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Accurate identification of pollen grains from Abies (fir), Picea (spruce), and Pinus

(pine) is an important method for reconstructing historical environments, past

landscapes and understanding human-environment interactions. However,

distinguishing between pollen grains of conifer genera poses challenges in

palynology due to their morphological similarities. To address this identification

challenge, this study leverages advanced deep learning techniques, specifically

transfer learning models, which are e�ective in identifying similarities among

detailed features. We evaluated nine di�erent transfer learning architectures:

DenseNet201, E�cientNetV2S, InceptionV3, MobileNetV2, ResNet101,

ResNet50, VGG16, VGG19, and Xception. Each model was trained and

validated on a dataset of images of pollen grains collected from museum

specimens, mounted and imaged for training purposes. The models were

assessed on various performance metrics, including accuracy, precision, recall,

and F1-score across training, validation, and testing phases. Our results indicate

that ResNet101 relatively outperformed other models, achieving a test accuracy

of 99%, with equally high precision, recall, and F1-score. This study underscores

the e�cacy of transfer learning to produce models that can aid in identifications

of di�cult species. These models may aid conifer species classification and

enhance pollen grain analysis, critical for ecological research and monitoring

environmental changes.

KEYWORDS

deep learning, ecological research, environmental changes, palynology, transfer

learning

1 Introduction

The scientific study of pollen is a key step in studies of historical and contemporary

environmental analysis. Researchers use pollen data to reconstruct past vegetation patterns

and understand changes in landscapes in paleoecology and climate change studies (Willard

and Bernhardt, 2011; Shennan, 2015; Balmaki et al., 2019, 2024). By examining pollen

grains preserved in sediments or peat bogs, paleoecologists can identify the types of

vegetation that existed in a particular area at different times in the past. This information

is used to help reconstruct historical climate conditions, as the distribution of plants is

closely linked to specific climate parameters such as temperature and rainfall. Through this

method, scientists can trace the ecological impacts of climate fluctuations over centuries,
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providing insights into how ecosystems responded to changes

in the environment and aiding predictions of future ecological

responses to climate change (Balmaki et al., 2019). Moreover,

pollen grains can help to identify the interactions between human

activities and environmental factors that significantly shape these

landscape patterns (Sadori et al., 2010; Kobe et al., 2020).

Coniferous genera, in particular, are representative of specific

ecological and climatic adaptations making them important to

help map past landscapes and climate conditions. For example,

fir trees (Abies) are sensitive to moisture changes, spruce trees

(Picea) are adapted to cold environments, and pine trees (Pinus) are

known to be resilient to various environmental stresses including

fire. Collectively, data on these taxa provide a comprehensive

understanding of historical humidity, precipitation patterns,

climatic fluctuations, and fire regimes (Latałowa and van der

Knaap, 2006; Balmaki and Wigand, 2019; Larson et al., 2020).

Beyond its significance in reconstructive studies, pollen analysis,

drawing from these conifers, is also critical to health and allergy

research, helping to identify allergenic species and predict pollen-

related health issues, thus playing a key role in public health

management and allergen treatment (Gastaminza et al., 2009;

Frisk et al., 2024). Traditional palynology, the study of pollen

grains and spores, depends on morphological characters of pollen

grains to identify taxa. Typical traits include shape, polarity,

symmetry, apertures, size, and ornamentation. However, the subtle

morphological differences between closely related pollen grains

make it challenging to distinguish species accurately and quickly.

Identifying pollen grains under the microscope is time-consuming,

expensive, and dependent on subjective criteria, resulting in error

rates as high as 33% (Langford et al., 1990; Gonçalves et al.,

2016; Sevillano et al., 2020). Although digital imaging techniques

and graphical software have been used to enhance analysis, these

tasks largely rely on human visual inspection, which is prone

to classification errors, particularly for novice palynologists. Such

limitations highlight the need for more efficient, objective, and

accurate methods of pollen identification.

Identification of pollen grains is a difficult task, requiring both

expert knowledge and high-resolution micrographs as well as a

large number of reference slides for accurate comparison and

identification. In particular, pollen grains of conifer species such

as fir, spruce and pine, are difficult to identify because they all

have two air sacs with a central body, causing the grains of these

groups to look very similar with little morphological distinctness

(Figure 1). This issue has been extensively documented, notably in a

detailed study by Bagnell (1975), where distinctions among several

species of Abies, Picea, and Pinus were meticulously examined

using scanning electron microscopy. This study highlighted the

subtle morphological differences critical for species identification,

reinforcing observations from other research that document the

morphological overlap among these species and the consequent

challenges in their microscopic identification. Due to these

morphological similarities, accurately identifying these species

under a microscope is challenging. Deep learning is a great

technique for enhancing pollen analysis by identifying species from

a model trained on thousands of images (e.g., Daood et al., 2016).

