 2009). ALS
features atrophy in the motor cortex and hyperintense signals in
corticospinal tracts, which are linked to SOD1, C9orf72, TARDBP,
and FUS, and involve FUS, TDP-43, and SOD-1 proteins. CJD is a
rare, fatal disorder caused by prions, leading to rapid brain damage,
cognitive decline, and motor dysfunction (Head and Ironside,
2012). CJD progresses swiftly, often resulting in death within a
year of symptom onset (Josephs et al., 2009). In 2022, 90 people
in Canada were diagnosed with CJD, with an incidence rate of 1
to 2 per million annually (Public Health Agency of Canada, 2023).
Lastly, CJD is marked by hyperintense signals in the basal ganglia,
thalamus, and cortical regions, associated with the PRNP gene and
the PrPSc protein.

With aging as the primary risk factor, the prevalence of
these diseases continues to rise. Although several medications
manage symptoms, effective treatments remain limited, making
early diagnosis crucial (Hou et al., 2019; Lamptey et al., 2022).
Traditional diagnosis of neurodegenerative diseases relies on image
features obtained from medical imaging techniques such as X-
ray, Magnetic Resonance Imaging (MRI), Computed Tomography
(CT), Positron Emission Tomography (PET), and Single-Photon
Emission Computed Tomography (SPECT). These methods are
effective at capturing morphological and phenotypical changes in
the brain. However, imaging features frequently overlap among
different neurodegenerative conditions, for example, gray matter
atrophy patterns in AD and FTD can appear similar in certain
brain regions, making accurate diagnosis complicated (Frings et al.,
2014; Whitwell et al., 2017; Mazón et al., 2018). Moreover, medical
images struggle with early detection, often revealing issues only
after disease progression (Bevilacqua et al., 2023). Integrating
medical images with genomic and clinical data could provide
a more comprehensive and earlier diagnosis (Bevilacqua et al.,
2023). Genomics is the study of the complete set of genetic
material, focusing on the structure, function, and evolution of
genomes (Zhang, 2023). This includes analyzing DNA sequences,

genetic variants, DNA methylation patterns, mRNA expression
to understand the complex interactions that govern biological
processes. It may reveal the potential risk of neurodegenerative
disease even before the early onset, when there are no obvious
changes in imaging data. In addition, genomics enhances our
understanding of the molecular mechanisms driving phenotypical
changes in neurodegenerative diseases, and it may help identify key
biomarkers that could enable personalized treatment approaches
tailored to an individual’s genetic makeup (Liu et al., 2023). Figure 1
shows five representative neurodegenerative diseases with their
image and genomics features.

Radiogenomics is an emerging field that studies the relationship
between imaging features and genetic variations. It aims to link
specific genomic markers with characteristics observed in medical
images, helping to understand how genetic factors influence disease
development and progression (Shui et al., 2021). This approach can
offer deeper insights into neurodegenerative disease mechanisms
and may help improve diagnosis, prognosis, and treatment
strategies (Mazurowski, 2015). A key challenge in radiogenomics
is the integration of multi-modal, high-dimensional imaging and
genomic data. The complexity often introduces significant noise
and confounding factors, making it difficult to extract meaningful
biological insights and accurately interpret the relationships
between genetic variations and imaging phenotypes. To address
these issues, artificial intelligence (AI) methods including Machine
Learning (ML), Deep Learning (DL), and Natural Language
Processing (NLP), are increasingly applied to analyze medical
images and genomics data for neurodegenerative diseases (Feng,
2023). Recent advancements in computer science, particularly
DL, have revolutionized neurodegenerative disease research.
DL models, such as convolutional neural networks (CNNs),
fully connected neural networks (FNNs), generative adversarial
networks (GANs), auto-encoders, deep belief networks (DBNs),
and recurrent neural networks (RNNs), have demonstrated
exceptional capabilities in analyzing complex neuroimaging and
genomics data.

This review outlines the application of DL-based
radiogenomics in neurodegenerative diseases, highlighting
key model architectures, performance evaluation metrics, publicly
accessible data sources, significant discoveries, and potential future
research directions. It serves as a valuable resource and guide for
researchers interested in exploring this evolving field.

2 Database

Several publicly available data resources support radiomics,
genomics, and radiogenomics studies for neurodegenerative
diseases. Table 1 provides key information about these resources,
including their data types, along with links to access them.

ADNI (Jack et al., 2008) is a global, multisite longitudinal
study involving over 1,500 participants across 63 sites in the
US and Canada, tracking AD progression from normal aging
through stages of cognitive impairment to dementia. The dataset
includes clinical assessments, brain imaging (MRI, PET), genetic
data, and biospecimen biomarkers. ADNI’s goal is to enhance early
diagnosis and treatment by identifying and validating biomarkers,
making it a crucial resource that has significantly improved
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FIGURE 1

Neuroimaging features, genetic markers, and key proteins associated with five representative neurodegenerative diseases.

diagnostic methods, clarified disease mechanisms, and supported
new treatment development. UK Biobank (Sudlow et al., 2015)
is a comprehensive biomedical resource containing de-identified
genetic, lifestyle, and health data from 500,000 UK participants.
Since 2006, it has expanded to include imaging data such as
brain, heart, and full-body MRIs, with a goal of imaging 100,000
participants. Genetic data encompasses whole genome and exome
sequencing, while health records link to a range of electronic
health data. The resource also includes biomarker data, physical
activity monitoring, online questionnaires, and biological samples
like blood, urine, and saliva. Among these participants, tens of
thousands have been diagnosed with neurodegenerative diseases,
including Alzheimer’s, Parkinson’s, and vascular dementia. Data
types specifically related to neurodegenerative disease research
include brain imaging (structural and functional MRI), cognitive
assessments, genotyping for risk alleles, and biomarker data related
to neurodegeneration. The NACC (Beekly et al., 2007) dataset
is a vital resource for AD research, containing extensive clinical,
cognitive, imaging, and neuropathological data collected from AD
Research Centers across the U.S. The dataset includes demographic
information, medical history, neuropsychological test results, MRI
scans, and autopsy findings, providing a rich foundation for
developing diagnostic models and studying the progression of
AD and related dementias. This comprehensive dataset supports
research efforts to improve diagnosis and treatment strategies
for neurodegenerative diseases. The ENIGMA (Garg et al., 2015)
project is a global collaboration that uses brain imaging and genetic
data to study neurological disorders like PD and FTD. It provides
T1 MRI scans and conducts meta-analyses of brain structure,
focusing on volumetric and shape changes in subcortical regions.

For PD, the data include 116 male and 68 female healthy controls
(HCs), and 264 male and 142 female PD patients. ENIGMA also
analyzes genomics data, such as copy number variations (CNVs),
involving∼17,000 individuals.

