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Introduction: Skin diseases significantly impact individuals’ health and

mental wellbeing. However, their classification remains challenging due to

complex lesion characteristics, overlapping symptoms, and limited annotated

datasets. Traditional convolutional neural networks (CNNs) often struggle with

generalization, leading to suboptimal classification performance. To address

these challenges, this study proposes a Hybrid Deep Transfer Learning Method

(HDTLM) that integrates DenseNet121 and E�cientNetB0 for improved skin

disease prediction.

Methods: The proposed hybrid model leverages DenseNet121’s dense

connectivity for capturing intricate patterns and E�cientNetB0’s computational

e�ciency and scalability. A dataset comprising 19 skin conditions with 19,171

images was used for training and validation. The model was evaluated using

multiple performance metrics, including accuracy, precision, recall, and F1-

score. Additionally, a comparative analysis was conducted against state-of-the-

art models such as DenseNet121, E�cientNetB0, VGG19, MobileNetV2, and

AlexNet.

Results: The proposed HDTLM achieved a training accuracy of 98.18% and a

validation accuracy of 97.57%. It consistently outperformed baseline models,

achieving a precision of 0.95, recall of 0.96, F1-score of 0.95, and an overall

accuracy of 98.18%. The results demonstrate the hybrid model’s superior ability

to generalize across diverse skin disease categories.

Discussion: The findings underscore the e�ectiveness of the HDTLM in

enhancing skin disease classification, particularly in scenarios with significant

domain shifts and limited labeled data. By integrating complementary strengths

of DenseNet121 and E�cientNetB0, the proposed model provides a robust and

scalable solution for automated dermatological diagnostics.

KEYWORDS

skin disorder prediction, deep learning, transfer learning, DenseNet121, E�cientNetB0,

computer vision, image classification
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1 Introduction

Skin diseases affect millions of people globally, affecting

both physical and mental health. These conditions range from

minor infections to severe chronic illnesses and encompass

infections, inflammatory responses, chronic conditions, and

hereditary disorders. The symptoms—such as rashes, itching,

discoloration, dryness, and texture changes—can vary widely in

severity and are often influenced by genetics, immune responses,

environmental factors, and lifestyle choices (Li et al., 2021;

Meedeniya et al., 2024). This diversity not only makes conditions

hard to distinguish visually but also means that early symptoms

are often similar across different disorders, leading to frequent

misdiagnosis. As a result, the accurate identification of skin diseases

presents significant challenges, especially in clinical settings where

visual assessments are the primary diagnostic method. Effective

management generally involves medical intervention, lifestyle

modification, and preventive care (Alshahrani et al., 2024). Given

the large global population affected, skin diseases are a significant

public health concern (Behara et al., 2024).

Early diagnosis is essential for both prevention and effective

treatment, but the visual complexity of many skin conditions

often makes accurate diagnosis challenging, which can delay

treatment and increase risks. In some cases, late diagnosis may

lead to severe outcomes, including skin cancer (Gulzar and Khan,

2022; Mehmood et al., 2023). The importance of precise and

early identification for reducing morbidity and mortality rates

underscores the need for ongoing dermatological research (Chan

et al., 2020).

Skin disorders are caused by a complex interplay of genetic,

immunological, and environmental factors. As the body’s largest

organ, the skin acts as a protective barrier; however, it is

highly susceptible to environmental stressors such as ultraviolet

(UV) radiation, chemicals, and pathogens (Inthiyaz et al., 2023).

Chronic skin diseases such as psoriasis and vitiligo are frequently

associated with genetic predispositions (Abdallah et al., 2023),

whereas immune responses play a critical role, as autoimmune

reactions can cause inflammation and weakened immunity may

heighten infection risks (Bucsek et al., 2018). Recent research

on the skin microbiome has revealed its essential role in barrier

function and infection prevention, adding another dimension to

the understanding of skin health (Harris-Tryon and Grice, 2022).

Traditional diagnostic methods often rely on subjective visual

assessments, which can lead to inaccuracies, especially with the

diverse presentations and overlapping symptoms of skin diseases.