Having a trained model may help to improve our identification

of these species and reduce the need for extensive morphological

training in palynology. Deep learning approaches not only improve

the accuracy of pollen classification but also dramatically reduce the

time required for identification compared to traditional methods.

While manual identification of a single pollen sample may take

several minutes to hours depending on expertise and sample

complexity, ML/DL models can process thousands of images in

seconds once trained, providing an exponential improvement in

speed (Balmaki et al., 2022b; Rostami et al., 2023). This makes

deep learning particularly valuable for large-scale ecological and

environmental studies.

In this study, we examine the ability of deep learning to identify

pollen grains from conifer species. Deep learning techniques

enhance accuracy, efficiency, and reduce manual effort and errors

across image classification, object detection, and task recognition,

as evidenced by multiple studies (Wäldchen and Mäder, 2018;

Buddha et al., 2019; Afonso et al., 2020; Norouzzadeh et al.,

2021; Jabbar et al., 2024). Specifically, deep learning has been

highly effective in pollen taxonomic classification, utilizing transfer

learning to achieve notable advancements (Daood et al., 2016;

Khanzhina et al., 2018; Sevillano and Aznarte, 2018; Sevillano

et al., 2020; Jaccard et al., 2020; Polling et al., 2021; Olsson et al.,

2021; Zeng et al., 2021; Balmaki et al., 2022b; Rostami et al.,

2023). Transfer learning, a technique where a model developed

for one task is adapted for another, is particularly valuable as it

leverages pre-trained models on large, diverse datasets to enhance

learning efficiency and prediction accuracy, even with limited data

specific to conifer species. This approach is cost-effective and

less time-consuming, addressing the challenges of data scarcity in

this domain.

2 Materials and methods

2.1 Data collection and pollen analysis

For this research, we selected six common pollen species

from the Pinaceae family: Abies concolor, Picea pungens, Picea

wilsonii, Pinus flexilis, Pinus monophylla, and Pinus sabiniana,

all sourced from the University of Nevada, Reno Museum of

Natural History (UNRMNH). We manually collected pollen grains

from the herbarium collections of a historical museum using

entomological pins under a binocular microscope. We checked the

pollen grains to ensure that no contaminant grains were present

(e.g., grains from other plant species, potentially brought in by

wind or insects). Pollen grains were prepared on glass slides by

applying two drops of 2,000 cs silicone oil. This suspension allowed

for the pollen grains to be rotated under the microscope, making

it easier to examine their dimensions and shapes from various

angles. All pollen grains are arranged on the slide to prevent them

from sticking together, making it easier to take pictures for creating

models. Each slide contained at least 400 individual pollen grains.

Slides were secured with cover slips and sealed with nail polish as

in Balmaki et al. (2019, 2022a, 2022b). A ZEISS Axiolab 5 light

microscope paired with an Axiocam 208 color microscope camera

was used to photograph the pollen grains. Images were taken using

20× objective lenses and 10× ocular lenses. We collected a dataset

of nearly 1,400 images of pollen grains. The dataset includes images
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FIGURE 1

Morphological Comparison of Pinus monophylla (A, B) and Abies concolor (C, D). In this image each grain is visualized from two di�erent angles.

Conifer species tend to have morphologically similar pollen grains making their identification di�cult.

TABLE 1 Distribution of pollen grain images across di�erent species and

percentage of images each species had in the model.

Image classes No. of Images Percentage (%)

Abies concolor 115 8.5

Picea pungens 292 21.6

Picea wilsoni 264 19.5

Pinus flexilis 99 7.3

Pinus monophylla 96 7.1

Pinus sabiniana 487 36

Total 1,353 100

from the six pollen species, with each class containing between 96

and 487 images. All images were standardized to a resolution of

224 × 224 pixels and saved in JPEG format. For further details, see

Table 1.

2.2 Data preprocessing

The methodology pipeline is illustrated in Figure 2,

encompassing the stages of dataset collection, data preprocessing,

model training with image augmentation, and evaluation through

hyperparameter optimization and performance metrics. For model

training, each image was cropped to ensure consistency and to

focus on relevant details. We used the Python-based OpenCV

(Version 4.9) package for segmenting images containing multiple

pollen grains into individual images and then converting to

grayscale. Thresholding and morphological operations were then

applied to highlight and clean up the particles within the images.

