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As environmental awareness increased due to the surge in greenhouse gases,

green travel modes such as bicycles and walking have gradually became

popular choices. However, the current tra�c environment has many hidden

problems that endanger the personal safety of tra�c participants and hinder

the development of green travel. Traditional methods, such as identifying

risky locations after tra�c accidents, su�er from the disadvantages of delayed

response and lack of foresight. Against this background, we proposed a mobile

edge crowdsensing framework to dynamically assess urban tra�c green travel

safety risks. Specifically, a large number of mobile devices were used to sense

the road environment, from which a semantic detection framework detected

the tra�c high-risk behaviors of tra�c participants. Then multi-source and

heterogeneous urban crowdsensing data were used to model the travel safety

risk to achieve a comprehensive and real-time assessment of urban green travel

safety. We evaluated our method by leveraging real-world datasets collected

from Xiamen Island. Results showed that our framework could accurately detect

tra�c high-risk behaviors with average F1-scores of 86.5% and assessed the

travel safety risk with R2 of 0.85 outperforming various baseline methods.
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1 Introduction

The rapid industrialization and urbanization worldwide have led to a significant
increase in greenhouse gas emissions, exacerbating climate change. The Intergovernmental
Panel on Climate Change (IPCC) predicted that global CO2 emissions must decrease by
about 45% from 2010 levels by 2030 to limit global warming to 1.5◦C. At the same time, the
transportation sector, a major source of carbon emissions, has seen the growing popularity
of green travel modes such as cycling and walking in recent years, driven by increasing
awareness of emission reduction (Jia et al., 2017). However, the current situation of urban
traffic may not fully meet the safety needs of green travel. For example, in some large cities
in China, the safety issues of cyclists and pedestrians have become particularly prominent:
the risk of traffic accidents for cyclists who run red lights is more than 3 times that of
those who never run red lights; the risk of accidents for cyclists carrying adults is more
than 2 times that of those who never carry adults; the risk of riding on the motorway
is 2.4 times that of normal riding (Qian et al., 2020). These hidden dangers not only
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endanger the personal safety of traffic participants, but also hinder
the development of low-carbon transformation and green travel.
Therefore, urban management departments need a method to
evaluate the safety of the urban traffic environment in order to
optimize the urban traffic environment and achieve green travel.

However, assessing the safety of urban traffic green travel is
not trivial. Traditionally, the urban authorities identified high-risk
hotspots dependent on human experiences or historical accidents
datasets and then sent volunteers to persuade or put traffic signs
to warn traffic participants with weak safety awareness. However,
the method is hard to implemented in real-time which consumes
a great amount of labor and time. In addition, the authorities
usually identify what needs to be rectified after the occurrence
of traffic accidents, which suffers from hysteresis and blindness.
At the same time, many scholars have tried to improve traffic
safety assessment and high-risk behavior detection through mobile
crowd sensing (MCS) technology. For example, existing research
used smartphones and IoT devices to collect traffic data, mainly
focusing on traffic flow monitoring, environmental perception and
other fields (Ganti et al., 2011). Although these methods have
achieved certain results in traffic flow prediction and environmental
monitoring, they often ignore the real-time monitoring of traffic
participants’ behaviors, especially high-risk behaviors. Existing
high-risk behavior detection methods mostly rely on fixed cameras
or specific scenes, which are difficult to adapt to the complexities
and dynamic changes of urban traffic (Ahmed et al., 2019). This
research gap makes it difficult for existing technologies to discover
and predict high-risk behaviors that may lead to traffic accidents
in real time. In addition, in the field of traffic accident risk
assessment, many traditional models rely on historical data to
predict the likelihood of accidents. These methods usually ignore
the immediate changes in the traffic environment (de Medrano
and Aznarte, 2021). Therefore, these methods have lags and cannot
respond to changes in traffic conditions in a timely manner. In
practical applications, it is difficult to deal with sudden high-
risk events. Therefore, a low-cost, real-time, and comprehensive
method for transportation safety assessment and decision making
is in demand.

Fortunately, the rapid development of sensor-rich mobile edge
devices have generated large-scale public area images and promoted
a mobile-user-centric crowdsensing paradigm for sensing data (Lee
and Lee, 2015). In addition, the remarkable progress of the Internet
of Things, computer vision, and deep learning technologies in
recent years has made it possible to efficiently understand traffic
behaviors through images and video streams in the edge or cloud
(Zou et al., 2023; Buch et al., 2011; González et al., 2011). These
mobile edge devices and deep learning-based algorithms provide
us with an unprecedented opportunity for automatically assessing
the safety risk of traffic green travel on an urban scale.

In this work, we propose CrowdRadar, a crowdsensing-
based framework to assess the safety risk of urban traffic
green travel leveraging mobile edge devices, deep learning-
based traffic high-risk behavior detection method, and an urban
crowdsensing data-based travel risk assessment model. Specifically,
we firstly used a large number of mobile edge devices to
sense the road environment. Then we detected the high-risk
behaviors of traffic participants and assess the risk of the road
environment according to urban crowdsensing data, to achieve

a comprehensive and real-time assessment of urban traffic green
travel safety.

In designing the framework, there are several research issues to
be addressed:

• It is not trivial to efficiently collect road sensing data in

a privacy perserving manner. Intuitively, we can require
mobile edge devices to transmit video or multimedia streams
to the cloud center in real-time. However, simply using
the mobile network to upload such a large amount of
data may cause inconvenience to mobile phone users,
resulting in additional cellular data costs and heavy battery
consumption (Lane et al., 2013). In addition, the raw data
collected through the visual crowdsensing paradigm would
expose users’ privacy, including participant and third-person
(Guo et al., 2017). Therefore, an edge device is needed to
solve multimedia data preprocessing and privacy protection
problems.

• It is difficult to accurately identify traffic high-risk

behaviors in a low-cost manner. Traditionally, we need
to train an identification model for each traffic high-risk
behavior. For example, a GoogleNet model is trained to
classify whether a motorcyclist is wearing a helmet or not after
the motorcyclist is detected through YOLO (Chairat et al.,
2020). However, the traditional method is difficult to expand
and adapt to diverse traffic behaviors because it requires a large
amount of training data for each type of behavior. Therefore,
we need an accurate, semantic general detection framework
to identify different traffic high-risk behaviors and a low-cost
data annotation method.

• It is essential to assess travel safety risks with urban

crowdsensing data. The safety risk assessment of urban traffic
green travel is usually complicated and closely related to many
factors, such as the high-risk behaviors of traffic participants
or truck trajectories. It is difficult to assess the safety only by
road sensing data. Therefore, multi-source and heterogeneous
urban crowdsensing data should be further introduced to
jointly establish the safety assessment model.

