
TYPE Original Research

PUBLISHED 13 January 2025

DOI 10.3389/fdata.2024.1520605

OPEN ACCESS

EDITED BY

Giovanni Paragliola,

National Research Council (CNR), Italy

REVIEWED BY

Jinran Wu,

Australian Catholic University, Australia

Biao Yang,

Kunming University of Science and

Technology, China

*CORRESPONDENCE

Jun Ma

mjun7302@163.com

RECEIVED 31 October 2024

ACCEPTED 19 December 2024

PUBLISHED 13 January 2025

CITATION

Xiong Z, Ma J, Chen B, Lan H and Niu Y (2025)

Multi-source data recognition and fusion

algorithm based on a two-layer genetic

algorithm–back propagation model.

Front. Big Data 7:1520605.

doi: 10.3389/fdata.2024.1520605

COPYRIGHT

© 2025 Xiong, Ma, Chen, Lan and Niu. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Multi-source data recognition
and fusion algorithm based on a
two-layer genetic
algorithm–back propagation
model

Zhuang Xiong1,2, Jun Ma1*, Bohang Chen1, Haiming Lan1 and

Yong Niu1

1The College of Computer, Qinghai Normal University, Xining, China, 2Department of Mechanical and
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Traditional rainfall data collection mainly relies on rain buckets and

meteorological data. It rarely considers the impact of sensor faults

on measurement accuracy. To solve this problem, a two-layer genetic

algorithm–backpropagation (GA-BP) model is proposed. The algorithm focuses

on multi-source data identification and fusion. Rainfall data from a sensor array

are first used. The GA optimizes the weights and thresholds of the BP neural

network. It determines the optimal population and minimizes fitness values.

This process builds a GA-BP model for recognizing sensor faults. A second

GA-BP network is then created based on fault data. This model achieves data

fusion output. The two-layer GA-BP algorithm is compared with a single BP

neural network and actual expected values to test its performance. The results

show that the two-layer GA-BP algorithm reduces data fusion runtime by

2.37 s compared to the single-layer BP model. For faults such as lost signals,

high-value bias, and low-value bias, recognition accuracies improve by 26.09%,

18.18%, and 7.15%, respectively. The mean squared error is 3.49mm lower than

that of the single-layer BP model. The fusion output waveform is also smoother

with less fluctuation. These results confirm that the two-layer GA-BP model

improves system robustness and generalization.

KEYWORDS

multi-source data fusion, BP neural network, legacy algorithm, genetic algorithm–

optimized back propagation network, multi-sensor fault recognition

1 Introduction

Single-source signal processing or low-level multi-source data processing is a low-

level imitation of external biological information processing.Multi-source data fusion (Jiao

et al., 2023) makes full use of multi-sensor arrays to collect resource data, packages them

into a single dataset, and then uses different algorithms to extract the required quantity of

information. However, presently, data fusion faces by many urgent challenges, such as data

defects, abnormal data, and data correlation. Therefore, research regarding multi-source

data fusion is of great significance.

Regarding multi-source data recognition, classification, and prediction for data fusion

(Chen et al., 2022; Jin et al., 2021), two key issues need to be addressed. First, we must solve

the issue of multi-sensor fault recognition and classification at the data collection source.
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Second, to achieve multi-source data fusion output, we must

construct an appropriate data model based on the characteristics

of the fault data.

To address the issue of multi-sensor fault recognition, Wang

et al. (2023) proposed a fault diagnosis method based on multi-

sensor fusion and efficient channel attention for a convolutional

neural network (ECA-CNN) is proposed. The results show that

this method has strong generalization and high computational

efficiency. Xu et al. (2022) researched a general method for fault

diagnosis of complex systems using time series features and transfer

entropy and then generalized its usage. Fu et al. (2022) found

that gearbox fault diagnosis based on the multi-sensor genetic

algorithm–backpropagation (GA-BP) algorithm is investigated,

proposing a decision-level fault recognition method that integrates

Dempster–Shafer (DS) evidence theory with the GA-BP algorithm,

thereby significantly improving recognition accuracy. However, no

feasible solutions were proposed for soft faults or data defects. For

fault recognition, many studies have proposed a fault diagnosis

solution based on variational mode decomposition (VMD), where

source data are decomposed into modes. Methods such as Fourier

and Hilbert transforms are used for time- and frequency-domain

analysis to identify faulty nodes. As the VMD algorithm has

optimization issues regarding the number of modes, many studies

have focused on optimizing VMD for fault recognition (Zheng F.

et al., 2023; Zheng Y. et al., 2023; Yu et al., 2023; Zhu et al., 2023; Yu

et al., 2024; Huang, 2023), and great achievements have been made.