Artificial intelligence (AI) has been used in diverse domains,

including agriculture (Gulzar, 2024; Amri et al., 2024; Gulzar

et al., 2023b), finance (Gulzar et al., 2023a), healthcare (Gulzar

and Khan, 2022; Mehmood et al., 2023), and environmental

monitoring (Malik et al., 2023), to address complex challenges and

improve accuracy in decision-making processes. In dermatology,

AI has emerged as a powerful tool for enhancing diagnostic

precision. AI-powered image recognition algorithms can detect

skin abnormalities such as eczema, psoriasis, and melanoma,

offering early detection that improves patient prognosis and

accessibility, particularly through tools like digital dermatoscopes

and smartphone apps (Sengupta, 2023; Ye and Chen, 2023). AI also

enables personalized treatment plans by analyzing patient-specific

factors like medical history, genetics, and lifestyle to predict

treatment efficacy and minimize adverse effects, especially for

chronic conditions (Khan et al., 2023a; Anand et al., 2023;

Khan et al., 2023b). In telemedicine, AI-based applications

facilitate remote consultations and triage, reducing wait times and

prioritizing urgent cases (Majid et al., 2023a,b). Additionally, AI

contributes to drug discovery by identifying potential treatments

and optimizing regimens for conditions like dermatitis, psoriasis,

and acne (Rokni et al., 2024), ultimately advancing evidence-based,

individualized dermatological care (Meedeniya et al., 2024; Jain

et al., 2024).

Recent advancements have shown that AI can further elevate

the precision and effectiveness of skin disease management.

By leveraging cutting-edge architectures, AI-based models can

address the inherent challenges in classifying skin diseases, such

as their visual complexity, overlapping symptoms, and variations

in lesion patterns. Traditional Convolutional Neural Network

(CNN) models often fall short in generalizing to new or diverse

datasets, particularly when labeled data are limited. This study

proposes a Hybrid Deep Transfer Learning Model (HDTLM)

that combines DenseNet and EfficientNet architectures. DenseNet,

known for its dense connections, captures fine-grained features,

whereas EfficientNet fine-tunes these features, thereby improving

computational efficiency without compromising performance.

Furthermore, domain adversarial training was employed to ensure

that the learned features remain relevant across different datasets,

which improves the model’s generalizability and robustness in

real-world applications.

The proposed model was rigorously tested on various

benchmark datasets, achieving a training accuracy of 98.18%

and a validation accuracy of 86.68%, outperforming traditional

transfer learning methods. This approach not only demonstrates

the potential of AI to enhance diagnostic accuracy and reduce

overfitting but also provides a promising solution for domains with

limited labeled data and significant variability. By integrating AI

into dermatological research, this study seeks to address key issues

in skin disease classification and prediction, aiming for a scalable

model that adapts to diverse clinical settings.

The contributions of this study include:

• Introducing a Hybrid Deep Transfer Learning Model

(HDTLM) combining DenseNet and EfficientNet, optimized

for skin disease classification.

• High training and validation accuracy surpassing traditional

transfer learning methods in performance and robustness.

• Comprehensive data preprocessing techniques, including

augmentation and normalization, to improve model

generalizability with limited labeled data.

• Thorough benchmarking on multiple skin disease

datasets to validate improved accuracy, precision, and

reduced overfitting.

• Insights into overcoming challenges such as domain shifts,

data imbalance, and hyperparameter tuning specific to skin

disease classification tasks.

The remainder of this study is organized as follows. In Section

Related work, the related works relevant to this study are reviewed

and discussed. Materials and methods are detailed in Section
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TABLE 1 Contributions and limitations of recent skin disease classification studies.

References Main contribution Key findings Limitations

De et al. (2024) Apply deep CNN techniques to determine and classify skin diseases. Using deep learning models, including CNNs, there was successful
recognition and classification of various skin diseases.

Validating the system’s efficacy in clinical trials and comparing it
to dermatologist expertise are crucial for ensuring dependability
and safety.

Agarwal and
Godavarthi (2023)

Comparing and contrasting different skin diseases from the viewpoint
of cosmetics and common skin issues.

ResNet152 outperformed other deep learning algorithms on a 1,930
picture dataset, achieving higher recall, accuracy, and precision.

The dataset has an unequal distribution of images for each type of
skin disorder, as well as variances in image illumination and
commonalities among skin ailments.

Naeem et al. (2024) CNN was applied for sorting. CNN was employed to categorize the illnesses, while HC and the
Inception v3 (DL method) extracted key features from the dermoscopy
images.

A larger dataset is required to evaluate the proposed model
accurately.

Alshahrani et al.
(2024)

Enhance the AI system’s potential to achieve selectivity and resistance. For detecting early skin cancer, this model helps generate mixed
features and collect information from different sources.

Lower accuracy in offline data prediction.

Behara et al. (2024) Grid-based, understandable design and size of the CNN were designed
to accurately and interpretably classify skin cancer.

This research offers automated technology for dermatological
diagnostics that can be used to detect skin cancer using a tool.

The model achieved a computing time of 0.55 s, which is far faster
than that of previous methods.

Khan et al. (2021) To develop a machine-based diagnostic system for skin cancer and
evaluate the model to investigate clinical factors in the diagnosis that
improve outcomes from previous studies.

The results of the proposed investigation verified Pacheco’s findings
that integrating clinical data improves diagnosis and triage
effectiveness.