The WRAP (Johnson et al., 2018) is a longitudinal study
primarily focused on identifying risk factors and early biomarkers
for AD. It includes over 1,500 participants, most of whom
are cognitively healthy but have a family history of AD.
The dataset contains neuroimaging data (MRI, PET), genetic
information, blood-based biomarkers, cerebrospinal fluid analysis,
cognitive performance tests, and lifestyle factors such as physical
activity, sleep, and diet. WRAP aims to better understand the
early biological and environmental factors contributing to AD
development and progression. The AIBL (Ellis et al., 2009)
is a comprehensive longitudinal study focused on AD and
related dementias. It includes data from over 1,100 participants,
consisting of AD patients, individuals with MCI, and HCs.
The dataset comprises neuroimaging (MRI, PET), biomarkers
(blood, cerebrospinal fluid), genetic data, cognitive assessments,
and lifestyle factors such as diet and exercise. AIBL’s primary
aim is to identify biomarkers and risk factors associated with
AD progression, making it a valuable resource for research
on neurodegeneration and cognitive decline. The PPMI dataset
(Brumm et al., 2023) originates from a longitudinal observational
study that evaluated people with PD, including high risk individuals
and healthy individuals. The dataset includes clinical, imaging,
omics, genetic, sensor, and biomarker data. The sample of
participants includes 902 PD and 237 HCs. The DOMP dataset
focuses on rare neurodegenerative prion diseases like CJD and
others. It includes clinical, neuroimaging (MRI), genetic, and
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TABLE 1 Overview of biomedical datasets with imaging and/or genomics data.

Dataset Disease Image Omics Link

Alzheimer’s Disease
Neuroimaging Initiative
(ADNI)

AD, LBD, FTD,
Parkinson’s disease
dementia (PDD), etc.

MRI, PET, Cerebrospinal
Fluid (CSF) biomarker
imaging, Resting-State
functional MRI
(rs-fMRI), etc.

Genome-Wide Association Study (GWAS) data,
Whole-Genome Sequencing (WGS) data,
Whole-Exome Sequencing (WES) data, RNA
sequencing (RNA-seq) data, DNA methylation
data, MicroRNA (miRNA) expression data,
APOE genotyping data, Copy Number Variation
(CNV) data, Polygenic Risk Score (PRS) data,
Somatic mutation data, Proteomics data,
Metabolic profile data

https://adni.loni.usc.edu

UK biobank AD, PD, ALS, etc. MRI, fMRI, X-ray,
Ultrasound, etc.

Genotyping data (SNPs), WES data, GWAS
data, PRS data, CNVs, DNA methylation

https://www.ukbiobank.
ac.uk/

National Alzheimer’s
Coordinating Center (NACC)

AD, LBD, PD, HD, ALS,
FTD, etc.

MRI, PET Genotyping data (SNPs), WES data, WGS data,
PRS data, CNVs

https://naccdata.org/

Enhancing Neuroimaging
Genetics through Meta-Analysis
(ENIGMA)

AD, PD, MS, FTD, DLB,
etc.

MRI, fMRI GWAS data, PRS data, DNA methylation,
Histone modification data, CNVs,
Transcriptomic data, Rare variant analysis

https://enigma.ini.usc.
edu/

Wisconsin Registry for
Alzheimer’s Prevention
(WRAP)

AD MRI, PET, fMRI GWAS data, PRS data, DNA methylation, RNA
sequencing

https://wrap.wisc.edu/

Australian Imaging, Biomarker
and Lifestyle Flagship Study of
Aging (AIBL)

AD MRI, PET GWAS data, PRS data, DNA methylation https://aibl.org.au/

Parkinson’s Progression
Markers Initiative (PPMI)

PD MRI, DAT-SPECT GWAS data, PRS data, DNA methylation https://www.ppmi-info.
org/

Diagnosis and Monitoring of
Prion Diseases (DOMP)

Prion disease MRI, fMRI WGS data, Targeted gene sequencing, DNA
methylation

N/A

Gene Expression Omnibus
(GEO)

AD, PD, DLB, etc. Gene expression data, Epigenomic data,
Genomic Variants data, Proteomics data,
Metabolomics data

http://www.ncbi.nlm.
nih.gov/geo/

National Center for Geriatrics
Gerontology (NCGG)

AD, PD, LBD, etc. MRI, PET, fMRI GWAS data, WGS data, DNA methylation, RNA
sequencing, PRS data

https://www.ncgg.go.jp/
research/

Open Access Series of Imaging
Studies (OASIS)

AD MRI, fMRI, PET http://www.oasis-brains.
org/

Kaggle dataset AD, PD, etc. MRI, PET Gene expression data, SNPs http://www.kaggle.com/
tourist55/alzheimers-
dataset-4-class-of-
images

biochemical data, along with neuropathology and longitudinal
cognitive assessments. While the sample size is relatively small,
typically in the hundreds, the dataset is a valuable resource for
tracking disease progression and enhancing diagnostic tools.

In addition, there are some genomics only dataset or images
only dataset. The GEO (Barrett et al., 2013) is a public
repository that archives and freely distributes high-throughput
gene expression and other functional genomics data submitted
by the research community. In the GEO database, over 400
datasets focus on neurodegenerative diseases, providing a wealth
of data types for in-depth research. These include a range of
transcriptomic data from microarrays and RNA sequencing to
single-cell transcriptomic profiles that examine specific brain
regions and cell types associated with neurodegenerative conditions
such as Alzheimer’s, Parkinson’s, Huntington’s disease, and ALS.
This variety supports research ranging from identifying disease-
specific gene expression profiles to analyzing epigenetic patterns,
like DNA methylation and chromatin accessibility, essential
for understanding disease mechanisms and progression. The

NCGG (National Center for Geriatrics, 2024) is a longitudinal,
multisite study primarily focusing on aging populations in
Japan, with over 10,000 participants tracked across various time
points. This dataset includes comprehensive clinical assessments,
advanced imaging data (MRI, PET, DXA), and a rich array
of genetic and molecular data, including genomics, proteomics,
and metabolomics. NCGG aims to identify key biomarkers
related to age-related conditions like Alzheimer’s and dementia,
osteoporosis, and cardiovascular disease, thus playing a significant
role in advancing diagnostic accuracy, understanding disease
mechanisms, and guiding therapeutic developments in geriatric
health. The OASIS (LaMontagne et al., 2019) is a publicly available
dataset aimed at providing neuroimaging data for the scientific
community. This initiative is designed to support research in brain
imaging, particularly in the study of AD and cognitive aging. OASIS
provides high-quality MRI data that includes structural brain
images, clinical and cognitive assessments. The data covers a wide
range of ages and includes both healthy subjects and individuals
with cognitive impairments. The Kaggle dataset (Kaggle, 2024) is a
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vast collection of datasets available on the Kaggle platform, which is
a popular community for data science and machine learning. These
datasets cover a wide range of topics including healthcare, finance,
social sciences, and image processing, among others. The data types
include structured data (e.g., CSV files), unstructured data (e.g.,
text), time series, images, and more.

3 AI in neurodegeneration

3.1Machine learning in neurodegeneration

ML is a subtype of AI that aims to enable models to identify
patterns by learning from experience and improving their future
predictions over time (Bishop and Nasrabadi, 2006). Unlike
traditional heuristic models in clinical medicine, ML methods are
based on statistical theory and are designed to be broadly applicable
across various types of problems (Duda et al., 2001). ML can be
classified as supervised, unsupervised, or reinforcement learning
based on the type of outcomes desired from the algorithms.
In supervised learning, algorithms learn from labeled data to
map inputs to outputs. Unsupervised learning involves finding
patterns or structures in unlabeled data, as the algorithm does
not predict specific outcomes. Reinforcement learning involves
training algorithms in dynamic environments where learning
occurs using a system of rewards and penalties, improving
performance based on experience rather than predefined data.
Table 2 lists the studies that involve machine learning (ML)
methods in neurodegenerative diseases.