However, beyond multi-sensor fault recognition, further

research is needed to troubleshoot faults and achieve multi-source

data fusion output. This study introduces the BP neural network

algorithm, using a GA to update the thresholds and weights of the

BP neural network. A two-layer GA-BP network is constructed to

achievemulti-sensor fault recognition andmulti-source data fusion

output. This model has the following key features:

• Through the research of this article, the accuracy of rainfall

monitoring is improved, and data support is provided for the

occasions and equipment with high rainfall accuracy, such as

astronomical observation equipment.

• By constructing a two-layer GA-BP algorithm model, a

complete fault recognition and data fusion system was

designed, increasing the generalization ability of system.

• The GA-BP algorithm model improves the identification

accuracy and running time compared to the single-layer

BP neural network model. The fusion output of the two-

layer GA-BP algorithm model has a “smooth” and stable

output waveform, with small fluctuations and significantly

reduced mean square error, thus improving the robustness of

the system.

The structure of this article is as follows: This paper is divided

into six sections. Section 2 briefly discusses research regarding

multi-source data fusion and multi-sensor fault recognition and

outlines the research ideas put forth in this paper. Section 3

describes the system model proposed in this paper. Section 4

describes the GA-BP-based multi-source data recognition and

prediction model. Section 5 describes the experimental simulations

and comparative analyses conducted in this study. Section 6

summarizes and concludes the paper.

2 Related research

Currently, multi-source data research still faces several

challenges, caused mainly by defects in sensor technology,

inaccurate fault recognition, and significant errors in data fusion

output. Researchers primarily use methods such as BP neural

network algorithms, GA-optimized BP neural network models,

VMD algorithms, Fourier transform, and wavelet analysis for fault

diagnosis and analysis (Sun et al., 2023). There are large amount

of research existing on fault diagnosis and multi-source data fusion

in the form of literature and algorithmic models, but there is very

little research on integrating multi-sensor fault recognition with

data fusion output.

2.1 Research regarding multi-sensor fault
recognition and multi-source data
prediction fusion

A BP neural network model considers an unknown system to

be a “black box.” Complex, non-linear systems that are difficult to

modelmathematically are expressed through a specific network and

then finally simulated and output through the trained BP neural

network. However, this method suffers from the issue of local

maximum and minimum values due to inappropriately selected

parameters and therefore does not lead to a globally optimal

solution. In addition, the network depends on the availability of

large volume of training data and so is prone to issues such as

insufficient training capacity and inaccurate prediction. To address

these issues, many researchers have begun to optimize the BP

neural network parameters using a GA. Specifically, the GA-BP

model uses a GA to optimize the weights and thresholds of

the BP neural network, generating an optimal population. This

optimal population is used to build a neural network and to

calculate the optimal fitness value output (Yu et al., 2022; Zheng

et al., 2022). Wang et al. (2024) found that a GA was used

to optimize the number of modes (k) and the penalty factor

(α) in the VMD algorithm, decomposing data into k modal

components and residuals. The experimental results demonstrate

that this method has potential for application in sensor fault

recognition and location. In Yang et al. (2024), aiming at the

problems that abnormal values and uneven noise distribution

often occur in power load data, Pinball-Huber is adopted as

the robust loss function, and a prediction model based on the

improved extreme learning machine (ELM) is proposed. The

genetic algorithm is combined with the fast non-dominated sorting

technique to conductmulti-objective optimization for the proposed

method. This method effectively reduces the training error and the

model structure.