The suggested model must be validated on numerous datasets.

Wei et al. (2023) The focus element for extracting features was improved by
incorporating model-wide and broad feature fusion and an attention
module.

To collect the features of wide and broad layers by applying the parallel
technique.

The suggested approach consumed an extensive amount of CPU
resources during training.

Sharma et al. (2023) Showing outperformance of models, ResNets and VGG16, in terms of
precision and recall despite their lightweight design.

The EfficientNet model improved accuracy without requiring extensive
preprocessing or data augmentation procedures.

The dataset was heavily unbalanced.

Venugopal et al.
(2023)

For multi-class and binary classification judged by training models. To accelerate performance and overcome overfitting using transfer
learning and data augmentation.

The rate of training is slow.

Adegun and Viriri
(2020)

FCN used skip routes with extended and short-cut connections and
did not prefer typical FCNs that solely employ long skip connections.

By showing how the segmentation network affects the classification of
unsegmented images.

Low performance with limited data.

Ravi (2022) By introducing the learning model for detecting the accuracy and
classifying the skin disorders based on images.

The results of this study gave greater weight to classes with some skin
disease datasets and classes with a high number of samples.

It is possible that certain functionalities will be lost during this
stage.

Shimu et al. (2022) Four advanced transfer learning models, including NASNetLarge,
InceptResNetV2, EfficientNetB1, and DenseNet169, were compared to
CNN.

The suggested approach relied heavily on the CNNs and transfer
learning models for illness classification.

The research’s key weakness is excessive variability caused by
overfitting.

Sadik et al. (2023) Using CNN architectures, MobileNet, and Xception, an expert system
can recognize several skin conditions with high accuracy and
efficiency.

These approaches could improve dermatological disease recognition
and diagnosis and assist healthcare professionals in providing
enhanced treatment.

Not applicable to diverse datasets.

AlSuwaidan (2023) DL architectures rely heavily on data, and some studies have used
picture augmentation to enhance the number of images.

This study used image filtering and denoising for BM3D noise
reduction and edge improvement.

Limited dermatological disorders.

Jaisakthi et al.
(2023)

The study employed datasets with known challenges, which have
varying image resolutions and class imbalance difficulties.

Applied background data and trained data by using a classifier to
extract features from the layers.

Lower accuracy in offline data prediction.
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Material and methods. Section Results and discussion describes the

results and discusses the findings. This study has limitations, which

are discussed in section Limitations and future work along with

possible directions for future work. Section Conclusion presents

the conclusion.

2 Related work

2.1 Challenges in skin disease diagnosis

Skin diseases pose significant challenges in healthcare

because of their diverse appearances and the need for accurate,

specific diagnoses. Traditional diagnostic methods rely heavily

on dermatologists’ expertise, which can be subjective, time-

consuming, and resource-intensive. These challenges have driven

the increasing adoption of deep learning techniques to automate

skin disease classification, aiming to enhance diagnostic accuracy

and efficiency. To address these challenges, numerous studies have

explored the use of deep learning techniques for automating skin

disease classification.

2.2 Application of deep learning in skin
disease classification

Several studies have explored the application of deep learning

in skin disease classification. For instance, De et al. (2024)

automatically identified skin diseases using dermatoscopic

imaging. The authors also mentioned that, traditionally,

dermatologists manually examined pigmented skin lesions,

which can be subjective and time-consuming. Agarwal and

Godavarthi (2023) evaluated and compared various skin diseases

in terms of cosmetics and common skin issues. The author’s

dataset included ∼25,000 records for the eight most common

skin conditions, and a convolutional neural network was used to

achieve imaging performance comparable to or superior to that

of humans. Naeem et al. (2024) proposed SNC_Net, which applies

deep learning models that include features from dermoscopic

images and handmade (HC) feature extraction approaches to

improve classifier performance. Alshahrani et al. (2024) combined

CNN models (DenseNet121, MobileNet, and VGG19) with

Random Forest (Rf) and Feed Forward Neural Networks (FFNN)

networks to obtain complex features from dermoscopy images,

and the result was a hybrid system capable of early detection

of various skin lesions. Behara et al. (2024) employed adaptive

thresholding to extract regions of interest (ROI) and improved

cancer detection accuracy through dynamic capabilities. Khan

et al. (2021) employed the PAD-UFES-20 dataset, which includes

six different types of imbalanced skin cancer types, to address

the data imbalance using data augmentation. Wei et al. (2023)

presented a convolutional neural network model for skin disease

categorization using model fusion. Sharma et al. (2023) analyzed

the HAM10000 dataset to assess the profitability of several

Convolutional Neural Network (CNN) designs in concealing

seven different types of skin lesions. In this study, we employed

EfficientNets, which outperforms standard designs because of its

lightweight design. Venugopal et al. (2023) implemented improved
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EfficientNet B4 and EfficientNet V2-M models to categorize