Contours of these particles were identified and filtered based

on a specified diameter range to avoid segmenting particles that

were either too small, which could be dust or bubbles, or too

large, which might result from overlapping grains creating an

abnormally large particle. For each particle that met the criteria,

the region of interest was cropped with an added margin, and the

resulting cropped images were saved (Figure 3). Challenges such

as overlapping grains and misidentified dust particles required

manual exclusion from the final dataset.

Before training the models, the dataset underwent

comprehensive preprocessing. This included normalizing

pixel values within a specified range and resizing all images to align

with model input requirements. To increase model robustness and

reduce the likelihood of overfitting, data augmentation techniques

such as random rotations, flipping, and zooming were utilized. The

complete dataset consisted of 1,344 images and was systematically

divided into three subsets: training, testing, and validation. The

training subset contained 70% of the total images (944 images),

while the testing and validation subsets each comprised 15%, with

200 images per subset. This structure was chosen to optimize the

effectiveness of model training.

2.3 Transfer learning architectures

We selected these models based on their varied architectures

and proven effectiveness in image recognition tasks, adapting each

to our dataset’s unique requirements through a systematic process
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FIGURE 2

Methodological Pipeline for Pollen Analysis: This figure illustrates the comprehensive process used for pollen data analysis, starting from dataset

collection through slide preparation and imaging. It details data preprocessing steps including cropping and converting pollen grains to grayscale,

followed by a split into training, validation, and test sets. The model training phase incorporates image augmentation techniques to enhance the

robustness of the transfer learning CNN model. The final evaluation phase is depicted through di�erent metrics, including a confusion matrix to

illustrate the model’s performance.

of feature adjustment and fine-tuning. In this study, we tested

nine different transfer learning models to tackle the challenge of

distinguishing similar pollen grains from Abies, Picea, and Pinus

species. Each of these models—DenseNet201, EfficientNetV2S,

InceptionV3, MobileNetV2, ResNet101, ResNet50, VGG16,

VGG19, and Xception has been pre-trained on large-scale image

datasets, making themwell-suited for feature extraction in complex

image recognition tasks. The use of multiple models allows us to

compare their effectiveness and robustness across similar images,

ensuring that we can identify the most effective architecture for

our specific application.

Each model employed a combination of feature transfer,

parameter transfer, and layer fine-tuning. The convolutional

bases of each model were utilized as fixed feature extractors

where only the top layers were retrained to adapt to the

nuances of our pollen dataset. Parameters from select layers

were finely adjusted to better suit the detailed features of pollen

grains. This adaptation was crucial for enhancing the model’s

sensitivity to subtle inter-species variations. After the initial

adaptation phase, several layers were progressively unfrozen

and fine-tuned with a reduced learning rate to allow precise

adjustments, optimizing the models for high accuracy in

pollen classification.

2.3.1 DenseNet201
This architecture utilizes dense connections, where each

layer receives inputs from all preceding layers and passes on

its feature-maps to subsequent layers. This effectively reduces

the vanishing gradient problem, enhances feature propagation,

and facilitates feature reuse. This design simplifies training and

increases parameter efficiency by ensuring that each layer can access

feature maps from every other layer, enhancing the learning and

feature-utilization efficiency (Huang et al., 2017).

2.3.2 E�cientNetV2S
This architecture employs a compound scaling method that

uniformly scales the depth, width, and resolution of the network.

This approach optimizes both accuracy and efficiency, reducing

training time and improving scalability across various devices.

Fine-tuning was particularly focused on the scaling parameters to

match the complexity of pollen images (Tan and Le, 2021).

2.3.3 InceptionV3
This architecture builds on its predecessor, InceptionV2,

by incorporating factorization into its modules to reduce
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FIGURE 3

Cropped Pollen Grains from Microscopic Imaging: This figure displays individual pollen grains (A–E) extracted from a single slide. The cropping

process isolates each grain for detailed analysis and further study in pollen classification.

computational load. It uses asymmetric convolutions that split

larger convolutions into smaller ones, effectively reducing

operations and complexity. This optimization enhances

performance in large-scale image recognition tasks and was

fine-tuned to improve the model’s capacity to process the unique

textural features of pollen (Szegedy et al., 2016).

2.3.4 MobileNetV2
This architecture introduces inverted residuals and linear

bottlenecks with shortcut connections that maintain a compact

and efficient model structure, ideal for mobile environments with

limited computational resources. This model was adapted for rapid

processing, enabling efficient deployment in field studies (Sandler

et al., 2018).