As a part of further research, Li et al. (2022) used BP, GA-

BP, and PSO-BP (particle swarm optimization–backpropagation)

neural network algorithms to construct a short-term photovoltaic

power generation model. Simulation results demonstrated that the

GA-BP and PSO-BP networks achieved high predictive accuracy,

indicating that the GA and PSO-optimized models effectively

reduced prediction errors when compared with the original BP

model. Liu et al. (2022) found that a GA-optimized BP neural
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FIGURE 1

Overall design structure diagram of GA-BP.

FIGURE 2

Schematic diagram of the crossover process of the genetic algorithm.

network regressionmodel is proposed for predicting high-slope soil

moisture. The BP neural network regression model and the GA-

BP neural network regression model were used for soil moisture

prediction with and without lags. The results showed that both

prediction methods exhibited a more significant improvement in

prediction accuracy when considering lags compared with those

without lags, with the GA-BP neural network regression model

outperforming the BP neural network regression model in terms

of accuracy. Tan et al. (2023) proposed, regarding the algorithm

optimization problem, based on the firefly algorithm, a learning

algorithm based on the adaptive logarithmic spiral–Lévy flight

firefly algorithm (QLADIFA) is proposed. Experiments show that

the proposed algorithm effectively overcomes the limitations of

the firefly algorithm and effectively improves the performance

of algorithm.

2.2 Research methods

To address the issues of fault recognition and data fusion, this

study proposes a multi-source data recognition, classification, and

prediction fusion algorithm based on a two-layer GA-BP model.

The multi-source data are collected by multi-sensor arrays, and

the BP and GA-BP neural network algorithms are used to locate

faulty nodes and recognize normal, lost, and abnormal signals. The

results of the two algorithms are compared and analyzed in terms

of simulation time, recognition accuracy, and mean squared error

to further validate that the GA-BPmodel outperforms the single BP

neural network in fault recognition (Gong et al., 2022). In addition,

hidden layer nodes and a mean squared error mathematical model

are established in MATLAB, and iteratively, the optimal local

solution of the hidden layers is realized. The recognized faulty
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nodes serve as inputs to the second-layer GA-BP model, which is

compiled and debugged by specified sub-functions to obtain the

optimal population and best fitness value, thus ultimately achieving

multi-source data fusion output.

3 System model

The proposed method for multi-source data recognition,

classification, and prediction fusion based on a two-layer GA-

BP model consists of three modules: raw data processing, a GA-

BP recognition and classification model, and a GA-BP prediction

fusion model, as shown in Figure 1. The raw data processing

module consists of three parts: 80-sensor nodes that collect

rainfall data over 12 time intervals during a single day, a data

preprocessing function, and a data normalization function. The

GA-BP recognition and classification module comprises mainly a

BP neural network (with 13 input nodes, 21 hidden layer nodes,

and four output nodes), a GA, and sub-functions (select, Recog,

BP_xz, cross, and mutation). The GA-BP prediction fusion model

is primarily composed of a BP neural network (with 12 input

nodes, nine hidden layer nodes, and one output node), a GA, and

sub-functions (select, Recog, BP_xz, cross, and mutation).

4 GA-BP-based multi-source data
recognition and prediction model

4.1 BP neural network

A BP neural network realizes the mapping from n-dimensional

input to m-dimensional output. The signal passes from the input

layer to the hidden layer and then to the output layer, where it

is comparatively analyzed with the expected output. The error is

backpropagated, and the weights and thresholds of the network are

updated based on the prediction error. After multiple iterations, the

predicted output gradually approaches the expected output.

The BP neural network undergoes mathematical modeling

using a linear transfer function, without bias values, and containing

one hidden layer. The specific expression is as follows (Bai et al.,

2021):

yk =

N2
∑

j=1

w2
kjf (

N1
∑

i=1

w1
jixi + bi) (1)

where yk is the k-th output; w2
kj

is the weight of neuron j

in layer 2 (the hidden layer) to neuron k in the output layer; f

is the transfer function of the neuron in the hidden layer; w1
ji is

the weight of neuron i in layer 1 (the input layer) to neuron j

in the hidden layer; and bj is the bias value of neuron j in the

hidden layer. When the number of hidden layers is appropriately

set, the BP neural network can accurately approximate any complex

non-linear system function.