malignant and benign skin lesions in dermoscopic images. Adegun

and Viriri (2020) proposed a framework to segment and classify

skin lesions to automatically detect skin cancer. The suggested

structure of this problem is divided into two parts. The basic

part of this network is used to analyze mixed and complex data

problems. In this step, the algorithm acquires the surrounding

details using decryption. Ravi (2022) proposed classifying and

detecting learning-based mixed features grouped for skin cancer

that consider attention costs. Shimu et al. (2022) proposed the

implementation of transfer learning to six forms of skin diseases:

peeling, acne, eczema, heat rash, melanoma, and cold sores. The

skin conditions were classified using a Convolutional Neural

Network. Sadik et al. (2023) focused on employing CNNs to

become adept at skin disease recognition, similar to the renowned

detective Sherlock Holmes. They wanted to know how well

these architectures could perform the job. AlSuwaidan (2023)

compared six popular CNNs (VGG16, EfficientNet, InceptionV3,

MobileNet, NasNet, and ResNet50) to determine which one

was the best at guessing the top three skin issues in the Middle

East. They cleaned up the images a bit with some filtering and

denoising to ensure the models had the best view. Jaisakthi

et al. (2023) developed a Deep Convolutional Neural Network

(DCNN)-based model to cartegorize skin cancer into melanoma

and non-melanoma. Milantev et al. (2020) conducted the ISIC

Skin Lesion Classification Challenge using dermoscopic images

and patient information to study skin lesions. Tahir et al. (2023)

developed DSCC_Net, which uses a CNN to classify skin cancer

and evaluates it on three big datasets (ISIC 2020, HAM10000,

and DermIS). Gupta et al. (2020) presented a system that employs

transfer learning with pretrained models to improve the results.

Furthermore, this study used a CNN to precisely detect and

categorize skin cancer. Pham et al. (2020) suggested a mixed

strategy to address class disparities in skin disease categorization.

This process combined data-level balanced mini-batch logic with

real-time image augmentation and algorithm-level generation

of new loss functions. Abbasi et al. (2024) proposed a modified

VGG16-based algorithm to distinguish real and AI-generated

medical images. The model was trained and fine-tuned using

hyperparameter tuning on a dataset of 10,000 synthetic skin lesion

images produced by a GAN. It distinguished real images from

AI-generated images with 99.82% accuracy. Gamage et al. (2023)

trained an Xception-basedmodel for melanoma classification using

the HAM10000 dataset. Bayesian hyperparameter optimization

was employed alongside Grad-CAM/Grad-CAM++ heatmaps

for improved explainability, where the model reached an accuracy

of 90.24% while providing critical input regions that influence

model predictions.

2.3 Summary of related work

Table 1 summarizes the key contributions, findings, and

limitations of recent studies. These studies highlight the significant

progress made in applying deep learning to skin disease

classification while also identifying areas for improvement, such

as addressing overfitting, improving data diversity, and ensuring

computational efficiency.

3 Material and methods

As shown in Figure 1, the development of a skin disease

prediction model using transfer learning with DenseNet121 and

EfficientNetB0 required a structured, methodical approach. This

approach encompassed multiple stages, including data collection,

data preprocessing, data augmentation, model selection, model

training, evaluation, and comprehensive analysis. Each step was

meticulously executed to ensure robustness and reliability in

predicting skin diseases across various categories. This section

provides a detailed breakdown of the research methodology

employed in constructing the model, emphasizing the integration

of transfer learning to enhance model generalization and

performance on limited domain-specific data.

3.1 Dataset and data augmentation

Following a thorough review of existing skin disease datasets,

we selected a public resource that provides extensive coverage

of 19 skin conditions (Skin Diseases Dataset, 2024),. including

Vitiligo, Psoriasis, Acne, Actinic Carcinoma, Atopic Dermatitis,

Cellulitis, Eczema, Drug Eruptions, Herpes HPV, Light Diseases,

Lupus, Melanoma, Poison Ivy, Benign Tumors, Systemic Disease,

Ringworm, Urticarial Hives, Vascular Tumors, Vasculitis, and Viral

Infections. Each condition was represented by sufficient images

for both training and testing, thereby enhancing the dataset’s

applicability to dermatological research. Figure 2 shows sample

images from the dataset, demonstrating its diversity.

We employed a systematic and targeted data augmentation

strategy to enhance the robustness and generalizability

of the dataset. This approach improved the diversity and

representativeness of the dataset while addressing class imbalances

in underrepresented categories.