To address these issues, we proposed an edge-cloud hybrid
crowdsensing framework to assess urban traffic green travel safety
risk. Firstly, we developed an edge device with multiple sensors
based on the Nvidia computing platform to collect the road
sensing data. The edge device is equipped with a real-time object
detection algorithm to transmit the regions of interest (ROI) to
the cloud center for reducing network transmission consumption.
Additionally, the device includes a privacy-preserving module to
blur pedestrians’ faces and license plates, ensuring the protection of
users’ privacy.

Secondly, to accurately and low-cost identify traffic high-
risk behaviors, we proposed a semantic detection framework that
requires a small amount of labor cost. Specifically, we first fine-
tuned the object detection model (Varghese and Sambath, 2024)
and the relation detection model (Gao et al., 2018) to detect the
location and the relation of traffic participation objects. Then, an
unsupervised learning graph-embedding algorithm was used to
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transfer the traffic graph, which consists of the location and relation
of traffic objects, to a graph embedding. Finally, a lightweight
classification model was used to classify these graph embedding to
traffic high-risk behaviors.

Thirdly, to assess the safety risk of urban traffic green travel,
we collected multi-source and heterogeneous urban crowdsensing
data related to the travel environment, including traffic high-risk
behaviors, truck trajectories, urban point of interest (POI), etc.
Finally, we used a convolutional neural network (CNN) to extract
the spatial features of the datasets outlined previously to assess
environmental safety. In summary, the main contributions of this
paper include:

• Innovative framework design: we propose CrowdRadar, a
framework based on mobile edge devices and crowdsensing,
dedicated to the safety assessment of urban traffic green
travel. Compared to traditional methods, this framework
offers significant advantages in terms of low cost, real-time
performance, and comprehensiveness. It is particularly
suitable for the complex and dynamic urban traffic
environment, filling the gap where existing methods fail
to address real-time high-risk behavior detection and
comprehensive traffic safety assessment.

• Real-time high-risk behavior detection and assessment: we
designed a three-phase framework that enables efficient and
low-cost detection of high-risk traffic behaviors through a
semantic general detection framework based on multiple
deep learning models and an information retrieval-based data
annotation module. Additionally, the framework performs
comprehensive safety risk assessment using multi-source
and heterogeneous urban crowdsensing data. This approach
overcomes the limitations of traditional methods and provides
a dynamic and scalable solution.

• Empirical validation and performance improvement: we
evaluated the proposed framework using a real-world dataset
from Xiamen. The results show that the framework can
accurately detect high-risk traffic behaviors, achieving an
average F1-score of 86.5%, and assess travel safety risks with an
R2 value of 0.85, significantly outperforming various baseline
methods. This demonstrates that our framework not only
outperforms traditional methods in terms of accuracy but also
has strong practical application potential.

2 Preliminaries and framework

Definition 1. Green Travel: Green travel is derived from the
concept of green transport, including walking, riding a bicycle,
taking a bus, taking the subway, etc. (Yang et al., 2017). In this
research, we mainly focus on human-centered green travel modes,
such as walking and riding a two-wheeler.

Definition 2. Traffic High-risk Behaviors: This paper focuses
mainly on the daily traffic behavior of urban residents during green
travel. Traffic high-risk behavior refers to actions that occur while
walking or riding a bike and are likely to lead to traffic accidents,

such as riding without wearing a helmet or running a red light, as
detailed in Section 6.

Definition 3. Traffic High-risk Hotspots: Traffic high-risk
hotspots refer to locations with relatively more traffic accidents
compared to other locations on the road network. These locations
might become traffic hotspots due to traffic high-risk behaviors or
other environmental factors.

We proposed a mobile edge crowdsensing framework to
dynamically assess urban traffic green travel safety. As shown
in Figure 1, we first developed an edge computing device to
collect road perception data within the crowdsensing paradigm,
employing object detection and relationship detection algorithms
to identify traffic participants and the semantic relationships
between them. This enabled the construction of a semantic
traffic graph from traffic images. Simultaneously, ROI extraction,
privacy protection, and other data preprocessing steps were
performed on the edge device to ensure data validity and security.
Subsequently, an unsupervised graph embedding algorithm was
utilized to transform the semantic traffic graph into traffic graph
vectors, facilitating the identification of high-risk traffic behaviors
from multimedia data streams and generating labeled data for
model training. Finally, leveraging multi-source heterogeneous
urban crowdsensing data, we constructed a CNN model to
assess the safety of green urban transportation. Additionally,
this paper proposed a traffic image data annotation method
based on information retrieval, utilizing a visual information
retrieval platform for cost-effective and efficient data labeling.
Supported by the high-risk traffic behavior recognition module, the
framework generates high-risk traffic behavior distributions with
spatial location information, providing robust support for urban
traffic management.

3 Edge device-based road sensing

In this section, our goal is to efficiently collect road sensing
data in a privacy-preserving manner. The traditional method of
transporting multimedia streams results in some issues including
large amounts of cellular network consumption, the waste of
computing resources in cloud centers, and privacy-preserving
concerns. To solve these issues, we developed an edge device-based
road sensing platform which contained multiple sensors and data
preprocessing modules to solve these issues.

3.1 Edge computing device

We use Nvidia Jetson Nano, a small and powerful computer
for embedded applications and AIoT, as the embedded computing
center. Based on Jetson Nano, we have adapted it with a compact
case and a variety of sensors. As shown in Figure 2A, “Edge Box”
has a camera, network and GPS module. We use a MIPI CSI-2
camera because it is small and easily fixed to the case. Considering
the complex outdoor situation, we use a wireless network module
and a GPS module with a USB extension cable. In addition, we can
even use the common mobile power supply of mobile phones to
power it, so the “edge box” can not only be placed on the vehicle as a
mobile sensing device but also can be used as a fixed sensing device
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FIGURE 1

Framework overview.

like an automated camera. Furthermore, Figure 2B demonstrates
how edge devices collect data from the road environment and
transmit it to the cloud center through computation.

3.2 Data preprocessing middleware

In this section, we introduce in detail how we use the edge
device to achieve efficient collection of road sensing data under
privacy protection.

3.2.1 ROI extraction module
Traditionally, automated cameras are usually deployed at

intersections to analyze road scenes (He et al., 2015). For those
traffic systems that use complex algorithms in the cloud to process
data (Shirazi and Morris, 2016), automated cameras need to
transmit large amounts of data to the cloud (Leduc et al., 2008).
To solve the problem of high communication cost (Skordylis and
Trigoni, 2011), the edge devices need to have the computing
capability to extract traffic behavior related-data. Figure 3 illustrates
the process of extracting traffic behavior.