The specific algorithmic 1 steps are as follows:

Step 1: Network initialization. Based on the system input and

output, determine the number of input layer nodes m, the number

of hidden layer nodes l, the number of output layer nodes n, and

the weights between the layers wij (weight between the input layer

1.Set global variables:global net inputn outputn

inputs outputs output_test input_test;

global inputnum outputnum hiddennum;

2.BP network structure

initialization:Inputnum=13;hiddennum=24;outputnum=4;

3.Genetic algorithm parameter

initialization:iterationnum=35;populationsize=10;

pcross=0.3;pmutation=0.1;

4.Calculation process:

5.tBP=cputime;

6.

[BP_identify,BP_error,BP_mse]=BP_xz(input_train,

output_train,input_test,output_test);

7. BP_accuracyrate=Recog(BP_error,output_test);

8. BP_time=cputime-tBP;

9.

10. [bestchrom,trace]

=GABPbestchrom_xz(iterationnum,populationsize,

pcross,pcross);

11.

12.tGB=cputime;

13.[GABP_identify,GABP_error,GABP_mse]=GABPsim_xz

(bestchrom,input_test,output_test);

14.GABP_time=cputime-tGB;

15.

16.

17. function

[BP_identify,BP_error,BP_mse]=BP_xz(input_train,

output_train,input_test,output_test)

18. Set global variables;

19. net=newff(inputn,outputn,hiddennum);

20. net1=train(net,inputn,outputn);

21. inputn_test =

mapminmax(‘apply’,input_test,inputs);

22. erroe_biaozhun=sim(net1,inputn_test);

23.

BPoutput=mapminmax(‘reverse’,error_biaozhun,

outputps);

24.

25. for i=1:80

26. BP_identify(:,i)=find(BPoutput(:,i) ==

max(BPoutput(:,i)));

27. end

28. BP_error= BP_error-realoutput;

29. BP_mse=mse(BP_error);

30. return BP_error,BP_error,BP_mse

31. end function

32.

33.

34. function [bestchrom,trace] =

GABPbestchrom_xz(iterationnum,populationsize,

pcross,pcross)

35. Set global variables;

36. num = inputnum∗hiddennum + hiddennum +

hiddennum∗outputnum + outputnum;

37. Population initialization;

38. for i=1:populationsize

39. Randomly generate a population;
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40. Calculate the fitness value;

41. end

42.

43. Find the best population, the chromosome;

44.

45. for i=1: iterationnum

46. Selection algorithm;

47. Cross algorithm;

48. Mutation algorithm;

49. Calculate the fitness value;

50. for j=1:populationsize

51. Decode;

52. end

53.

54. The bubble sorting algorithm finds the

minimum fitness value and the best population;

55. end

56. return bestchrom,trace

57. end function

58.

59. function [GABP_identify,GABP_error,GABP_mse]

= GABPsim_xz(bestchrom, input_test, output_test)

60. Set global variables;

61. net=newff(inputn,outputn,hiddennum);

62. [W1,B1,W2,B2]=gadecod(bestchrom);

63. net1=train(net,inputn,outputn);

64. inputn_test =

mapminmax(‘apply’,input_test,inputps);

65. erroe_biaozhun = sim(net1,inputn_test);

66. GABPoutput = mapminmax(‘reverse’,

error_biaozhun, outputps);

67.

68. for i=1:80

69. GABP_identify(:,i) = find(GABPoutput (:,i)

== max(GABPoutput (:,i)));

70. end

71. GABP_error = GABP_error-realoutput;

72. GABP_mse = mse(GABP_error);

73. return GABP_error, GABP_error,GABP_mse

74. end function

Algorithm 1. GA-BP multi-source data identification and fusion.

and the hidden layer), wjk (weight between the input layer and the

hidden layer), the threshold of the hidden layer a, and the threshold

of the output layer b.

Step 2: Hidden layer output. The specific modeling

expression is shown in Equation 2, where f is the hidden

layer excitation function.

Hj = f (

n
∑

i=1

wijxi − aj) j = 1, 2, 3 . . . . . . , 1 (2)

Step 3: Mathematical modeling of the output layer. The hidden

layer output function H is used in combination with the associated

FIGURE 3

Schematic diagram of the mutation process of the genetic

algorithm.

weights and thresholds to compute the predicted output O.