Image augmentations included random 30-degree rotations,

zooms in or out by 20%, and 10%-20% horizontal or vertical

shifts. These augmentations represented the common real-world

variation in image posture, scale, and location, facilitating a broadly

varied dataset that accurately depicts realistic conditions (Ayoub

et al., 2023). We also applied horizontal flipping to add more

variance. These augmentation techniques were implemented by

utilizing TensorFlow’s ImageDataGenerator to implement real-

time augmentation during the preparation of the dataset. This not

only maintained the original image quality but also allowed for

uniform expansion of the dataset.

Particular focus was given to classes where the number of

original images was limited, specifically classes with 5, 16, 37, 26,

29, and 46 samples. For these classes, the augmentation process

was repeated numerous times by using different combinations of

transformations to accrete a much larger dataset. This allowed a

more proportionate representation of each class, reducing the bias

and creating a more robust diversity in the overall dataset. This

ensured that the dataset was broadening its representativeness of

clinical variability found in the real world by generating more
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FIGURE 1

Research framework.

samples for rare conditions, which made analyses performed later

much more robust. Table 2 presents the number of images per

class before and after augmentation and divides the augmented

dataset into training, validation, and testing subsets based on a

70:15:15 ratio.

3.2 Data preprocessing

To standardize the dataset for consistent model input, several

preprocessing steps were applied. Images were resized to a uniform

128 × 128 pixels, and color values were adjusted to ensure

consistency across samples. Pixel values were normalized to a

0–1 scale, improving training stability and convergence speed.

The labels were one-hot encoded to format them appropriately

for classification tasks, thereby enabling the model to distinguish

between different classes effectively (Ayoub et al., 2022).

For model evaluation, the dataset was divided into training,

validation, and testing sets, with 70% of the data allocated to

training and 15% each for validation and testing. This balanced split

supports robust model training, validation, and testing, ensuring

generalizability across unseen data.

3.3 Proposed model

The proposed model for skin disease prediction combines the

strengths of DenseNet121 and EfficientNetB0 through a hybrid

transfer learning approach. Each architecture was selected for its

unique capabilities, resulting in a robust model that could handle

the complexity and variability of skin disease images.

• DenseNet121: Known for its dense connections, this

architecture reuses features by directly connecting each layer

to subsequent layers. The layer output l can be expressed

mathematically as follows:

xi = Hi(
[

x0, x1, xl−1
]

)

where Hi represents a composite function of operations such

as batch normalization, ReLU activation, and convolution, and

x0, x1, xl−1 is the concatenated output of all previous layers. This

dense connectivity ensures efficient feature reuse and mitigates

the vanishing gradient problem, enabling the network to learn

fine-grained features that are essential for distinguishing between

similar skin conditions.

• EfficientNetB0: This architecture is designed with

computational efficiency in mind, employing compound

scaling to balance depth, width, and resolution. The scaling

approach is defined as:

depth : d = αϕ , width :w = aβϕ , resolution : r = γ ϕ
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FIGURE 2

Sample images of the dataset.

where ϕ is a user-defined scaling coefficient, and α, β , and γ

are constants determined via a grid search. This allows

EfficientNetB0 to maintain a manageable size while capturing

high-level features effectively.

By combining DenseNet121 and EfficientNetB0, the hybrid

model leverages DenseNet121′s capability for detailed pattern

recognition and EfficientNetB0′s efficiency, resulting in a scalable

and accurate architecture suitable for real-time applications.

3.3.1 Integration strategy and additional layers
After extracting features from both DenseNet121 and

EfficientNetB0, the outputs of their final layers are concatenated

as follows:

Fconcat = [FDenseNet , FEficientNet]

This operation combines detailed and high-level features into a

single comprehensive representation.

To refine this combined feature set, we added:

1. Dense Layer: A fully connected layer with 256 units:

y = σ (wx + b)

where WW is the weight matrix, y is the input feature

vector, b is the bias term, and σ is the ReLU activation

function. This layer captures the interactions between the

combined features.

2. Dropout Layer: Regularization at a rate of 0.5:

yi =

{

xi
p ,

0,
if the neuron is kept
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TABLE 2 Number of images per class before and after data augmentation.

Classes #Images before
augmentation

#Images after
augmentation

Train (70%) Validation (15%) Test (15%)

Acne 1,071 1,071 750 161 160

Actinic carcinoma 442 1,020 714 153 153

Atopic dermatitis 124 1,018 713 153 152

Cellulitis 79 1,010 707 152 151

Eczema 37 1,000 700 150 150

Drug eruptions 26 1,000 700 150 150

Herpes HPV 46 1,010 707 152 151

Light diseases 329 1,050 735 158 157

Lupus 115 1,010 707 152 151

Melanoma 29 1,000 700 150 150

Poison IVY 75 1,020 714 153 153

Psoriasis 86 1,020 714 153 153

Benign tumors 111 1,010 707 152 151

Systemic disease 108 1,020 714 153 153

Ringworm 164 1,000 700 150 150

Urticarial hives 5 1,000 700 150 150

Vascular tumors 138 1,000 700 150 150

Vasculitis 16 1,010 707 152 151

Viral infections 299 1,020 714 153 153

where p is the probability of retaining a neuron during training.