In this research, we focus on traffic high-risk behaviors in
specific scenarios, one of which is human involvement. Intuitively,
we might delete those areas with no human activity, remaining
only the ROI patch. However, pedestrians might be distributed
in various regions of the image in a densely populated road
environment, which would cause difficulties for us to extract
the ROI patch. Due to limited computing resources, we need
a quick method to efficiently identify whether a pedestrian is a
traffic participant. Therefore, we propose a YOLO-based method
to extract the ROI patch. Specifically, we first use YOLOv8 to detect

the location of all traffic participation objects in the image, and
then we use Intersection over Union (IoU) to identify whether the
detected object is likely to participate in traffic high-risk behaviors.
Finally, we cut out the maximum area that can cover these objects
and then only upload the area to the cloud center.

IoU =
BoundingBoxA ∩ BoundingBoxB

BoundingBoxA ∪ BoundingBoxB
(1)

3.2.2 Privacy preserving module
In this research, we expect a large number of crowdsensing

participants to carry an “edge box” with the camera to sense the
road environment. The visual crowdsensing paradigm of gathering
public images has inevitably collided with privacy issues. Guo
et al. (2017) introduced two privacy concerns: participant privacy
and third-person privacy. The concern of participant privacy in
our application is that the road sensing data uploaded by the
participant while performing the task contains the participant’s
context, especially the GPS points. Therefore, accurate GPS points
are needed for fuzzy processing. Therefore, a method is in demand
for location cloaking. Our approach is to divide the urban space
into different grids. After that, the edge device only uploads the grid
ID of the location coordinates. The processed grid information will
not reveal the specific location of the participants, and the gridding
method of location cloaking will not have a great impact on the
safety assessment model, as shown in Section 5.

The concerns of third-person privacy is the publication of
potentially personally-identifiable information such as a person’s
face or license plate captured when gathering the road environment
imagery. Zhao et al. (2022) propose a privacy-preserving MCS
system called CrowdFL by seamlessly integrating federated learning
(FL) into MCS. There are many works to be done in terms of
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FIGURE 2

Visual comparisons of original models. (A) Hardware details. (B) Software architecture.

FIGURE 3

An illustration of ROI extraction result. The area surrounded by the black dashed boxes of the image should be cut and uploaded.

privacy protection, such as privacy protection based on differential
privacy mechanisms (Zhang et al., 2022; Gao et al., 2022; Wang
et al., 2021; Jiang et al., 2021), using blockchain technology to
ensure data privacy (Yan et al., 2022), and a distributed data storage
method based on compressed sensing technology that ensures data
reliability while reducing storage space and communication costs
(Zhou et al., 2022), and so on. Non-visual information extraction

in our application means image processing can be conducted
in the “edge box” and only the information distilled should be
delivered to the cloud center. However, the relatively powerful
computing capacity of the “edge box” does not allow us to put
all image processing steps on the edge side. Therefore, we prefer
to use intentional image blurring to solve the privacy concern.
Specifically, we fine-tune the YOLOv8 model deployed on the
“edge box” to detect everyday traffic participation objects as well
as faces and license plates. Then, the detected license plates and
pedestrians’ faces are blurred for privacy protection. This method
is not only technically feasible but also effectively reduces the risk
of privacy leakage while retaining sufficient image information for
traffic behavior detection and analysis. Moreover, image blurring

complies with relevant laws, regulations, and ethical standards, and
is more easily understood and accepted by users, thereby enhancing
participation in crowdsensing.

4 Tra�c high-risk behavior
identification framework

In this section, our goal is to identify traffic high-risk behaviors
from road sensing data. Although deep learning-based traffic high-
risk behavior identification has become popular and achieved
excellent performance, accurately identifying various traffic high-
risk behaviors in a low-cost manner remains challenging.
Traditional methods require training a separate identification
model for each type of traffic behavior, which is only effective for
behaviors with low semantic information, such as riding without
wearing a helmet. However, it is not suitable for behaviors involving
multiple traffic participants, such as running a red light, due to the
difficulty in labeling training data for such complex behaviors.
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FIGURE 4

Tra�c high-risk behavior detection framework overview.

In addition, we need to spend a lot of labor and non-labor
resources to obtain the training data even for low semantic
behaviors. Therefore, we proposed a general semantic traffic high-
risk behavior detection framework as shown in Figure 4.

4.1 Tra�c high-risk behavior detection
model

In traffic high-risk behavior detection, a key issue is the
identification of semantic connections between traffic participant
objects. Some methods such as using deep learning networks to
classify a single category (Chairat et al., 2020) are difficult to
expand for other behaviors. Visual relationship detection in the
field of computer vision is to detect the category and location of
objects in the image, as well as the relationship between objects
(Lu et al., 2016). Therefore, we introduce an object detection model
to localize and classify the traffic participant objects and a relation
detection model into our behavior detection framework to identify
the semantic relationship between these objects.

Another key issue is how to make good use of these semantic
connections. After object detection and relation detection, the
image of road sensing data is transformed into a semantic graph
containing only nodes and edges, in which nodes represent object
information, edges represent relation information, and contain
the spatial features of the objects. Intuitively, we could use a
graph database like Neo4j (Webber, 2012) and then a rule-
based engineering method to identify behaviors by matching the
graph and manually predefined rules. Therefore, we introduce an
unsupervised graph embedding framework to transfer the traffic
graphs into graph embeddings. Then the graph embeddings are
used for the downstream high-risk behavior classification model.
The framework overview is shown in Figure 4 and the details are
provided in the following section.

Firstly, we use YOLOv8 (Varghese and Sambath, 2024) to detect
objects. Since crowdsensing users can use the devices we provide
to collect road data in their preferred way, these road images
from different perspectives result in multiple manifestations of the
same object. Therefore, the traffic participation objects detection
algorithms are needed to have powerful robustness. Fortunately,

the rapid development of deep learning techniques (LeCun
et al., 2015) has brought remarkable breakthroughs in object
detection. YOLOv8 has achieved excellent performance in accuracy
and speed. It has a few improvements and tricks on YOLOv4
(Bochkovskiy et al., 2020), such as mish activation and self-
adversarial training, which make great progress in generalization
capabilities and real-world production deployment capabilities.