2.3.5 ResNet series (ResNet50 and ResNet101)
The ResNet series enhances deep learning architectures using

deep residual frameworks. These models use skip connections

to facilitate training deeper networks by preventing vanishing

gradients and degradation. ResNet50 offers a balance between

performance and computational cost, whereas ResNet101

provides greater depth for enhanced feature learning, crucial for

distinguishing closely similar pollen types (He et al., 2016).

2.3.6 VGG series (VGG16 and VGG19)
The VGG series standardizes deep learning architectures using

repetitive 3 × 3 convolutions and pooling layers. VGG16 focuses

on building rich feature hierarchies’ layer by layer, while VGG19, an

extension with more convolutional layers, captures more complex

features, benefiting tasks requiring detailed feature differentiation

and was particularly useful in identifying subtle morphological

differences between pollen species (Simonyan and Zisserman,

2014).

2.3.7 Xception
This architecture refines Inception by introducing depthwise

separable convolutions, decoupling the learning of spatial

hierarchies from channel-wise correlations. This improvement

boosts both performance and efficiency, making it ideal for

handling large-scale, high-dimensional data and was adapted to

enhance feature extraction capabilities specific to the textural and

shape-related characteristics of different pollen grains (Chollet,

2017).

2.4 Experimental design and optimization
techniques

All models were trained and tested on an NVIDIA GeForce

RTX 3060 with 12GB of memory using Python 3.10.6 and

TensorFlow. Each model was configured with a learning rate of

0.001, a batch size of 128, and the number of epochs adjusted

between 30 and 100 to match the complexity and convergence

behavior of each model. The total parameters and disk storage

varied significantly across models, for instance, DenseNet201 had

∼96 million parameters with a disk size of 369.53MB, while

EfficientNetV2S utilized about 131 million parameters with a disk

size of 500.05MB. This design and approach were critical for
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TABLE 2 Overview of hyperparameter configurations for various transfer learning models.

Model name Learning rate Optimizer Early stopping Epochs Batch size

DenseNet201 0.001 ADAM 10 48 128

EfficientNetV2S 0.001 ADAM 10 100 128

InceptionV3 0.001 ADAM 10 54 128

MobileNetV2 0.001 ADAM 10 65 128

ResNet101 0.001 ADAM 10 54 128

ResNet50 0.001 ADAM 10 49 128

VGG16 0.001 ADAM 20 30 128

VGG19 0.001 ADAM 20 57 128

TABLE 3 Comparison of model performance metrics across various transfer learning models used in this study.

Model
name

Training Validation Testing Other metrics

Accuracy Loss Accuracy Loss Accuracy Precision Recall F1-Score

DenseNet201 0.9576 0.1176 0.945 0.2066 0.96 0.96 0.96 0.96

EfficientNetV2S 0.9544 2.206 0.965 2.1986 0.96 0.96 0.96 0.96

InceptionV3 0.9057 0.2278 0.880 0.3492 0.93 0.93 0.93 0.93

MobileNetV2 0.8972 1.7904 0.850 1.9488 0.90 0.91 0.90 0.90

ResNet101 0.9725 0.1051 0.980 0.0989 0.99 0.99 0.99 0.99

ResNet50 0.9915 0.0273 0.990 0.045 0.97 0.97 0.97 0.97

VGG16 0.9756 0.0717 0.965 0.1089 0.97 0.97 0.97 0.97

VGG19 0.9873 0.0446 0.995 0.0645 0.97 0.97 0.97 0.97

The rows highlighted in green represent the top two models with the highest performance metrics.

FIGURE 4

Comparative testing performance of the deep learning models tested.

reliable and efficient training, essential for precise classification

of closely similar pollen species. Table 2 provides an overview of

the hyperparameter configurations, detailing the specific settings

for each model. This includes the use of pre-trained ImageNet

weights, the ADAM optimizer, and early stopping mechanisms

(implemented if no improvement is observed), with the loss

function set to sparse categorical cross entropy. The variation

in the number of epochs and the strategic implementation of

early stopping are tailored to optimize each model’s learning

process effectively.