This mitigates overfitting, especially for underrepresented classes.

3. Softmax Layer: Final output layer for classification:

P(y = k | x) =
ezk

∑K
j=1 ezj

where zk is the logit of class k, and K is the total number of

classes (19 in this case).

These layers ensure that the model learns non-linear

decision boundaries, handles feature interactions effectively,

and outputs probabilities for each class, thereby enabling

confident predictions.

3.3.2 Training strategy and benefits of the hybrid
model

The hybrid model was trained as follows:

• Optimizer: Adam

• Learning Rate: 0.001

• Batch Size: 3,232

To ensure effective learning, the initial layers of DenseNet121

and EfficientNetB0 were frozen during the first phase of training

to retain the generic features learned from ImageNet. This can be

expressed as:

Frozen layers : Wpretrained and fine− tuned layers : Wtrainable

Freezing these layers allows the model to efficiently adapt to the

dermatological domain during fine-tuning.

The architecture of the proposed model is shown in Figure 3.

3.4 Experimental environment settings and
performance evaluation metrics

The proposed model was developed using Python 3.8,

OpenCV 4.7, and the Keras library 2.8 for model building and

image processing. The development environment was run on

Windows 10 Pro with the following hardware configuration:

Intel i5 processor (2.9 GHz), Nvidia RTX 2060 GPU, and 16

GB RAM.

To evaluate the model’s performance, we used standard

evaluation metrics, including accuracy, precision, recall, and the

F1 score. These metrics provide a comprehensive assessment

of the model’s predictive accuracy and robustness, which is

particularly important for multi-class classification tasks in skin

disease prediction.
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FIGURE 3

Architectural diagram of the proposed hybrid skin disease prediction model.

4 Results and discussion

4.1 Training and validation performances

In this section, we evaluate the performance of the

proposed hybrid model for skin disease prediction using

training and validation accuracy and training and validation

loss. These metrics provide insights into the model’s

learning process, generalizability, and robustness against

unseen data.

The training and validation accuracy (see Figure 4) shows a

consistent increase over the 100 epochs, with the training accuracy

at the last epoch reaching ∼98.18%. The high training accuracy

indicates that the model was able to learn complex functions that

perfectly predicted the level of skin disease class from the training

dataset. The validation accuracy stabilized at ∼97.57%, indicating

that themodel generalized well on new data. The similarity between

training and validation accuracy suggests that the model has not

overfitted because it learned specific features of the training data

while being able to perform well on images it has never seen before.

This may indicate that a specific hybrid architecture and

training approach fit the given dataset well. Overall, the increasing

trend of training vs. validation accuracy indicates that the model

is robust and suitable for deployment. Moreover, these results

emphasize the usefulness of the dropout and selective layer freezing

techniques to handle overfitting.

Trends on training and validation loss curves shown in Figure 5

validate the behaviors observed for model performance. The

training loss is consistently decreasing and converging to low

levels, indicating successful optimization of model parameters.

The validation loss also decreased, but with a few fluctuations,

suggesting that the models were learning well while not overfitting

significantly. The validation loss approximates the training loss

in the last epoch, which indicates stable model performance and

good generalizability.

These observations validate the robustness of the hybrid model

architecture and the training strategies employed, notably the

dropout and selective freezing of the layers. The small difference

between the training loss and validation loss indicates that the

model does not overfit to unseen data.

The hybrid architecture, which combines DenseNet121′s

fine-grained feature extraction with EfficientNetB0′s efficient

scaling, clearly contributed to the model’s high performance. The

fluctuations observed in the validation accuracy and loss curves,

although minimal, can be attributed to the variability in the

dataset. This variability is especially common in medical imaging,

in which similar visual features may appear across different classes

(e.g., rashes and discoloration in multiple skin conditions). The
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FIGURE 4

Hybrid model: Training and validation accuracy.

FIGURE 5

Hybrid model: training and validation losses.

use of dropout and selective layer freezing helped mitigate these

fluctuations, thereby supporting the model’s ability to generalize

without compromising its learning depth.