Secondly, we use iCAN (Gao et al., 2018) to detect relations
between traffic participant objects. The core idea of iCAN is that
the appearance of objects contains informative cues for predicting
relations. To exploit these cues, iCAN uses an instance-centric
attention module that learns to dynamically highlight regions
based on the appearance of each instance and selectively aggregate
features for identifying relations. ICAN is a complete relation
detection framework, including an object detection module, Faster
R-CNN (Ren et al., 2015), and a relation detection module. Due
to the better performance of speed and accuracy, we use YOLOv8
instead of the Faster R-CNN. Therefore, iCAN in this research
refers to the relation detection module in the original iCAN
framework.

Thirdly, we use graph2vec (Narayanan et al., 2017) to transfer
the traffic graphs into the graph embeddings. Graph2vec is a
neural embedding framework to learn data-driven distributed
representations of arbitrary-sized graphs. It performs graph
embedding in an unsupervised learning manner, meaning class
labels of graphs are not required for learning their embeddings.
This allows us to readily use graph2vec embeddings in a plethora
of applications where labeled data is difficult to obtain (Narayanan
et al., 2017). Furthermore, since the traffic behavior is represented
as a specific graph structure in the traffic graph, the embedding
obtained by graph2vec has similar characteristics if they contain the
same traffic high-risk behavior.

Finally, we use a lightweight method as a behavior classification
model. Through the three steps discussed previously, a traffic
image was transformed into a highly refined graph embedding.
This allows us to use a lightweight method to accurately classify
behaviors, such as xgboost (Chen and Guestrin, 2016) or artificial
neural network (ANN).

In summary, we use YOLOv8 and iCAN to abstract the
semantic struct of traffic images, then an unsupervised graph2vec
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FIGURE 5

Data labeling module framework based on information retrieval.

method is used to transfer the graph into graph embedding, which
can be classified with an ANN network. Our behavior detection
framework has the advantages of semantic, modular, and easily
extensible categories.

4.2 Data labeling module

One of the challenges of machine learning is insufficient
training samples with labels (LeCun et al., 2015). In our behavior
detection framework, graph2vec is an unsupervisedmethod. Object
detection and relation detection are classical problems in computer
vision, so we can obtain common labels of traffic participation
objects and relations. Furthermore, we consider that the process
from traffic image to graph embedding can be done with a small
labor cost. Therefore, we are more concerned with obtaining labels
for the classificationmodel.What we need to do is low-cost label the
high-risk behaviors and collect more training samples with labels in
the traffic images. As shown in Figure 5, we develop a data labeling
module based on information retrieval and self-training.

Specifically, we first upload the traffic images into the visual
information retrieval applications like Baidu image1 or Google
image.2 Secondly, we traverse these candidate pages containing
candidate images and extract keywords related to traffic high-risk
behaviors. Then, these candidate images and their corresponding
candidate labels are saved as candidate training samples. Finally, we
will retrain the classification model in the manner of self-training
(Rosenberg et al., 2005).

1 https://image.baidu.com/

2 https://images.google.com/

We manually label a dataset as the initial training data
(Xtrain, ytrain). In each iteration, firstly we use (Xtrain, ytrain) to train
a prediction model Cint . Secondly, we collect low confident results
(Xlf , ylf ) predicted by our models. Thirdly, crowdsensing users in
our system modify and update yu and add it to the training set.
This iterative process does not stop until the stopping criterion is
met. Algorithm 1 illustrates our self-training algorithm.

1 Initialize: Given (Xtrain,ytrain) = (Xl,yl)

2 while stopping criteria not met do

3 Train classifier Cint from (Xtrain,ytrain)

4 Collect candidate dataset by information

retrieval (Xcandidate,ycandidate)

5 Collect low confident results (Xlc_candidate,ylc)

6 Modify yu to ylc by crowdsensing users

7 Combine newly labeled data

(Xtrain,ytrain)← (Xl,yl) ∪ (Xlc_candidate,yu) ∪

(Xhc_candidate,yhc_candidate)

8 where Xhc_candidate = Xcandidate − Xlc_candidate

9 end

Algorithm1. The self-training algorithm for training datasets labeling.

5 Urban travel safety model based on
road environment data

In this section, our goal is to identify which areas in a city may
have travel safety risks. First, we use urban traffic data collected
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FIGURE 6

The compare of the absolute accident heatmap and the relative risk heatmap. (A) Tra�c accidents heatmap. (B) Software architecture.

from Xiamen big data open platform3 and Jiang et al. (2020)
to compute the travel safety risk of grids. Then, we use road
environment data collected through the crowdsensing paradigm to
train a risk assessment model.

5.1 Travel safety risk computation based on
urban tra�c data

We collected accident data with accident details and context.
Intuitively, we can directly use the number of accidents that have
occurred in a grid area as a safety risk, but thismethod calculates the
absolute risk of the grid because it does not take into account factors
such as traffic flow. Therefore, a method is needed to calculate the
relative risk of the grid. According to Pokorny and Pitera (2019),
the truck trajectory is a key factor of traffic risk. Cyclists killed by
a truck represent almost 30% of all cycling fatalities. For example,
in New York City alone, 15% of bicycle networks and 11% of the
truck networks are currently overlapping. Therefore, we calculate
the travel safety risk of the grid based on traffic accident data and
other factors such as truck flow and traffic facilities as shown in
Equation 2.

RiskG = ln

(

∑N
a⊂G (Ta + Ca)
∑N

t⊂G Nt

× e−
∑N

i⊂G Ni

)

(2)

where Ta means the traffic level of each accident and Ca means the
context of every traffic accidents in this grid. Nt means the number
of truck trajectories andNi means the number of traffic signs in this
grid G. The traffic flow level is categorized into three levels, with
the peak period set to 1. Then, the relative travel safety risk of grids
RiskG is taken as the ground-truth in the risk assessment model.
Figure 6 illustrates the comparison between the absolute accident
heatmap (Figure 6A) and the relative risk heatmap (Figure 6B).

3 https://data.xm.gov.cn/opendata/index.html

5.2 Travel safety risk modeling based on
crowdsensing road environment data

According to Wu et al. (2020), the occurrence of road traffic
accidents is related to pedestrians, vehicles, and road environments,
such as road quality and traffic environment. We divide these
influencing factors into two categories, traffic participants and
road environment. For traffic participants, the most important
way to affect road safety is to disobey traffic rules and conduct
traffic high-risk behaviors at will. In the preceding sections, we
collect road sensing data in a crowdsensing paradigm and use
our proposed behavior detection framework to identify high-
risk behavior. Therefore these high-risk behaviors could be
covered comprehensively. However, high-risk behaviors and traffic
accidents are not always positively correlated. For example, we may
find a large number of high-risk behaviors in the location where the
traffic flow is small and the road is wide, so although bicyclists are
still flouting the rules and pedestrians are darting into traffic here,
there are very few traffic accidents occurs. Therefore, we need to
consider the other road environmental factors at the same time.