To achieve the best performance of gene expression-based
AD diagnosis, several studies compared multiple ML models.
For example, El-Gawady et al. (2022) applied Support Vector
Machine (SVM), Random Forest (RF), Logistic Regression (LR),
and AdaBoost models on gene expression. They used a meticulous
gene selection (GS) algorithm to identify the most relevant genes
and identified that the SVM as the most accurate model. In
validation with 157 unseen cases, the SVM classifier achieved
impressive metrics with 0.972 area under the receiver operating
characteristic curve (AUC) and 0.975 accuracy. In PD, 5–10%
of cases have a genetic origin with mutations identified in
several genes such as leucine-rich repeat kinase 2 (LRRK2) and
glucocerebrosidase (GBA). Hence, Hajianfar et al. (2023) proposed
a hybrid ML system consisted of 11 feature extraction algorithms
(FEA), 10 feature selection algorithms (FSA) and 22 classification
algorithms (CA) for PD prediction based on three modalities:
convolutional imaging data, clinical data, and radiomics features.
For radiomics features (RF), they picked 264 and 129 patients with
known LRRK2 and GBA mutations status from PPMI database.
Consequently, they obtained 513 features, including 55 clinical
features (CFs), 28 conventional imaging features (CIFs), and 215
RFs extracted from each ROI of DAT-SPECTimage (in total,
430 for both ROIs) using their Standardized Environment for
Radiomic Analysis (SERA) software. Lin et al. (2022) utilized RF
to identify blood-sample gene biomarkers for predicting stable
mild cognitive impairment (sMCI) patients. Using two datasets
from ADNI, the researchers identified 29 gene biomarkers (31
probes) that were effective in predicting sMCI. The RF classifier
achieved AUC of 0.841. To address the high dimensionality and low
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sample size issue, Abbas et al. (2022) implemented dimensionality
reduction that improved accuracy andAUCofmultipleMLmodels.
Furthermore, integrating DNA methylation and gene expression
data significantly enhanced prediction performance, leading to a
9.5% improvement in accuracy and a 10.6% increase in AUC
compared to state-of-the-art methods.

Alatrany et al. (2023) focuses on improving the classification
of AD by identifying relevant SNP biomarkers using a novel
approach that combines deep transfer learning (TL) and CNNs.
The workflow involves training CNNs on multiple genome-wide
association studies (GWAS) datasets, including data from an
animal population and two distinct human populations. Initially,
CNNs were trained on a GWAS dataset from the ADNI, and
the trained models were further refined through TL applied to
additional GWAS datasets. This process involved customizing
the TL models to extract a robust set of features, which were
then classified using an SVM. The experimental results, which
included multiple configurations, achieved an accuracy of 89%,
significantly outperforming existing methods. The innovation
lies in the strategic use of deep TL across diverse datasets to
enhance SNP-based AD classification, leading to more accurate and
reliable diagnostic predictions. Shigemizu et al. (2019) investigated
potential microRNA (miRNA) biomarkers for DLB and developed
a risk prediction model using serum miRNA expression data
from 478 Japanese individuals. Several ML methods were applied,
including penalized regression, RF, SVM, and gradient boosting
decision tree (GBDT). The GBDT model, which used 180 miRNAs
and two clinical features, achieved the best performance with an
accuracy of 0.829 on an independent test set. Additionally, gene
set enrichment analysis revealed six functional genes associated
with DLB pathology, with BCL2L1 and PIK3R2 being statistically
significant in gene-based association tests. The proposed model
offers a promising tool for DLB classification and highlights
potential miRNA-related biomarkers and pathways involved in
DLB (Shigemizu et al., 2019).

Singh et al. (2019) leverages imaging data from the PPMI and
ADNI, involving 2,540 subjects across five classes: AD, PD, MCI,
scans without evidence of dopaminergic deficit (SWEDD), and
HCs. Using an ML framework combining principal component
analysis (PCA) for feature extraction, Fisher discriminant ratio for
feature selection, and least-squares SVM for classification, the study
achieved an 87.89 ± 3.98% accuracy in multiclass classification,
with precision of 82.54± 8.85%. The binary classification accuracy
reached 100%, demonstrating the system’s potential for clinical
diagnostics in neurodegenerative diseases. Bi et al. (2021) presents
a multimodal fusion framework for detecting PD and analyzing
its pathogenic factors using SNPs and fMRI. A novel ensemble
learning model analyzes fusion features derived from correlation
analysis between genes and brain regions, achieving an accuracy of
88.57% in classifying PD patient.

3.2 Deep learning in neurodegeneration

3.2.1 Deep neural network
DL, as a subset of ML, is well-suited for handling large datasets,

allowing it to identify more complex patterns from raw data and

improve predictive accuracy (Mobarak et al., 2023). DL has shown
remarkable success in diverse domains such as computer vision,
natural language processing, and genomics (Yue et al., 2023). In the
context of neurodegenerative disease diagnosis, DL demonstrates
substantial potential in detecting early disease markers, predicting
disease progression, and identifying patient subgroups based on
imaging and molecular features (Zhou and Troyanskaya, 2015).
The simplest DL model is the DNN, which is composed of
multiple layers of interconnected nodes (neurons) that process and
transform data to learn complex patterns and make predictions
(Kufel et al., 2023). Park C. et al. (2020) utilized large-scale gene
expression and DNAmethylation data to develop a DNNmodel for
predicting AD and themodel demonstrated improved performance
over conventional ML algorithms. Ponce de Leon-Sanchez et al.
(2023) used a DNN to predict MS using 35 genetic biomarkers
and achieved an accuracy of 89.65%. Ning et al. (2018) proposed
a DNN to predict AD risk using genetic variants (i.e., SNPs)
and neuroimaging data (i.e., MRI-derived brain morphometric
measures) on ADNI database. Table 3 lists the studies that involve
DL methods in neurodegenerative diseases.

3.2.2 Convolutional neural networks
CNN is a type of DL model designed to automatically and

efficiently extract spatial features from input data, typically images,
using convolutional layers to detect patterns like edges, textures,
and shapes for tasks such as image recognition and classification
(Yamashita et al., 2018). It has emerged as a powerful DL tool in
neurodegenerative disease research due to their ability to effectively
process and analyze high-dimensional neuroimaging data.

Jo et al. (2022) achieved an AUC of 0.82 by combining CNN
with a Sliding Window Association Test (SWAT) to identify
AD-related SNPs. The model successfully identifying the APOE
region, known to have high correlations with AD, as a significant
genetic locus for AD. Another study employed a CNN in
protein subcellular localization, where CNN acted as a feature
extractor integrated with XGBoost, to identify protein subcellular
localization based on gene sequence data (Pang et al., 2019).
Similarly, CNNs were used in combination with k-means clustering
for analyzing microarray gene expression data in AD prediction
and achieved 92.9% accuracy (AL-Bermany and AL-Rashid, 2021).
Abdelwahab et al. (2023) also utilized microarray data and a seven-
layer CNN for AD prediction, achieving accuracy rates of 96.60
and 97.08% with Principal Component Analysis (PCA)-CNN and
Singular Value Decomposition (SVD)-CNN models, respectively,
indicating strong performance by CNNs when combined with gene
selection techniques. Further applications of CNNs extend to DNA
methylation data analysis for early AD diagnosis. Babichev et al.
(2025) demonstrated that CNN could be effectively combined with
gene ontology analysis, clustering, and Bayesian optimization for
diagnosing both AD and cancer, achieving classification accuracy
rates of 89.8 and 91.8% for AD subsets.