Ok =

l
∑

j=1

Hjwjk − bk k = 1, 2, 3 . . . . . . ,m (3)

Step 4: Error calculation (Zheng F. et al., 2023; Zheng Y. et al.,

2023). The prediction error e is calculated by taking the difference

between the predicted output O and the expected output Y of the

neural network.

ek = Yk − Ok k = 1, 2, 3 . . . . . . ,m (4)

Step 5: The weights and thresholds of the network nodes are

updated based on the prediction error e.

wij = wij + ηHj(1−Hj)x(i)

m
∑

k=1

wjkek

i = 1, 2, 3 . . . . . . , n; j = 1, 2, 3 . . . . . . , l (5)

wjk = wjk + ηHjek

j = 1, 2, 3 . . . . . . , l; k = 1, 2, 3 . . . . . . ,m (6)

aj = aj + ηHj(1−Hj)

m
∑

k=1

wjkek

j = 1, 2, 3 . . . . . . , l (7)

bk = bk + ek k = 1, 2, 3 . . . . . . ,m (8)

Step 6: Based on the number of iterations and the critical value of

the prediction error, it is determined whether or not to stop the

iterations. If not, return to step 2 and proceed to the next iteration.

4.2 Genetic algorithm (GA)

A GA simulates the process of natural selection, reproduction,

and mutation through the iterative simulation of each generation

of different random changes, so as to generate a set of candidate

populations. Individuals are screened based on the selected fitness

function and through genetic selection, crossover, and mutation.

The higher the fitness value, the closer the population is to the

optimal local solution. Better fitness values are retained, and so the
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FIGURE 4

Flowchart of the GA-BP process.

new generation of candidate populations has better fitness values

and populations than the previous. The population iterates until

convergence criteria are met.

The GA consists of four parts: encoding to generate the initial

population, fitness function, genetic operators (selection, crossover,

and mutation), and control parameters, among which the three

basic genetic operators are the most important.

4.2.1 Selection operator
The selection operation is the process of selecting individuals

from the parent population to pass onto the next generation. A

higher fitness value indicates a greater probability of the individual

being passed onto the next generation. The specific fitness value

calculation is shown in Equation 9. The selection operation is

conducted using the roulette wheel method, i.e., a selection strategy

based on the fitness ratio. The selection probability pi for an

individual i is calculated using Equations 10, 11:

F = k(

n
∑

i=1

abs(yi − oi)) (9)

fi = k/Fi (10)

pi =
fi
N
∑

j=1
fj

(11)

4.2.2 Crossover operator
Two paired chromosomes exchange part of their genes with

one another based on the crossover probability Pc, thereby forming

two new individuals. The detailed crossover process is shown in

Figure 2. Suppose that the crossover of the k-th chromosome ak
and the l-th chromosome al at the j-th position is mathematically

modeled as Equation 12, where b is a random number in the range

[0, 1].

{

akj = akj(1− b)+ aijb

alj = alj(1− b)+ akjb
(12)

4.2.3 Mutation operator
Based on themutation probability pm, certain gene values in the

individual coding string are replaced by other gene values, thereby

creating a new individual. The detailed mutation process is shown

in Figure 3 (Misevičius and Verene, 2021).

4.3 GA-BP-based multi-source data
processing model

The GA-BP-based multi-source data processing model

combines the BP neural network model and the GA model (Jiang

et al., 2024; Liu et al., 2023; Zhang et al., 2024; Wang et al.,

2022). The detailed algorithm flowchart is shown in Figure 4.
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TABLE 1 Measurements and error value of the raindrop generator.

Rainfall collection
sensor node number

Time interval
number

Time interval Rainfall (mm) Total rainfall in
24h (mm)

1 1 20:00–21:59 0 19.8291

2 22:00–23:59 0

3 00:00–01:59 0

4 02:00–03:59 0

5 04:00–05:59 0

6 06:00–07:59 2.0683

7 08:00–09:59 0.9218

8 10:00–11:59 4.3615

9 12:00–13:59 0

10 14:00–15:59 5.0135

11 16:00–17:59 7.4640

12 18:00–19:59 0

FIGURE 5

Characteristics of normal and faulty signals and the local enlarged graph. (A) Characteristics signals of the 60 populations across the 4 types of

signals. (B) Partially enlarged signals of the 4 types of signal at the 14:0015:59 time duration.