Road environmental factors include pedestrian flow, vehicle
flow, and road facility quality (Wu et al., 2020). Intuitively, we think
that the more POI there are in an area, the more people there are
in that area. In addition, we use vehicle tracks as the evaluation
basis of vehicle flow. The impact of road facility quality is implied
in the other factors outlined previously. For example, if a region
has a small flow of pedestrians and vehicles and a small number
of POI, but frequent traffic accidents, it is likely that there are
problems of road facility damage or unreasonable road planning in
this region. Therefore, we collected urban POI data and high-risk
truck behavior trajectory data as typical road environment data.

In Section 3.2, we added a random noise generated by Gaussian
distribution to the user’s GPS location for privacy protection. In
addition, the road data have unique spatial characteristics, such as
the intersection represented by crossing vehicle trajectories, which
is more likely to cause traffic accidents. Therefore, we need a
method to make these fuzzy coordinates not affect the location-
based travel safety risk modeling and extract the spatial features.
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FIGURE 7

Urban travel safety model overview.

Specifically, we first map the noise-processed heterogeneous
data to a unified region based on a spatial grid, where each grid
covers a larger spatial area. As a result, coordinates with added noise
largely remain within their original grid, minimizing any impact on
the overall accuracy of risk assessment. After that, we used CNN
to extract spatial features. For a region, the convolution kernel of
CNN would consider both it and the surrounding region. Finally,
an area of N*N size is taken as an input sample of CNN, and the
travel safety risk at the sample center is used as the label to train a
regression model. The risk assessment model framework is shown
in Figure 7.

6 Evaluation

In this section, we first introduce the experiment settings and
then present the evaluation results on traffic high-risk behavior
detection and urban travel safety modeling. We also conduct
a series of case studies to demonstrate the effectiveness of our
method. Specifically, we use large-scale street view images, points of
interest, and vehicle trajectories of Xiamen City as a simulation of
real-world experiments to evaluate the performance. Furthermore,
the details of the “edge box” prototype are shown in Table 1.

6.1 Experiment settings

6.1.1 Datasets
We evaluated our framework based on the real-world dataset

collected from Xiamen. We obtain Xiamen’s street views from
Baidu Street View, vehicle trajectories, traffic accidents, and POI

TABLE 1 Details of “edge box” prototype.

Item Description Item Description

Platform Jetson Nano Volume 130*100*50
(mm)

Network USBWIFI Storage 16 GB eMMC
5.1

Camera MIPI CSI-2 System Ubuntu 18.04

GPS MTK3389 JetPack Version 4.5

datasets. The datasets are summarized in Table 2 and the details and
preprocessing steps are elaborated as follows.

Street view pictures: street view images can help simulate the
traffic risks that may be encountered in real driving scenarios
(Hamim and Ukkusuri, 2024), we obtained 74,078 street view
pictures in driver perspective in Xiamen from Baidu Map.4 These
street view pictures are input into the traffic high-risk detection
framework to detect traffic high-risk behaviors events, and then
these events are used as one of the data sources for urban travel
safety risk modeling.

Traffic high-risk behavior events: we obtained 1,079 behavior
events of four categories detected from street view pictures in
Xiamen using our high-risk behavior detection method. The
selection of four categories of high-risk behavior events is based
on an analysis of common high-risk behaviors for pedestrians
and non-motorized traffic participants, which typically significantly
increase the risk of traffic accidents (Qian et al., 2020).

4 https://map.baidu.com
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TABLE 2 Summary of datasets.

Data type Item Value

Street view pictures # Pictures 74,078

Behavior events # Event 1,079

Categories 4

Vehicle trajectory # Trucks 1,304

Sampling rate Every minute

Collection time 2016.9.1–2016.9.30

Points of interest #POIs 47,439

Categories 15

Collection time 11/14/2017

Traffic accidents #Accidents 100,744

Categories 4

Collection time 2015.1.1–2016.3.7

Vehicle trajectory data: we obtained a large-scale vehicle GPS
trajectory dataset from Xiamen urban big data security open
platform. The vehicle dataset contains GPS trajectories of 1,304
trucks reported every 1 minute during September 2016. The
rationale for selecting truck trajectory data lies in the fact that
the driving trajectories of large vehicles, such as trucks, pose a
higher risk to non-motorized traffic participants and pedestrians
(Mehdizadeh et al., 2021).

Points of interest: we obtained all POIs distributions in
Xiamen, which contains 47,439 POIs. We group all POIs into
fifteen categories, including Hotel and hostel, Restaurant, Road and
Street, Real estate, Company, Shopping, Traffic facility, Finance
institution, Tourist attractions, Auto service, Business building,
Life service, Entertainment, Hospital, Government agency. The
selection of these categories of POI (Points of Interest) data is due
to their encompassing of major crowd gathering places and facility
distributions that may influence traffic flow and risk, aligning with
the criteria for selecting Points of Interest in existing research (Guo
et al., 2024).

Traffic accidents: we obtained traffic accidents in Xiamen from
January 2015 to March 2016, which contain four types of accidents,
including bicycle, rear-end collision, collision, and scratch, totaling
100,744 pieces. Then, we selected 4,639 accidents related to green
travel (Mesimäki and Luoma, 2021).

6.1.2 Evaluation metric
Detection accuracy: we compared the detected traffic high-risk

behaviors with the ground truth dataset to evaluate the accuracy of
the detection method. According to the definitions of TP, FP, and
FN, we used the following indicators to quantitatively evaluate the
performance of the detection method:

precision =
|TP|

|TP| + |FP|
(3)

recall =
|TP|

|TP| + |FN|
(4)

F1− Score =
2 · precision · recall

precision+ recall
(5)

Travel safety modeling performance: we use three commonly
used regression model metrics to evaluate the performance of
population estimation method, including RMSE (Root Mean
Square Error), MAE (Mean Absolute Error) and R2 (Coefficient of
Determination) score. They are defined as follows:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2

(6)

MAE =
1

n

n
∑

i=1

∣

∣

∣

∣

ŷi − yi

yi

∣

∣

∣

∣

(7)

R2 = 1−

∑n
i=1

(

yi − ŷi
)2

∑n
i=1

(

yi − ȳ
)2 (8)

6.1.3 Baseline method
We compared our method with various baseline methods for

traffic high-risk detection and the travel safety risk model. For
traffic high-risk behavior detection, we compared our detection
method (YLICGV), which uses YOLOv8 retrained using Lin et al.
(2014) and the helmet dataset5 to detect objects and iCAN to
identify relations and then use graph2vec to transfer the traffic
graph into graph embedding for behavior classification, with the
following baselines:

YLIOU: this baseline method uses a YOLO model to
detect traffic participant objects and then an overlapping
method to identify behaviors (Saumya et al., 2020).
Specifically, we use YOLOv8 and IoU identification methods to
reproduce it.