CNNs also show promise in predicting disease conversion
from MCI to AD. A study proposed a deep CNN model
for processing gene expression data, specifically focusing on
identifying transcription factors linked to disease progression
(Rohini et al., 2024). In exploring the cellular mechanisms
underlying AD, Wu et al. (2024) integrated single-cell RNA
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TABLE 3 Overview of DL methods applied in neurodegenerative disease.

References Disease Genomics Image Dataset Feature
selection/extraction

DL Method Acc AUC

Jemimah et al. (2023) AD Genotyping data,
gene expression

ADNI KEGG pathway constraints,
SHAP scores

DNNs 0.69 0.70

Ponce de Leon-Sanchez
et al. (2023)

MS Gene expression GEO kNN, Gaussian NB, C-SVC,
decision tree

DNNs 0.8965 0.8603

Zhou et al. (2019) AD SNPs PET, MRI ADNI Latent representation DNNs 0.644 N/A

Kalkan et al. (2022) AD mRNA expression GEO Fisher distance, LDA CNNs 0.842 N/A

Li L. et al. (2021) AD SNPs ADNI Quality control ResNet 0.9878

Jo et al. (2022) AD SNPs ADNI CNNs 0.75 0.82

Chung and Lee (2023) AD Gene expression GEO, ADNI Deep metric learning 1D-CNNs 0.652 0.877

Abdelwahab et al. (2023) AD Gene expression GEO PCA, SVD CNNs 0.9660 N/A

Kim et al. (2021) AD SNVs, exon splicing
data, RNA-seq

GEO Functional note, GWAS ResNet NO N/A

Varathan et al. (2023) AD Gene expression ROSMAP, HPRDPPI GLRP Graph-CNNs 0.79167 0.76588

Rohini et al. (2024) AD DNA sequence ADNI N/A CNNs N/A N/A

Basheera and Sai Ram
(2019)

AD MRI ADNI ICA CNNs 0.9047 0.885–1

Ren et al. (2019) AD MRI ADNI RF SBPCNNs, SACNNs,
MSCNNs

0.9375 0.93

Padole et al. (2020) AD Rs-fMRI ADNI, Erdös-Rényi,
airfoil, Minnesota

Graph coarsening GCNNs 0.993 N/A

Huang et al. (2019) AD MRI, PET ADNI 3D-CNNs 3D-CNNs 0.769–0.901 0.9269

Jo et al. (2020) AD PET ADNI CNNs, LRP CNNs 0.908 N/A

Feng et al. (2020) AD MRI ADNI 3D-CNN-SVM 3D-CNN-SVM 0.9574 0.998

Li Y. et al. (2021) AD SNPs MRI ADNI, AIBL PCA CNNs 0.992 0.78

Venkatasubramanian
et al. (2023)

AD MRI ADNI CNNs CNNs Segmentation: 0.971
Multi-class: 0.93
Binary: 0.96

N/A

Qiu et al. (2022) AD MRI NACC, ADNI, AIBL,
FHS, LBDSU, NIFD,
OASIS, PPMI

CatBoost CNNs 0.896 0.974
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TABLE 3 (Continued)

References Disease Genomics Image Dataset Feature
selection/extraction

DL Method Acc AUC

Mahmud et al. (2023) AD MRI ADNI CNNs CNNs 0.882 0.945

Mohi ud din dar et al.
(2023)

AD MRI ADNI CNNs CNNs 0.9622 N/A

Babu et al. (2022) AD MRI GLCM, Haralick features,
genometrics haralick features

SVM, CNNs 0.95192 N/A

Kim and Lee (2023) AD MRI KACD LFA CNNs 0.986 N/A

Al-Adhaileh (2022) AD MRI KACD AlexNet AlexNet 0.9453 0.991

El-Assy et al. (2024) AD MRI ADNI CNNs CNNs 0.99 0.9994

Khagi and Kwon (2020) AD MRI, PET ADNI CNNs CNNs 0.9459 N/A

George et al. (2022) AD DEGs Gene corresponding rat
brain image

GEO Functional enrichment,
pathway analysis

CNN-VGG16 0.61 N/A

Venugopalan et al.
(2021)

AD SNPs MRI ADNI kNN, SVM, decision tree, RF 3D-CNNs 0.89 N/A

Chakraborty et al. (2023) AD SNPs MRI ADNI CNNs CNNs 0.88 0.72

Amini et al. (2022) AD SNPs PET ADNI PCA KNNs, LDA, SVM,
CNNs

0.911

Bi et al. (2022) AD SNPs fMRI ADNI Full-gradient saliency graph
mechanism, weight
combination between
adjacent layers

Graph CNNs 0.8936 0.85

Mahendran and Durai
Raj Vincent (2022)

AD DNAmethylation GEO LASSO, SVM, AdaBoost RNNs 0.887 0.876

Park J. et al. (2020) AD RNA-seq GEO Latent space interpolation,
pathway analysis

GANs N/A N/A

Shen et al. (2019) AD PET ADNI PCA DBNs 0.866 N/A

Chakraborty et al. (2023) PD MRI PPMI Atlas-based segmentation MLP 0.953 N/A

Reyes et al. (2022) PD SNPs PPMI, PDBP PCA, linear regression Transformer N/A 0.708 -
0.581

Chen et al. (2024) PD MRI Shanghai Jiao Tong
University

Transformer Transformer 0.83 0.90

Salvi et al. (2023) Prion disease WSIs DOMP Texture analysis (TA) Vision transformer 0.937± 0.068 N/A

Mahendran et al. (2021) AD Gene expression GEO Wrapper based on PSO, AE DBN 0.9678 N/A
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TABLE 3 (Continued)

References Disease Genomics Image Dataset Feature
selection/extraction

DL Method Acc AUC

Chen et al. (2022) AD DNAmethylation ADNI AE LSTM autoencoder N/A 0.996

Alamro et al. (2023) AD Gene expression GEO LASSO, ridge regression DNN, CNNs N/A 0.979

Maj et al. (2019) AD Gene expression ADNI AE SVM, FNN, CNNs,
RNNs

N/A 0.953

McKeever et al. (2023) ALS RNA sequences,
RBP expression
profiles

SRA RF CNNs, attention N/A 0.97

Kamal et al. (2021) AD Gene expression MRI Kaggle, OASIS-3, GEO CNN, spinal net CNN, Xboost, KNN,
SVC, LIME

0.976 N/A

Wang et al. (2022) AD SNPs MRI ADNI 3D-CNN, transformer
encoder

MLP 0.8378 0.924

Ying et al. (2021) AD SNPs MRI ADNI CNN, MLP CNN, MLP 0.961 0.935

Qiang et al. (2023) AD SNPs sMRI ADNI Patch-CNN, MLP,
self-attention

Patch-CNN, MLP,
self-attention

0.93 N/A

Lyu et al. (2021) AD RNA expression MRI, rs-fMRI ADNI LSTM, GCN-attention, FCN LSTM, GCN-attention,
FCN

0.823 N/A

Parvin et al. (2024) AD MRI OASIS, Kaggle, GEO Knowledge graph SVM, CNN, XGBoost N/A 0.98

Song et al. (2023) PD MRI SMC CNN based V-Net Vision transformer N/A 0.91–0.94

RBP, RNA-binding protein; KACD, Kaggle Alzheimer’s classification dataset; SMC, Samsung Medical Center; SRA, Sequence Read Archive; DOMP, Diagnosis and Monitoring of Prion Diseases (DOMP); GLCM, Gray Level Co-Occurrence Matrix; SVC, Support