4.2 Test set performance and confusion
matrix analysis

To further assess the model’s performance, we evaluated its

predictions on the test set, which provided a realistic measure of

its ability to generalize to unseen data. The confusion matrix for the

test set (see Figure 6) provides a detailed view of howwell themodel

performed across each skin disease class, with an overall accuracy

of 97.57%. The high test accuracy underscores the robustness of the

model because it consistently achieved correct classifications across

most classes.

The confusion matrix shown in Figure 6 demonstrates strong

predictive power for the majority of classes with minimal

misclassifications. Each class generally had a misclassification rate

between 2.2 and 2.5%, suggesting that the model was capable of

distinguishing between different skin disease categories with high

precision. The low misclassification rate also indicates that the

model successfully learned the nuanced features needed to separate

visually similar skin conditions, which is particularly challenging

in dermatology.
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FIGURE 6

Confusion matrix.

Within the matrix, certain classes, such as Melanoma, Psoriasis,

and Vitiligo, showed very high precision and recall, as indicated

by the nearly full diagonal dominance, reflecting the model’s

effectiveness in identifying the unique features of these conditions.

However, a few classes with overlapping visual symptoms, such

as Eczema and Dermatitis, experienced minor misclassifications.

These errors, which generally involve one to three images per

class, may stem from shared visual characteristics such as texture

or color patterns. Such subtle misclassifications suggest that

further data augmentation or fine-tuning can enhance the model’s

differentiation ability in these overlapping categories.

4.3 Model performance comparison

To evaluate the performance of the hybrid model, we

compared it to state-of-the-art (SOTA) models such as

DenseNet121, EfficientNetB0, VGG19, MobileNetV2, and

AlexNet. As shown in Table 3, this comparison demonstrates

that the proposed hybrid train-validation approach exhibits

better performance for all three metrics. The adaptive hybrid

model performs better than other architectures by leveraging

DenseNet121′s ability to learn minimal/complex features

along with EfficientB0 runtime performance, yielding an

architecture with good accuracy and runtime performance for

medical images.

The use of transfer learning and extra dense layers allows the

model to perform well on a small dataset. As transfer learning

uses pretrained weights, the model can utilize the features

learned earlier. Not only does this speed up training, but the

proposed method also significantly improves the network’s

ability to learn complex representations and thereby increases

accuracy. By integrating these techniques—a hybrid architecture

to handle high-dimensional input data, transfer learning to

leverage pretrained models, and a robust model design with

performance-driven features—we established the hybrid model

as a top-performing skin disease classifier, outperforming

conventional architectures.
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TABLE 3 Comparison of model performance metrics.

Model Accuracy (%) Precision Recall F1 score Training time (100 Epochs) Training time (100 Epochs)

VGG19 85.0 0.84 0.83 0.83 08:15:32 00:00:43

MobileNetV2 83.0 0.81 0.79 0.8 02:24:54 00:00:21

AlexNet 80.0 0.78 0.77 0.77 02:30:21 00:00:17

DenseNet121 89.5 0.87 0.86 0.86 05:30:43 00:00:33

EfficientNetB0 88.5 0.86 0.85 0.85 04:15:42 00:00:28

Hybrid model 98.18 0.95 0.96 0.95 05:14:37 00:00:22

Although the hybridmodel takes 5 h 14min 37 s to be trained, it

is a fair trade-off, especially considering VGG19, which trained for

8 h 15min 32 s but has drastically lower performance (85% accuracy

vs. 98.18%). Furthermore, its training time is only slightly worse

than the standalone DenseNet121 or EfficientNetB0, regardless of

having implemented both architectures and obtaining a significant

jump in performance. This combination of DenseNet121 and

EfficientNetB0 enabled the hybrid model to attain an outstanding

accuracy rate (98.18%) along with remarkable precision (0.95),

recall (0.96), and F1 Score (0.95), thus marking a revolution in skin

disease classification.

The hybrid model also took 22 s to process 2,889 images

during the testing, which is only a slight delay compared to

lightweight models like MobileNetV2 or AlexNet. However, the

slight increase in inference time was compensated by the near-

optimal classification performance. Faster models that trade off

large amounts of computation for time with little accuracy include

AlexNet and MobileNetV2, both of which report significantly

reduced accuracy on data such as medical images (80 and 83%,

respectively) and are unable to handle much more complex data

that may be found in the medical field. As evident from the

performance metrics of the hybrid model, it has a greater ability

to generalize and therefore is more reliable option for applications

in high-stakes environments like clinical diagnosis.

The detailed results in Table 3 demonstrate that the hybrid

model achieves an optimal trade-off between computational

complexity and performance, thereby rendering it the most

competitive model among the compared models. This approach

is recognized as the best and most practical approach for medical

image diagnosis due to its ability to provide excellent results

without restricting itself from achieving predictions on bigger data,

thereby providing scalable results.