YLGN: this baseline method uses a YOLO model to detect
traffic participant objects and then uses GoogleNet to identify
behaviors (Chairat et al., 2020). Specifically, it uses YOLOv8 to
detect a person, bicycle, and helmet and then train a GoogleNet to
identify whether the motorcyclist is wearing a helmet.

FRICGV: this baseline method uses a faster R-CNN model
to detect objects and iCAN to identify the relations between
objects (Gao et al., 2018). Then, we use graph2vec to transfer the
traffic graph into graph embedding for behavior classification. The
baseline method is used to evaluate the influence of the object
detection module on the performance of the overall detection
framework.

The following four high-risk behaviors were taken into account
and the evaluation results are shown in Tables 3, 4.

1) Bicycle overload: A bicycle is defined as overloaded when
more than two people have the relation of a person riding a bicycle.

2) Riding without wearing helmet: A person is defined as riding
without wearing a helmet when he or she has the relation of a
person riding a bicycle and has no relation to a person wearing a
helmet.

5 https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset
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TABLE 3 Tra�c high-risk behavior (overload and with helmet) detection

results.

Behaviors Overload Without helmet

Methods P R F1 P R F1

YLIOU 0.917 0.930 0.923 0.941 0.901 0.921

YLGN 0.890 0.854 0.872 0.914 0.879 0.896

FRICGV 0.891 0.911 0.901 0.943 0.912 0.927

YLICGV 0.935 0.945 0.940 0.955 0.930 0.942

P is the precision, R is the recall, and F1 is the F1-score. The bold text represents that our

method is superior to other comparative methods.

3) Illegal installation of parasol: A bicycle is defined as installing
an illegal parasol when the bicycle has the relation of a bicycle with
a parasol.

4) Running the red light: A pedestrian or bicyclist is defined as
running the red light when he or she has the relation of running
zebra crossing while the traffic red light is on.

For the travel safety risk model, our method (CNN) first maps
road environment datasets to a grid with a size of 160*160 after
normalized processing. Then, we use the three datasets, traffic high-
risk behaviors, vehicle trajectories, and POI in Xiamen, as the
different channels of the input dataset. Thirdly, the size of 5*5 grids
was taken as a sample and the traffic accident risk of the center
in the sample was taken as the label. Finally, we use the CNN
model to model the travel risk. We compared our method with the
following baselines.

RF: this baseline method used traffic high-risk behaviors,
vehicle trajectories, and POIs as the input dataset. Specifically, the
size of 5×5 grids was flattened and used as an input sample to train
a random forest model.

ANN: this baseline method used traffic high-risk behaviors,
vehicle trajectories, and POIs as the input dataset. Additionally, the
size of 5×5 grids was flattened and used as an input sample to train
an artificial neural network model.

CNN-PT: this baseline method used POIs and vehicle
trajectories as the input dataset. Moreover, the size of 5×5 grids
was used as an input sample to train a convolutional neural network
model.

CNN-BT: this baseline method used traffic high-risk behaviors
and vehicle trajectories as the input dataset. Furthermore, the size
of 5×5 grids was used as an input sample to train a convolutional
neural network model.

6.2 Experiment results

6.2.1 Tra�c high-risk behavior detection results
We compare the overall accuracy of different methods for

the four behaviors discussed in Tables 3, 4. We can see that our
YLICGVmethod achieves the best overall accuracy, outperforming
the other baseline methods. As shown in Figures 8A, B, the YLIOU

method performed close to or even better than our method in
the categories of without helmet and overload, but poorly in the
categories of illegal installation of parasol shown in Figure 8C, in
which parasol and person have low IoU rate, and running the red

TABLE 4 Tra�c high-risk behavior (illegal parasol and running red light)

detection results.

Behaviors Illegal parasol Running red light

Methods P R F1 P R F1

YLIOU 0.507 0.491 0.499 0.411 0.512 0.456

YLGN 0.820 0.811 0.815 - - -

FRICGV 0.813 0.820 0.816 0.671 0.517 0.584

YLICGV 0.868 0.895 0.881 0.715 0.679 0.697

P is the precision, R is the recall, and F1 is the F1-Score. The bold text represents that our

method is superior to other comparative methods.

light shown in Figure 8D, in which has more traffic objects. The
reason is that YLIOU applies to the low-semantic behaviors in
which traffic objects have significant spatial coverage features.

In addition, the YLGN shows relatively average accuracy, but
it could not identify the behavior of running the red light. It is
difficult to obtain labeling data as this highly semantic behavior
involves multiple objects in a complex scenario. Furthermore,
the FRICGV achieves relatively high accuracy for detecting four
behaviors. It shows that using a relation detection model and
graph2vec model could detect both low-semantic and high-
semantic behaviors. Moreover, employing a better object detection
model such as YOLOv8, instead of RCNN, would further improve
the performance of the detection framework.

6.2.2 Travel safety risk model results
We present the risk assessment result in Table 5. It shows that

the CNN method achieves the best performance among all the
baselines. The RF and ANN models perform the worst assessment
accuracy since the flattened data loses its spatial features. The
assessment examples shown in Figures 9E, F shows RF and ANN

model assess the travel risk in a smoother manner. In addition, the
CNN-PT and CNN-BT achieve the relatively high performance. It
shows that the CNNmodel with spatial feature extraction capability
is suitable for this scenario and concatenating traffic high-risk
behaviors and the other single road environment data is not enough
for building an effective assessment model. Furthermore, the better
performance of CNN-BT than CNN-PT shows that traffic risk
behaviors have a greater impact on assessment performance. Our
CNN method further improves the performance by leveraging
multi-source road environment data and convolutional kernels
to effectively fuse three types of features, achieving R2 of 0.85,
outperforming the other baseline methods. The comparison of
experimental results is shown in the Figure 9.

6.3 Case studies

We conducted case studies on travel safety risk evaluation
on Xiamen Island. First, by comparing the ablation results of
risk assessment models, we demonstrated the importance of
urban crowdsensing datasets, specifically traffic high-risk behaviors
detected from our behavior detection framework. Then, we
demonstrated the effectiveness of our risk assessment model by
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FIGURE 8

Tra�c high-risk behavior detection result examples. (A) Overload. (B) Wearing helmet. (C) Illegal parasol. (D) Running red light.

comparing the real traffic accident data with the predicted results
of the risk assessment model.