Vector Classification; NB, Naïve Bayes; GLRP, Guided Layer-wise Relevance Propagation; LDA, Linear Discriminant Analysis; DEG, Differentially Expressed Genes; PDBP, Parkinson’s Disease Biomarkers Program; PSO, Particle Swarm Optimization; LIME, Local

Interpretable Model-Agnostic Explanation.
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sequencing (scRNA-seq), Weighted Gene Co-expression Network
Analysis (WGCNA), and CNN to identify critical genes and
microglial subclusters involved in AD pathology. This approach
pinpointed nine hub genes, including USP3, which were identified
as potential therapeutic targets. Kim et al. (2021) applied a CNN
model called SpliceAI, combined with GWAS, to identify SNVs
and abnormal splicing in the phospholipase C gamma-1 (PLCγ1)
gene associated with AD progression. McKeever et al. (2023)
developed alternative polyadenylation (APA)-Net for ALS. The
model demonstrated strong correlations in predicting APA log-fold
change values across different ALS subtypes, providing insights into
cell-type-specific APA profiles.

Additionally, CNN regression models were used to explore the
impact of AD-related genetic variants on cis-regulatory elements
across different cell types. These models revealed the significant
role of peripheral immune cells in AD predisposition (Ramamurthy
et al., 2022). Kalkan et al. (2022) transformed one-dimensional gene
expression data into two-dimensional images, which were then
classified using CNN, achieving high accuracy and AUC scores
in AD prediction. Similarly, George et al. (2022) combined gene
expression analysis with histopathological brain image analysis
using CNN-VGG16, identifying key differentially expressed genes
in AD rat models and demonstrating strong predictive power.
Basheera and Sai Ram (2019) used CNNs to classify AD by
extracting gray matter from 1,820 T2-weighted brainMRI volumes,
achieving 90.47% accuracy. Similarly, Ren et al. (2019) developed
CNN variants focused on specific brain regions, leveraging RF
for feature selection and maintaining model interpretability. Feng
et al. (2020) extended this with 3D-CNNs on ADNI MRI data for
ternary classification, advancing volumetric image analysis. Li L.
et al. (2021) used genotype data from 1,461 ADNI participants
to develop a DL genomics (DLG) model based on the ResNet
framework for classifying AD, MCI, and HC. Validated with 5-
fold cross-validation, the DLG model achieved 98.78% accuracy
in distinguishing AD from HC, outperforming traditional GWAS
(71.38%). The study also identified novel genetic biomarkers for
AD progression.

Venkatasubramanian et al. (2023) introduces a 3D-ResNet that
uses structural MRI data to simultaneously perform hippocampus
segmentation and AD classification. The model, optimized by
the deer hunting optimization (DHO) technique, was tested on
ADNI MRI datasets. It achieved 97.1% accuracy in segmentation
with a 96% accuracy for binary classification and 93% for multi-
class classification, demonstrating its effectiveness in early AD
detection. Qiu et al. (2022) integrated multimodal data (MRI and
clinical information) using a hybrid DL framework, achieving
performance comparable to clinicians in diagnosing AD and non-
AD dementias (nADDs). Babu et al. (2022) combined advanced
feature extraction techniques with a hybrid CNN-SVM model
for early AD detection, especially at the MCI stage. Kim and
Lee (2023) introduced an ensemble CNN combining brain shape
analysis with VGGNet-based image classification, achieving 98.6%
accuracy on MRI datasets. This model integrated both structural
and image features, enhancing classification performance. Given
the prevalence of unbalanced data in research, both oversampling
and upsampling techniques are common preprocessing methods
for image data prior to input in CNNs for AD stage classification.

Several studies addressed class imbalance. Mahmud et al.
(2023) utilized data augmentation and oversampling techniques to
enhance CNN performance for binary classification, while Mohi
ud din dar et al. (2023) applied upsampling for improved AD
diagnosis. Al-Adhaileh (2022) compared AlexNet and ResNet50
using transfer learning on Kaggle MRI data, with AlexNet
outperforming ResNet50, achieving 94.53% accuracy. Finally, a
multi-filter CNN architecture from the ADNI dataset (El-Assy
et al., 2024) achieved over 99% accuracy in multi-category
classification of AD, highlighting its potential for early detection
and personalized treatment. Jo et al. (2020) employed a DL
framework integrating a 3D CNN with layer-wise relevance
propagation (LRP) to analyze tau PET scans, achieving 90.8%
accuracy in classifying AD from CN individuals. LRP pinpointed
key regions, including the hippocampus and parahippocampus,
and AD probability scores correlated with tau deposition in
the medial temporal lobe in MCI participants. This approach
demonstrates potential for early AD detection using tau PET
imaging. Huang et al. (2019) proposed a CNNmodel that integrates
multimodal information from T1-weighted MRI and FDG-PET
images of the hippocampal area to diagnose AD. The CNN achieved
accuracies of 90.10% for CN vs. AD, 87.46% for CN vs. pMCI,
and 76.90% for sMCI vs. pMCI in ADNI data, demonstrating its
effectiveness and the advantage of combining multiple imaging
modalities. Khagi and Kwon (2020) introduced divNet, a simple
encoder-based CNNdesigned for ADdiagnosis usingMRI and PET
imaging data. The research examined the transition from 2D to 3D
CNN architectures, focusing on how variations in filter size and
stride affect feature extraction. A novel two-stage graph coarsening
method for graph CNN (GCNNs) was proposed in another study
by Padole et al. (2020) This method combines graph wavelet
transform (GWT)-based features with an optimization problem to
enhance coarsening by maximizing topological similarity. Applied
as a pooling operation within a modified GCNN architecture,
this approach was used for early AD detection through graph
signal classification. It demonstrated superior performance in both
general graphs coarsening and as a pooling operator in GCNNs.

As CNNs excel in medical imaging for neurodegenerative
disease diagnosis, their integration with genomics data in
radiogenomics offers deeper insights into disease mechanisms,
enhancing precision diagnostics. Figure 2 shows the common ways
of integrating radiomics with genomics.

Amini et al. (2022) proposed a study using SNPs and PET
imaging data to explore their causal relationship and classify
AD. Models applied were k-nearest neighbor (KNN), SVM, linear
discrimination analysis (LDA), and CNN. CNN achieved the
highest classification accuracy at 91.1%, indicating that KNN
and CNN are effective for diagnosing AD, while LDA and SVM
showed lower accuracy. The suggested SNPs were more strongly
associated with quantitative traits than ApoE gene SNPs. Bi et al.
(2022) introduced a novel DL approach, the Feature Aggregation
Graph Convolutional Network (FAGCN), to analyze relationships
between brain region activities and gene expression patterns for
detecting AD. The model integrates fMRI data and genetic data
(SNPs) to construct brain region-gene networks. It then applies a
series of graph convolutions (1st-order and 2nd-order) to capture
complex interactions within the network. The results are processed
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FIGURE 2

Current multi-modal fusing methods in deep learning-based radiogenomics workflow.

through fully connected layers and a softmax classifier to determine
the classification of samples. This method also uses a full-
gradient saliency graph to identify and highlight pathogenetic brain
regions and risk genes related to AD. The model shows superior
performance compared to traditional methods in identifying AD-
related features, providing a more detailed understanding of the
disease’s development. Venugopalan et al. (2021) presents a CNN
framework that integrates imaging (MRI), genetic (SNPs), and
clinical test data to classify patients into AD, MCI, and CN groups
for the ADNI dataset, the CNN outperformed traditional ML like
SVMs and decision trees. Zhou et al. (2019) leveraged multimodal
neuroimaging data (MRI, PET) and genetic data (SNPs) from
the ADNI database to diagnose AD and MCI. The researchers
developed a three-stage DL model that effectively managed the
heterogeneity of different data types. The model first learned
independent latent features for each modality, then combined these
into joint features, and finally fused them to predict diagnostic
outcomes. By using multiple scanning time points, the model
outperformed existing methods in accuracy and AUC, though
specific values were not disclosed. Chakraborty et al. (2023) utilized
CNN models on three-dimensional MRI data to automatically
extract brain features for GWAS studies aimed at identifying
genetic variants linked to brain atrophy in AD. By applying this
method to ADNI data, the researchers identified several SNPs
associated with neurodegenerative and mental disorders, including
AD, depression, and schizophrenia.