The BP neural network model recognizes and classifies sensor

faults, precisely locates faulty nodes and fault types, and then

performs data fitting and fusion output. Of the characteristic

rainfall signals collected by the sensor arrays, 60 normal signal

populations, 60 lost signal populations, 60 signal populations

biased toward high values, and 60 signal populations biased toward

low values are selected. Each population is further decomposed

into 14 characteristic signals, of which 12 characteristic signals, one

sequence type signal, and one total rainfall characteristic signal are

collected at different time intervals. First, the raw data of the 240

populations are imported into MATLAB, shuffled, and regrouped

for preprocessing. The 240 classification codes, which serve as

outputs, are converted from one-dimensional output signals to

four-dimensional output signals, and programmed in accordance

with “0001” representing normal signals, “0010” representing lost

signals, “0100” representing signals biased toward high values,
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FIGURE 6

Optimization graph of the hidden layer nodes of BP and GA-BP.

TABLE 2 Recognition error values of BP and GA-BP algorithms as well as the modeling and simulation time.

Algorithm type Number of hidden layer nodes 5 12 21 57 91

BP algorithm BP recognition error (mm) 0.71047 0.5105 0.602083 0.516667 0.635417

BP modeling and simulation time (s) 1.75 2 1.906 4 4.2813

GA-BP algorithm GA-BP recognition error (mm) 0.508333 0.58333 0.397917 0.479167 0.522917

GA-BP modeling and simulation time (s) 0.625 0.825 0.6825 1.8281 3.0781

and “1000” representing signals biased toward low values. The

240 populations are then sorted based on a certain rule. 160

populations are randomly addressed as training samples, while the

remaining 80 populations are used as test samples. Both datasets

are normalized to complete data preprocessing.

According to the data samples and data preprocessing, the

main process of the multi-source data recognition, classification,

and prediction fusion algorithm based on the GA-BP model is as

described in section 5.

5 Experimental and comparative
analysis

5.1 Data source

This study is based on meteorological stations located at the

same longitude, latitude, and altitude in a specific area of Qinghai

Province. Four sensor arrays are deployed at these stations, with

each array consisting of several photoelectric sensors used to collect

rainfall data. Rainfall data of 19.8291mm were collected over a

24-h period during 12 time intervals in a selected month during

2022, starting from 20:00 and ending at 20:00 the following day.

The data from sensor #1, which recorded normal signals, are

used as an example. See Table 1 for details. Data from 240 nodes

were selected for training and network testing (240 samples were

selected from the collection database, with each sample containing

14 characteristic signals; specifically, 60 normal signal nodes, 60

lost signal nodes, 60 signal nodes biased toward high values, and

60 signal nodes biased toward low values were selected), as shown

in Figure 5A. To research and analyze the rainfall characteristics

more clearly, the rainfall values of the four signal types from

14:00 to 15:59 are presented separately. In Figure 5B-1, the values

fluctuate ∼5mm, a negligible. This can be identified as locally

normal signals. The second row shows clear discontinuities in the

waveform, suggesting lost data. In the third row, several points

exceed 5mm, indicating signals biased toward high values. In

the fourth row, multiple points are below 5mm and fluctuate

significantly, which can be identified as signals biased toward

low values.
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FIGURE 7

Some input and predicted data, normalized data, and the corresponding output data.

FIGURE 8

GA-BP network and BP network recognition error discrete graph. (A) BP network recognition error discrete graph. (B) GA-BP network recognition

error discrete graph.
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FIGURE 9

Contrastive chart of the output and error output of GA-BP, BP, and the expected value of rainfall. (A) The contrastive chart of the expected output of

rainfall of the two models. (B) The contrastive chart of error recognition of the two algorithm models.

TABLE 3 Contrastive analysis of the recognition accuracy and mean

square error of GA-BP and BP.