3 Results and discussions

In our evaluation of various transfer learning models for the

classification of similar pollen grains from Abies, Picea, and Pinus
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FIGURE 5

Training and testing performance of the ResNet-101 model over 50 epochs, presented in two plots: Model Accuracy and Model Loss.

species, the ResNet models, particularly ResNet50 and ResNet101,

outperformed the other models (Table 3). The confusion matrix for

ResNet101 had the highest accuracy in pollen classification, with

minimal misclassifications (Figure 4). This performance can be

attributed primarily to the architectural advantages of the ResNet

models. ResNet architectures, such as ResNet50 and ResNet101, are

particularly effective for tasks like conifer species classification due

to their deep residual learning framework (He et al., 2016). This

framework mitigates the vanishing gradient problem through the

use of skip connections that facilitate direct gradient flow across

multiple layers. This enhancement not only accelerates training

but also improves learning capabilities as network depth increases,

which is essential for distinguishing subtle features in highly similar

classes. The effectiveness of these models is demonstrated by the

high-performance metrics, as detailed in Table 1, with ResNet101

achieving nearly perfect scores in accuracy, precision, recall, and

F1-score. A key strength of ResNet models is their scalability,

which allows them to effectively manage hundreds of layers without

performance degradation. This attribute is key for addressing the

challenges posed by high intra-class variation and subtle inter-class

differences observed in pollen grain images (He et al., 2016).

VGG-19 was also a top-performing model in this study,

characterized by its deep convolutional layers that are able

to capture intricate details (Simonyan and Zisserman, 2014).

While it requires more computational resources, the depth of

its architecture allows for the thorough extraction of features,

which is instrumental in distinguishing between classes that share

close similarities. VGG-19′s design focuses on increasing the

depth with smaller convolution filters, which effectively increases

the model’s capacity to learn finer details in the Conifer pollen

species without substantially widening the network (Simonyan

and Zisserman, 2014; Shen et al., 2019). The training and testing

performance of ResNet101 over 50 epochs, presented in Figure 5,

demonstrates the model’s convergence behavior. The accuracy plot

indicates that the model achieves high accuracy early in the training

process and maintains it throughout. This suggests that ResNet101

efficiently learns to generalize from the training data. The loss plot

complements this by showing a rapid decrease in loss during the

initial epochs, which stabilizes as training progresses, indicating

that the model is effectively minimizing the error.

The confusionmatrices for ResNet50, ResNet101, VGG-16, and

VGG-19 further illustrate the models’ performance by showing the

classification results for particulate matter from six tree species

(Figure 6). Each cell in the matrices represents the number of

predictions made by the models. The diagonal cells indicate correct

predictions, while off-diagonal cells represent misclassifications.

The high values along the diagonal and low values off the diagonal

underscore the models’ accuracy in classifying the pollen grains.

For instance, the matrices show perfect classification for several

species, with only minor misclassifications, demonstrating the

models’ precision and recall. Our study achieved high accuracy

in identifying closely related coniferous species, demonstrating the

value of AI in palynology to advance our ability to rapidly identify

and distinguish between similar pollen grains. Despite challenges

such as extensive training needs and the time-intensive nature of

creating training datasets, the integration of AI helps overcome the

limitations of traditional methods, which often require meticulous

manual effort and are prone to errors, particularly with similar

pollen grains. Our models reduce these errors by effectively

learning complex patterns and subtle distinctions, speeding up the

research process and enabling large-scale analysis that would be

impractical manually. This emphasizes the critical role of trained

palynologists in ensuring precise image capturing to grow these

models on more species in the future.

4 Conclusion

This study highlights the benefits of integrating advanced AI

technologies, specifically deep learning models like ResNet and

VGG, into traditional pollen analysis using light microscopes.

While AI applications are powerful, the expertise of trained

palynologists remains essential for creating necessary datasets,

emphasizing their indispensable role. Applying these models, we

achieved high accuracy and efficiency in classifying pollen grains

from closely related and hard-to-distinguish coniferous species.
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FIGURE 6

Confusion matrix for the ResNet-101 model illustrating classification results for particulate matter from six tree species.

Using AI in pollen identification is not without challenges. It

requires extensive training and expertise. Capturing high-quality

images is important, as they need to be consistently scaled

and properly focused, which is time-consuming and demands

precision. Despite these difficulties, this research demonstrates the

significant advantages of AI in environmental sciences. By merging

traditional palynology and ecology research with AI technology, we

can use these tools to better understand historical climate patterns,

vegetation distributions, and the impacts of environmental changes

on human and ecological health. For example, time series exist both

in pollen from soil cores and in museum pollen from plant and

insect specimens. These time series can be used to reconstruct plant

communities (Balmaki et al., 2019; Balmaki and Wigand, 2019),

and plant-pollinator interactions (Balmaki et al., 2022a,b, 2024)

and then combined with historical climate or disturbance data to

test hypotheses of the effects of climate and disturbance on plant

communities and interactions. This balanced approach allows us to

recognize both the potential and the challenges of using AI, paving

the way for more effective and accurate environmental studies.
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