3.2.3 Hybrid DL models
Several other types of DL models are often applied

to neurodegenerative diseases in a hybrid approach,
combined with CNN or ML modules. This section will
introduce these DL models and explain how they are
integrated with CNN or ML modules in neurodegenerative
disease studies.

Hochreiter and Schmidhuber (1997) introduced the Recurrent
Neural Networks (RNN) architecture, a type of DL designed
to handle sequential data by maintaining a hidden state that
captures information from previous inputs. RNNs have become
a significant tool in DL, particularly for sequence data analysis.
An RNN comprises a network that iteratively processes input
data and updates its hidden state, allowing it to capture temporal
dependencies. However, traditional RNNs suffer from issues
like vanishing gradients, making it challenging to learn long-
range dependencies. To address these issues, Hochreiter and
Schmidhuber developed the Long Short-Term Memory (LSTM)
network, which includes a cell state and gated mechanisms (input,
forget, and output gates) to regulate the flow of information. The
LSTM’s ability to maintain a stable cell state allows it to capture
long-term dependencies effectively. Similarly, Abbas et al. (2022)
introduced the Gated Recurrent Unit (GRU), a variant of the
LSTM that simplifies the architecture by combining the input and
forget gates into a single update gate and using a reset gate to
manage information flow. Both LSTM and GRU have been widely
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adopted due to their improved capability in learning long-term
dependencies compared to traditional RNNs.

Goodfellow et al. (2014) developed the Generative Adversarial
Network (GAN) model, a type of generative model that uses an
adversarial approach. GANs have since become a prominent area
in DL, particularly for computer vision and image processing tasks
like image generation (Lan et al., 2020; Alqahtani et al., 2021). A
GAN comprises two networks: a generative network that creates
fake data based on a latent variable, and a discriminative network
that discerns real data from fake data (Arjovsky et al., 2017). These
networks compete against each other in an adversarial manner.
To address training instability, Arjovsky et al. (2017) introduced
the Wasserstein GAN (WGAN), which uses the Earth Mover’s
distance (Wasserstein distance) tomeasure distribution differences,
as opposed to the original GAN’s Jensen–Shannon divergence,
which is problematic when distributions do not overlap (Arjovsky
et al., 2017). Additionally, the conditional Wasserstein GAN
(cWGAN) variant includes a gradient penalty term to enhance
performance (Arjovsky et al., 2017; Gulrajani et al., 2017). Deep
Belief Networks (DBN) represents a category of DL frameworks
composed of multiple layers of hidden or latent variables. Each
layer in a DBN captures the correlation information from the
activities of hidden or latent variables in the preceding layer
(Akhavan Aghdam et al., 2018; Hinton et al., 2006). Typically, each
layer’s foundational component is a restricted Boltzmann machine
(RBM), which is a type of two-way undirected graphical model
(Akhavan Aghdam et al., 2018; Hinton et al., 2006). A variant
known as the sparse-response DBN has been introduced, utilizing
rate-distortion theory. This approach encodes the original data into
a sparse dataset using fewer bits, thereby enhancing performance
(Ji et al., 2014). Autoencoder (AE) comprises an encoder and a
decoder unit, typically implemented using fully connected DNN
layers. It has several notable variants such as Variational AE (VAE;
Shui et al., 2021), Adversarial AE (AAE) model (Mazurowski,
2015), and Adversarial Variational Autoencoder (AVAE; Jack et al.,
2008). A graph neural network (GNN; Zhou et al., 2020) is a
type of DL model designed to work directly with graph-structured
data by learning the relationships and dependencies between nodes
and edges, making it ideal for tasks like node classification, link
prediction, and graph classification.

Maj et al. (2019) analyzed genotype data from AD, MCI
patients, and controls using tissue-specific cis-eQTLmodels. AVAE
was used for feature extraction and SVM for classification, with
RNNs as the best-performing model. Although ACC and AUC
were not reported, the study highlighted inflammatory processes
in gut-brain axis tissues and emphasized the benefit of integrating
unsupervised and supervised learning for high-dimensional omics
data. Akkaya and Kalkan (2023) introduced One2MFusion which
integrates gene expression data with their 2D representations for
AD classification. The approach used CNN to process 2D gene
images and DNN to analyze gene sequences with an increased AUC
of 0.91 for AD vs. NC and 0.88 for MCI vs. NC. Kamal et al.
(2021) proposed a study classified AD using both MRI images and
microarray gene expression data. In their study, SpinalNet (Kabir
et al., 2023) and CNN were applied to MRI images, while KNN,
SVM, and XGBoost were used on gene expression data. SpinalNet,
inspired by the human nervous system, efficiently processes
inputs hierarchically, reducing computation and overfitting. CNN

achieved 97.6% accuracy, outperforming SpinalNet by 10.96%, and
SVM showed the highest accuracy 82.4% for gene expression data.
Mahendran and Durai Raj Vincent (2022) developed an emhanced
RNN for the early diagnosis of AD using DNA methylation
data from the GEO database. To manage the high-dimensional
data, three embedded feature selection methods—LASSO, SVM
with regularization, and AdaBoost—were compared. The proposed
approach significantly outperformed existing models, including
CNN, RNN, and DRNN, in classification accuracy.

Chen et al. (2022) developed two multi-task deep AEs—one
based on a convolutional AE and another based on a LSTM AE—
to predict AD progression using DNA methylation data from
peripheral blood. The deep AEs were designed to learn compressed
feature representations by jointly minimizing reconstruction
error and maximizing prediction accuracy. Benchmarking on
longitudinal DNA methylation data from ADNI, the proposed
models outperformed state-of-the-art ML approaches in predicting
AD progression and reconstructing temporal DNA methylation
profiles. Ying et al. (2021) developed a multimodal model that
combines brain MRI and SNP data for AD diagnosis. The model
integrates a 2D CNN for MRI analysis and a multi-layer perceptron
(MLP) for processing SNPs. Tested on the ADNI dataset, the
model achieved 93.5% AUC. Qiang et al. (2023) combined CNN
and RNN to enhance AD diagnosis based one sMRI, clinical
data, and APOE genetic data. It achieved 93% accuracy for AD
vs. MCI and 82.4% accuracy for MCI vs. NC on the ADNI
database. Mahendran et al. (2021) combined AE and DBN for
AD diagnosis using the GSE5281 dataset from GEO. Lyu et al.
(2021) developed a cross-datatype deep fusion model (CDF-
Model) to classify MCI patients from NC. The model integrates
a RNN for multimodality brain imaging data and a DNN for
processing gene expression data and achieved an overall accuracy
of 82.3% on ADNI dataset. Afshar et al. (2023) revealed that risk
genes underlying AD were more connected in microglia through
creating a multimodal DL model combining GNN and CNN.
Similarly, Parvin et al. (2024) also combined GNN with CNN for
multimodal data integration for AD classification. Explainable AI
(XAI) techniques such as layer-wise relevance propagation and
submodular pick local interpretable model-agnostic explanations
(SP-LIME) are used for model interpretation in this study. Wang
et al. (2022) used 3D CNN to process 3D MRI inputs and RNN
to handle genetic sequence data. The combined embeddings from
these twomodalities are further processed through aMLP classifier.
IGnet achieved a classification accuracy of 83.78% and an AUC of
0.924 on ADNI data.