Furthermore, the proposed model was benchmarked against

several existing models in the literature (Table 4). The comparison

includes key performance metrics such as recall, precision, and

accuracy, which are essential for evaluating the effectiveness of

classification models. Notably, the proposed model’s performance

is on par with or outperformes the majority of the existing models.

From the table, it can be observed that the hybrid method

proposed in the last row achieves the highest recall (0.9600)

and precision (0.9500), although its accuracy (0.9818) is slightly

lower than that of Naeem et al.’s model (0.9691). The models

trained on ImageNet, such as Calderón et al. (2021), Jain et al.

(2021), and Naeem et al. (2022), demonstrate competitive results

in accuracy and recall, with Naeem et al.’s model achieving the

TABLE 4 Comparison of classification accuracy with recent

state-of-the-art methods.

References Pre-
training

Recall Precision Accuracy

Calderón et al.
(2021)

ImageNet 0.9321 0.9292 0.9321

Jain et al. (2021) ImageNet 0.8957 0.8876 0.9048

Fraiwan and Faouri
(2022)

ImageNet 0.8250 0.9250 0.8290

Saarela and
Geogieva (2022)

- - - 0.8000

Naeem et al. (2022) ImageNet 0.9218 0.9219 0.9691

Alam et al. (2022) ImageNet - - 0.9100

Abbasi et al. (2024) - 0.9982

Gamage et al.
(2023)

- - - 0.90240

Mehmood et al.
(2023)

- 0.9697

Gamage et al.
(2024)

ImageNet - - 0.9279

Hybrid method ImageNet 0.9600 0.9500 0.9818

highest accuracy. Interestingly, the model by Saarela and Geogieva

(2022), which does not mention a pre-training method, has the

lowest performance in terms of accuracy (0.8000), highlighting the

importance of pre-training for enhancing model performance. In

comparison to these models, the proposed model’s performance

in terms of recall, precision, and accuracy positions it as a

strong contender in the field, showcasing the effectiveness of the

model’s architecture and the choice of pre-training techniques. The

higher recall and precision values in the proposed model suggest

better classification performance, particularly in terms of accurately

distinguishing between classes and minimizing false positives.

5 Limitations and future work

Notably, the hybrid model performs well; however, it has

its own limitations that must be considered. First, despite being

extensive, the dataset lacks variety for rare skin conditions that

could influence the model’s generalizability to less frequently seen

classes. The model’s robustness across different lighting conditions
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and backgrounds was not analyzed in depth, which could influence

generalizability. The dependency on transfer learning also implies

that some pretrained characteristics are not fully dermatology-

specific, which risks not capturing disease-specific features. Finally,

the computational requirements during training restrict the

model’s use in low-resource devices, thus potentially limiting its

availability in remote clinical scenarios.

In the future study, the dataset will be extended by sampling

more varied cases and using advanced data augmentation

techniques. The robust model will be further validated on external

datasets, especially in various clinical settings. Additional fine-

tuning to reduce misclassifications in overlapping classes may

further improve their clinical applicability. Implementing the

model in clinical workflows (e.g., telemedicine platform or mobile

diagnostic application) can help improve the accessibility of

dermatological care, especially in resource-limited areas (Gamage

et al., 2024). Explainability techniques (e.g., heatmaps or saliency

maps) also help build clinician trust and lead to real-world

adoption. By overcoming these limitations and investigating the

regulatory conditions and ethical considerations for their clinical

implementation similarly, the hybrid approach can improve patient

outcomes in dermatology (Gamage et al., 2024).

6 Conclusion

The increasing prevalence of skin diseases poses significant

challenges to dermatology, particularly in terms of achieving

accurate and timely diagnosis. To address this issue, we propose

a hybrid model that combines the strengths of DenseNet121

and EfficientNetB0 through transfer learning. The model

was meticulously constructed using a comprehensive dataset

encompassing 19 distinct skin conditions, with systematic

data augmentation and preprocessing ensuring robust feature

extraction and generalization capabilities. The training results

demonstrated exceptional performance, with the hybrid

model achieving an accuracy of 98.18%. This high training

accuracy reflects the model’s effectiveness in learning complex

patterns, which are essential for distinguishing between

various skin disease classes. The validation results further

confirmed the model’s generalization ability, stabilizing ∼at

97.57%, indicating a successful balance between learning and

generalization without overfitting. A comparative analysis

against several state-of-the-art (SOTA) models, including

DenseNet121, EfficientNetB0, VGG19, MobileNetV2, and

AlexNet, highlighted the superiority of the hybrid approach.

The results, encapsulated in a comprehensive performance

comparison table, reveal that the hybrid model outperformed all

the other architectures, particularly in terms of accuracy, precision,

and recall.
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