6.3.1 Lingdou Community to Software Park
Figure 10 illustrates the case study at Lingdou. Figures 10A, B

show respectively the high-risk points and high-risk behaviors of
Qianpu East Road andHuizhan Road near to Lingdou Community.
We can see that the distribution of high-risk points from real traffic
accidents is similar to the distribution of the high-risk behavior
events to a large extent. This indicates that traffic high-risk behavior

data plays an important role in travel safety risk assessment.
Figure 10C shows that the CNN model predicts Qianpu East Road
and Huizhan Road as high-risk points. However, as shown in
Figure 10D, the CNN-PTmodel does not take into account the data
on traffic high-risk behaviors, so it only predicts Huizhan Road as
a medium-risk point. The case demonstrates that our method is
essential for risk assessment to detect traffic high-risk behaviors.
In addition, Lingdou Community and Qianpu are large urban
villages in which people are complicated and have weak traffic safety
awareness. Some traffic high-risk behaviors such as overloading and
riding without wearing safety helmets are shown in Figures 10E, F.
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6.3.2 Zhenhai Road station to Lujiang Road
From 2015 to 2016, traffic accidents data showed that the

Zhenhai Road station was a high-risk point (A1, as shown in
Figure 11A was a medium-risk point (B1 as shown in Figure 11A)
because the road was under construction during this period.
Construction facilities such as construction site barriers (shown in
Figure 11C) make bicycles and pedestrians crowded along the road,
so bicycle accidents at the A1 location were frequent. In addition,
the risk assessment model trained with the urban crowdsensing
data predicts that the location of A1 was not a high-risk point.
This is because, after the completion of the subway construction,
the traffic department set up railings to separate the motor vehicle
lanes and the sidewalks (shown in Figure 11D). Therefore, the A1

TABLE 5 Travel safety risk model results.

Methods RMSE MAE R2

RF 0.1693 0.0230 0.23

ANN 0.1631 0.0216 0.25

CNN-PT 0.1623 0.0220 0.36

CNN-BT 0.1615 0.0217 0.43

CNN 0.1251 0.0133 0.85

The bold text represents that our method is superior to other comparative methods.

point where the subway station was located has a low accident
risk, and the intersections near the subway station, namely the B2
and C2 points (shown in Figure 11B), have a high accident risk.
In September 2018, the analysis presented was verified by a news
report that an e-bike and an earth-moving vehicle accident at B2
resulted in the injury of an e-bike driver and the death of a backseat
rider.6 The case demonstrates the lag in assessing travel risk based
solely on historical accident data and the effectiveness of our risk
assessment method.

7 Related work

In this section, we first introducemobile crowdsensing and then
present an overview of traffic behavior detection and traffic safety
risk modeling.

7.1 Mobile crowdsensing

Mobile crowdsensing has recently emerged as a popular
mobile-user-centric paradigm that leverages ubiquitous mobile
devices to enable large-scale applications. As sensor-rich mobile

6 https://weibo.com/1778455640/GAgQaqjn8

FIGURE 9

Urban travel safety risk assessment result examples. (A) Ground truth. (B) CNN result. (C) CNN-BT result. (D) CNN-PT result. (E) ANN result. (F) RF

result.
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FIGURE 10

The comparison of high-risk points and behaviors of Qianpu East Road and Huizhan Road from Lingdou Community to Software Park. (A) The

high-risk points from tra�c accidents. (B) The high-risk behaviors detected by our framework. (C) The predicted high-risk points by CNN model. (D)

The predicted high-risk points by CNN-PT model. (E) The street view of Lingdou Community in 2019. (F) The street view of Software Park in 2019.

devices become more prevalent, mobile crowdsensing has proven
to be a cost-effective sensing paradigm. Mobile crowdsensing
applications have emerged in the environment, infrastructure,
and society in recent years. For example, Dutta et al. (2009)
developed a participatory sensing system, Common Sense, which
uses handheld air quality sensing devices that communicate
with mobile phones to measure various air pollutants. Mobile
crowdsensing applications in infrastructure include measuring
traffic congestion, road conditions, traffic prediction, etc. For
example, Tong et al. (2022) leveraged the phone’s built-in sensors
to locate and navigate vehicles in urban areas where satellite
coverage was limited or unavailable, such as large-scale tunnels,
underground parking lots, and multilevel flyovers. Furthermore,
Wang et al. (2022) proposed a spatiotemporal urban inference and

prediction framework based on sparse mobile crowdsensing, which
was used to predict future traffic congestion and parking occupancy
in cities. The third category is social applications such as Ubigreen
(Froehlich et al., 2009), which encourages green transportation
by semi-automatically tracking transit activity in the form of
smartphone sensing and user self-reported.

However, existing research primarily focuses on environmental
factors, infrastructure monitoring, or traffic prediction, with
limited attention to high-risk traffic behaviors, which are
critical factors in assessing traffic safety. Moreover, while mobile
crowdsensing has been used for various traffic-related applications,
few studies have directly addressed the risk of traffic accidents by
considering the complex interactions of road users’ behaviors and
environmental factors. In this research, we proposed a high-risk
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FIGURE 11

The comparison of high-risk points in Zhenhai Road Station and street view images in di�erent time. (A) The high-risk points from tra�c accidents

during 2015–2016. (B) The predicted high-risk points by our model. (C) The Zhenhai Road Station in 2015. (D) The Zhenhai Road Station in 2019.

behavior identification and traffic risk modeling framework based
on mobile crowdsensing to assess urban traffic green travel safety.

7.2 Tra�c high-risk behavior detection

The fatalities caused by bicyclist and pedestrian traffic high-
risk behaviors have doubled in recent years in the United
States (National Highway Traffic Safety Administration, 2013) and
China.7 Bicyclists and pedestrians are more vulnerable to injury in
traffic conflicts compared with motor vehicles. The bicyclist and
pedestrian traffic high-risk behavior detection problem has been
studied by many researchers using different sensors and computer
vision algorithms. Ooi et al. (2016) developed a detection system
for bicyclist traffic high-risk behaviors, using Kinect’s skeleton
tracking function and illuminance sensors. Tanaka and Takami
(2018) developed a smartphone application to detect cyclists’ high-
risk behaviors of stop sign rules using smartphone sensors, aiming
to supplement safe bicycle ride education at home. For pedestrian
high-risk behaviors detection, Zaki and Sayed (2014) focused on
pedestrian high-risk behaviors in intersections using computer
vision algorithms, such as object tracking, to analyze pedestrian
behaviors like pedestrians crossing the red light. Špaňhel et al.
(2018) used the deep learning-based object detection algorithm
Faster R-CNN to detect road users in intersections for detecting

7 http://www.stats.gov.cn/

their traffic high-risk behaviors and deployed their system in the
NVIDIA Jetson platform.