3.2.4 Transformers
Transformer, introduced by Vaswani et al. (n.d.) in 2017,

is a groundbreaking DL architecture. Unlike traditional models
like RNNs, which process data sequentially, the Transformer
employs a self-attention mechanism that allows it to analyze entire
input sequences in parallel. This enables the model to capture
relationships between words regardless of their positions in the
text. To maintain the order of words, the Transformer incorporates
positional encoding. Additionally, it uses multi-head attention to
focus on different parts of a sentence simultaneously, enhancing
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its ability to understand complex language structures. The model’s
architecture typically includes an encoder and decoder, making it
highly effective for tasks like machine translation.

Reyes et al. (2022) applied Transformer on genotype data
(SNP) for PD diagnosis. The model is designed to effectively
capture complex global feature interactions that are challenging
for traditional methods like polygenic risk scores and standard
ML approaches. By leveraging the attention mechanism in
Transformer, they noticed improved classification accuracy and
enhanced interpretability through the visualization of learned SNP-
SNP associations. Chen et al. (2024) introduces a novel DL model
called the Segmentation-Transformer-Age-Network (STAN) to
predict brain age using Quantitative Susceptibility Mapping (QSM)
data. The STAN model utilizes a two-stage network architecture:
the first stage focuses on extracting informative features from
QSM data through segmentation training, while the second stage
integrates these features to predict brain age. The study was
conducted using QSM images from 712 healthy participants (548
for training and 164 for testing). The model achieved a high
accuracy in predicting brain age, with a mean absolute error (MAE)
of 4.124 years and a coefficient of determination (R²) of 0.933. Song
et al. (2023) applied Vision Transformer (ViT) to segment brain
MRI scans for the diagnosis of PD with a accuracy large than 0.85
andwere 300 times faster thanDNN.Watanabe et al. (2021) utilized
a transformer-based generative model to generate SPECT images
characteristic of PD. The model was able to generate inferior slices
of a 3D volume from a few superior slices and transformHC SPECT
images into PD-like images.

4 Challenges and future direction

The quality of datasets remains a significant challenge
in neurodegenerative disease radiogenomics research. While
numerous publicly available datasets exist, as highlighted in
Table 1, they do not fully represent the central dogma of
molecular biology. Comprehensive, high-quality data are required
at all stages of gene expression, from DNA transcription to
RNA translation and protein synthesis, to better understand the
molecular mechanisms driving these diseases. Additionally, there
is a notable imbalance in available data, particularly a lack of
cases representing early-onset AD and rarer dementias, such as
FTD and VD. This imbalance hinders the ability of models to
generalize and accurately differentiate between subtypes, such
as amnestic vs. non-amnestic MCI. Furthermore, the issue of
unpaired data complicates multimodal integration; for example,
PET data is far less prevalent than MRI or SNP data, limiting
comprehensive radiogenomic analyses. Addressing these data
quality and availability gaps is essential for improving the accuracy
of models and advancing neurodegenerative disease research. More
complete, well-annotated datasets are crucial for the future of
radiogenomics in this field.

Multi-center and international collaborations, such as the
ADNI, play a crucial role in addressing data imbalance and
heterogeneity by aggregating larger and more diverse demographic
datasets. Establishing standardized protocols for data collection—
including imaging, genomic sequencing, and clinical annotations—
can further enhance dataset consistency and comparability across

studies. Generative models, such as GANs and diffusion models
(Ho et al., 2020), offer significant promise for addressing data
imbalance, particularly in high-dimensional datasets like imaging
or genomics. By generating realistic synthetic data that mirrors
the distribution of underrepresented classes, these models help
mitigate class imbalance and improve model training. For example,
synthetic samples generated for rare classes can balance datasets,
ultimately enhancing model performance and robustness.

To tackle heterogeneity in multimodal data, the primary
challenge is extracting relevant features from different modalities
(e.g., MRI, PET, genomics) while preserving critical information.
Techniques such as cross-modal attention mechanisms (Zhang
et al., 2023) and multi-view learning (Liu et al., 2017) enable the
integration of features across modalities, allowing models to focus
on the most salient aspects and learn meaningful representations
with minimal information loss. Shared latent representation
approaches, such as canonical correlation analysis (CCA) and
multimodal variational autoencoders (VAEs), align features from
multiple data sources in a common latent space while retaining the
unique characteristics of each modality.

Data normalization techniques, such as min-max scaling
or z-score normalization, are essential for preprocessing data
with varying ranges and distributions, ensuring compatibility
across sources. For datasets with insufficient size to train models
from scratch, transfer learning is an effective strategy. Models
pretrained on large datasets (e.g., ImageNet for images) can be
fine-tuned on smaller datasets, enabling generalization to new
domains. Additionally, federated learning (Rastogi et al., 2024)
addresses privacy concerns and institutional data disparities by
enabling decentralized model training across distributed datasets
without sharing raw data, preserving privacy while leveraging
diverse sources. To further address data heterogeneity, domain
adaptation techniques offer a promising solution by bridging the
gap between source and target domains with differing distributions,
such as those arising from multi-modal or cross-institutional
variations. For instance, unsupervised domain adaptation (Yu
et al., 2024) minimizes domain discrepancies through methods
like adversarial learning, aligning feature representations between
datasets. In multi-modal scenarios, these techniques enable robust
feature extraction and integration while preserving each modality’s
unique characteristics, ensuringmodels generalize effectively across
diverse datasets.

Current research indicates that most studies predominantly
employ feature-level fusion for multimodal data integration
in Figure 2. This approach is favored because it can capture
richer inter-modal relationships, provide high-resolution data
integration, and enhance model generalization. However, the
increased feature dimensionality demands significantly higher
computational resources and exacerbates issues related to data
imbalance across modalities. As a result, there is ample opportunity
to explore decision-level fusion methods, which offer better
adaptability to data heterogeneity and lower computational
complexity. Investigating such approaches could lead to more
efficient, scalable models that maintain robust performance despite
modality-specific variations or incomplete data. Balancing the
strengths of both fusion strategies will be crucial to advancing
the field and optimizing multimodal learning systems for
practical applications.
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Another significant challenge is the gap between AI-enhanced
models and their translation to real-world clinical applications.
Biomarkers identified in AI-based radiogenomics studies still
require rigorous experimental validation before they can be
confidently used in clinical practice. Without this, their clinical
utility remains speculative. Additionally, the limited interpretability
of DL models is a persistent issue. While XAI techniques have
been developed to improve model transparency, the adoption
of XAI tools in radiogenomics for neurodegenerative diseases is
still limited, highlighting an opportunity for improvement. To
address this gap, future studies should prioritize the integration
of XAI tools into their workflows, ensuring that model decisions
are both interpretable and clinically actionable. For example,
model-agnostic methods such as SHapley Additive exPlanations
(SHAP) and Local Interpretable Model-agnostic Explanations
(LIME) can quantify feature importance for genomic and imaging
inputs, helping to identify the most critical variables influencing
predictions (Liu et al., 2022). Similarly, Gradient-weighted
Class Activation Mapping (Grad-CAM) is particularly useful in
radiogenomic imaging, allowing researchers to visualize key image
regions contributing to the model’s decisions. These techniques
enable researchers to interpret both high-dimensional genomic
data and imaging features in a more meaningful way, bridging
the gap between model predictions and clinical understanding.
Moreover, methods like Layer-wise Relevance Propagation (LRP)
can be employed to provide detailed explanations of how individual
layers in a neural network contribute to the final decision, offering
greater transparency for multi-modal applications. These tools
should be incorporated not only during the evaluation phase but
also during model development, enabling iterative refinements to
improve interpretability and performance simultaneously. Some
studies continue to rely on handcrafted features from regions of
interest (ROI), while interpretable, may fail to capture the full
complexity of structural and functional brain data. Combining
these traditional approaches with DL-based methods that leverage
XAI tools could strike a balance between interpretability and
the ability to detect subtle, high-dimensional patterns, enhancing
generalizability across diverse patient populations. Bridging the
gap between AI models and their clinical applicability will
require not only enhanced interpretability and validation but also
standardized practices in data collection and processing. AI models
trained on diverse, high-quality datasets that reflect the real-
world heterogeneity of neurodegenerative diseases will be better
equipped to make clinically relevant predictions. Incorporating
XAI tools throughout the development pipeline can improve trust
and understanding, making it easier for clinicians to adopt AI-
driven tools in everyday practice.

Since radiogenomics studies involve integration multi-modal
image data and multi-level genomics data, an effective integration
strategy is needed. Simple concatenation of features—often applied
at the hidden layers or the final stages of DL models—is commonly
used but may not fully exploit the complex interactions between
imaging and genomic data. More advanced integration techniques,
such as Bayesian tensor factorization (Liu et al., 2022) and cross-
modal self-attention (Zhang et al., 2023), offer promising avenues
for enhancing the precision of these models. Bayesian tensor
factorization can extract latent factors from three dimensions

tensors constructed from the RNA-sequencing expression, copy
number variation, and DNAmethylation data through latent factor
decomposition. It also automatically selects the optimal tensor
rank, a critical step for capturing and understanding the multi-
omics features of patients. Cross-modal self-attention mechanisms
integrate imaging features, such as MRI and PET data, with
cerebrospinal fluid (CSF) features using a transformer encoder
based on self-attention. In this process, imaging features act
as the key and value vectors, while CSF features serve as the
query input, enabling the model to capture potential relationships
across modalities. In addition to the power in multi-modal
fusion, the cross-modal self-attention mechanisms also play an
important role in addressing the overlapping imaging features
between the different neurodegenerative disease. This dynamic
focus helps disentangle overlapping features by highlighting the
distinct relationships between modalities. Similarly, contrastive
learning aligns representations from differentmodalities in a shared
latent space, encouraging the model to emphasize the differences
and reduce redundancies between them, further improving feature
separation and interpretability. Despite the potential of these
advanced methods, there is still a lack of standardized, robust tools
for multimodal integration in radiogenomics. The development of
new tools that incorporate state-of-the-art integration techniques
is critical to advance the field. Additionally, hybrid models that
leverage both feature-level and decision-level fusion might offer a
more nuanced understanding of the complex relationships between
genomic alterations and imaging phenotypes, especially in the
context of neurodegenerative diseases. The introduction of such
tools could significantly improve the model’s ability to generalize
across different datasets and patient populations, leading to more
accurate predictions and better clinical utility. To address this gap,
future research should focus on developing scalable, interpretable,
and clinically relevant integration frameworks that handle the
inherent heterogeneity and complexity of multimodal data.
Hence, appropriate performance matrics should be considered
after the model design. In addition to common matrics like
AUC and accuracy, additional matrices such as F1-score, which
balance precision and recall, can better show the robustness of
models. Moreover, the Matthews correlation coefficient (MCC) is
particularly useful for assessing generalizability of model, especially
on imbalanced datasets. Researchers are also encouraged to use
external validation to ensure that the model generalizes well to
unseen data.

To mitigate overfitting in high-dimensional genomic data,
several strategies can be employed. Data augmentation techniques,
such as SMOTE and bootstrapping, help increase training
sample diversity, reducing overfitting. Regularization methods
like L1/L2 regularization and dropout prevent the model from
fitting irrelevant features by penalizing complexity. Additionally,
dimension reduction tools like PCA and UMAP reduce the
feature space, retaining essential patterns while lowering the risk
of overfitting. By integrating these approaches, researchers can
improve model robustness and generalizability, ensuring better
performance on diverse genomic datasets.

More advanced DL models, such as Mamba (Gu and
Dao, 2024), a newly developed architecture, offer promising
opportunities for neurodegenerative disease radiogenomics studies.
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Mamba is highly efficient, scaling linearly with sequence length
and offering significantly faster inference compared to traditional
models. This makes it particularly useful for tasks where long-term
dependencies in data need to be modeled, such as in genomics
or radiogenomics. For example, in neurodegenerative disease
radiogenomics, Mamba can effectively integrate multimodal data
(like MRI, PET, and genomic sequences) to identify patterns or
biomarkers without the computational overhead often associated
with other DL models. In addition to its computational efficiency,
Mamba’s lightweight design and low memory usage make it
well-suited for deployment in resource-constrained environments,
such as small medical institutions or remote areas with limited
infrastructure. By enabling models to run effectively on less
powerful hardware, such as mobile devices or edge computing
systems, Mamba facilitates broader accessibility and real-time
applications. Moreover, its parallel computation capabilities
significantly reduce training and testing times, making it easier to
develop pre-trained models tailored to specific tasks. For instance,
Mamba excels in gray matter structure segmentation on T1-
weighted brain MRI (Wei et al., 2024), while its variant, U-
Mamba (Ma et al., 2024), addresses overlapping imaging features,
further enhancing its versatility. By incorporating Mamba into
neurodegenerative disease studies, researchers can take advantage
of its efficient memory usage and selective information processing,
enabling more accurate and scalable models.

5 Conclusion

In conclusion, AI-based radiogenomics holds significant
promise for advancing the diagnosis, prognosis, and treatment of
neurodegenerative diseases.While current research has successfully
integrated genomic and imaging data to reveal important insights,
much work remains to fully unlock the potential of these
technologies. Challenges such as data quality, heterogeneity,
and model interpretability must be addressed to ensure clinical
applicability. Future efforts should focus on improving multimodal
data integration strategies, enhancing model transparency through
explainable AI, and validating identified biomarkers through
rigorous clinical trials. As radiogenomics continues to evolve,
it has the potential to revolutionize personalized medicine,
offering earlier and more accurate diagnoses, as well as tailored
therapeutic approaches, ultimately improving the quality of life
for patients worldwide. This work reviewed current status of AI-
based radiogenomics in neurodegenerative diseases, summarizing
key model designs, performance metrics, publicly available data
resources, significant findings, and future research directions. It

provides a starting point and guidance for those seeking to explore
this emerging area of study.
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