However, few studies have been conducted on traffic high-
risk behavior detection using mobile edge devices, which
limits the scalability of such systems for large-scale traffic risk
sensing. In contrast, our approach leverages the power of mobile
crowdsensing and edge computing, enabling real-time, large-scale
detection and continuous monitoring of high-risk traffic behaviors
across urban environments. This allows for the integration
of data from a wide range of mobile devices, significantly
enhancing the coverage and effectiveness of traffic safety
risk assessments.

7.3 Tra�c accident risk assessment

Owing to the availability of large volumes of traffic flow
data along with traffic accident information, there is a renewed
opportunity for the development of models for the assessment
or prediction of traffic accident risk. The current methods model
the relationship between the complex traffic accident context and
traffic accident risk by manual construction features or machine
learningmodels. For example, Lin et al. (2015) proposed a Frequent
Pattern tree-based variable selection method to identify all the
frequent patterns in the traffic accident dataset and then calculate
the importance score of each explanatory variable. Ren et al.
(2017)collected heterogeneous traffic-related data, including traffic
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accidents, traffic flow, weather conditions, and air pollution from
the same city; proposed a deep learning model based on a recurrent
neural network toward a prediction of traffic accident risk. In
addition, Yuan et al. (2018), Park et al. (2016), and Wenqi et al.
(2017) directly predict traffic accidents by deep learning methods
based on traffic accident-related datasets.

In this research, we argue that traffic accidents, as random
events, cannot be directly predicted. Instead, the risk of
accidents should be continuously assessed. Existing methods
often overlook key factors like traffic high-risk behaviors, which
significantly contribute to accident likelihood. Therefore, we
propose a traffic safety risk assessment model using CNN that
integrates crowdsensing data, including high-risk behaviors and
truck trajectories, to provide a comprehensive and real-time
risk assessment.

8 Discussion

We discuss the following limitations of our framework.
(1) Identifying more diverse traffic high-risk behaviors.

In this research, we focus on the traffic behaviors of urban
residents while green travel. This is not only because green
travel has become the preferred mode of travel for more and
more people, but also because the traffic high-risk behaviors
during green travel have obvious human-centered characteristics.
This allows us to obtain annotated data more easily. However,
our semantic behavior detection framework can be applied to
more diverse traffic behaviors. Therefore, we believe that our
semantic recognition framework will have further application
with more human resources and the development of relation
detection technology.

(2) Further privacy-preserving for third-person and

participants. In this research, we required some traffic participants
equipped with the “edge box” to collect the road sensing data. In
this process, the identities and locations of users, and the sensing
data of users will all be obtained by the platform and disclosed
to third parties when the platform is untrusted (Yu et al., 2017).
Therefore, we use a data preprocessing module to protect users’
privacy by blurring persons’ face and plate licenses and adding
Gaussian noise to location coordinates. However, the method still
exposes partial sensitive data and approximate location. In the
future, we plan to introduce personalized local differential privacy
(LDP)-based privacy-preserving data collection.

(3) Travel safety risk assessment based on spatial-temporal

data. In this research, we mainly focus on the spatial features
in traffic behaviors and road environment datasets in safety risk
assessment. The reason is that the temporal dimensions of different
datasets are not uniform. For example, our detection framework’s
traffic behaviors detected from street view images lack a temporal
dimension. In addition, vehicle trajectories and traffic accidents
were collected at different periods. In the future, we consider the
actual deployment of edge devices to collect Spatio-temporal data
and then use some Spatio-temporal algorithms like STGCN (Wang
et al., 2019) to optimize our method. Furthermore, our current
work does not account for the impact of a traffic participant who
frequently engages in high-risk traffic behavior on the framework.

9 Conclusion

In this paper, we proposed a mobile edge crowdsensing
framework to dynamically assess urban traffic green travel
safety risk, which could reduce the labor and non-labor
cost to continuously collect road sensing data and detect
traffic high-risk behaviors. In terms of engineering design,
we developed a low-cost, high-performance edge device based
on Nvidia Jetson Nano, which can efficiently and securely
collect road sensing data. In the traffic high-risk behavior
detection framework, we propose an accurate, semantic, and
general model based on object detection, relation detection,
and the graph2vec model to accurately and cost-effectively
identify traffic high-risk behaviors. Additionally, in terms of
data labeling, we developed a data labeling module based on
visual information retrieval and self-training methods. In the
travel safety assessment model, we collected multi-source and
heterogeneous urban crowdsensing road environment data to
collaboratively build the safety assessment model. Our framework
achieves an average F1-score of 86.5% in accurately detecting
traffic high-risk behaviors and an average R2 value of 0.85
for assessing travel safety risks, outperforming various baseline
methods. In terms of urban traffic management, real-world
experiments conducted in Xiamen Island further validated
its effectiveness.

In the future, we plan to refine and deploy edge devices,
explore more complicated traffic behaviors and incorporate
Spatio-temporal road environment data to further improve the
performance of the travel safety risk assessment. We will also
work with local governments or transportation departments to use
existing road monitoring data as input to promptly intervene or
punish violators after identifying risks.
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Appendix

The translations of the Chinese place names on the maps in this
article are as follows:

TABLE A1 Translation of chinese street names.

Label Chinese street
name

English street
name

Figures 9A–F 厦门市仙岳医院 Xiamen Xianyue
Hospital

Figures 9A–F 松柏大厦 Songbai Building

Figures 9A–F 厦门市体育中心 Xiamen Sports Center

Figures 9A–F 劳动力市场大厦 Labor Market Building

Figures 9A–F 明发商业广场 Minfa Business Plaza

Figures 9A–F 台湾街 Taiwan Street

Figures 10A–D 岭兜 Lingdou

Figures 10A–D 天元大酒店 Tianyuan Hotel

Figures 10A–D 岭兜小区 Lingdou Community

Figures 10A–D 锦江之星 Jinjiang Inn

Figures 10A–D 软件园 Software Park

Figures 11A, B 厦门市社会科学院 Xiamen Academy of
Social Sciences

Figures 11A, B 厦门瑞颐大酒店 Swiss Grand Xiamen

Figures 11A, B 镇海路 Zhenhai Road
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