Simulation

time for each

algorithm (s)

BP model 1.75

GA-BP

model

1.1563

Recognition

accuracy (%)

BP model 100 69.56522 68.18182 92.85714

GA-BP

model

100 95.65217 86.36364 100

Mean squared

error (mm)

BP model 0.4875

GA-BP

model

0.1625

5.2 Parameter optimization of GA-BP
model

The number of hidden layers is crucial to the recognition

and prediction accuracy of the GA-BP network. If the number

of hidden layer nodes is too small, the network learning ability

is poor, which affects functionality of the network. Alternatively,

too many hidden layer nodes can lead to “overfitting”. Numerous

studies suggest using the empirical (Equations 13–15) to determine

the number of hidden nodes, where l is the number of hidden

layer nodes; n is the number of input layer nodes; m is the

number of output layer nodes; and α is a constant between 0

and 10. In this study, mathematical models of the hidden layers

and the BP and GA-BP recognition algorithms were established.

TABLE 4 Fault type and fault location node.

Fault type Located node

Signal biased toward high values (7) 6, 8, 22, 29, 33, 57, 68

Signal biased toward low values (5) 3, 39, 45, 52, 73

Lost signal (8) 7, 11, 23, 31, 41, 42, 55, 69

Their relationships after 100 iterations in MATLAB are shown in

Figure 6. After a comparative analysis of the two graphs, we found

that when the number of hidden layer nodes is set to 5, 12, 21, 57,

and 91, there are local minimums in the recognition error for the

BP and GA-BP algorithms. The specific parameters are shown in

Table 2. After considering the recognition errors, simulation time,

and comparative analysis of both algorithms, we established that

the optimal number of hidden layer nodes is 21.

l < n− 1 (13)

l <
√

(m+ n)+ α (14)

l ≈ log2n (15)

5.3 Analysis of GA-BP recognition and
classification results

Due to the influence of environmental factors, the data of

individual nodes of the sensor array may be too large, too small,

and data loss. The 240 original signals were shuffled and regrouped.
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FIGURE 10

BP network predicts fusion output.

FIGURE 11

Contrastive analysis diagram of the fusion output of GA-BP, BP, and the expected value of rainfall.
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FIGURE 12

Contrastive diagram of the error output of the two algorithms.

A total of 160 populations were used as the input training signals

for the GA-BP model. Figure 7-1 shows the eighth characteristic

signal from the 160 populations, i.e., the rainfall data collected

between the 10:00 and 11:59 period (4.3615mm). Excluding most

normal signals, the dashed red box indicates that the data collected

by the sensor are biased toward a high value, while the solid

red box indicates that the data collected by the sensor are biased

toward a low value. The dashed red circle indicates lost data.

Faulty sensor nodes similar to the training data are also present in

the 80 test populations in the third row of Figure 7. The second

and fourth rows of Figure 7 show the training and test output

data, respectively. The fifth row mirrors the trend of the first row,

which is the result of normalizing the data in the first row. Data

normalization helps avoid data disorder caused by inconsistencies

in the criteria of different characteristic signals (Kong and Yu,

2022).

Upon completion of data processing, the BP algorithm model

and GA-BP algorithm model were used for recognition and

classification. Figure 8A shows the recognition and classification

error of the BP neural network algorithm model, while Figure 8B

shows the recognition and classification error of the GA-BP

algorithm model. After comparing and analyzing the two figures,

we found that the GA-BP algorithm model can clearly recognize

and classify data with greater accuracy.

A comparative analysis was conducted between the expected

outputs of the actual rainfall values collected by the 80-sensor

nodes, the recognition output values of the BP algorithm model,

and the recognition output values of the GA-BP algorithm model.

Figure 9A further verifies that the output values of the GA-BP

algorithm model are closer to the expected output values. In

Figure 9B, the recognition error of the GA-BPmodel is significantly

lower than that of the BP neural network model, indicating that

the GA-BP model is more feasible for use in network training and

has generalized applicability as a recognitionmodel. Themodel was

run and debugged in MATLAB, the simulation results are shown in

Table 3. Compared to the BP algorithm model, the simulation time

for the GA-BP algorithm model was reduced from 1.75 to 1.1563 s,

indicating improved efficiency. In terms of recognition accuracy,

it improved from 69.56% to 95.65% for lost signals; from 68.18%

to 86.36% for signals biased toward high values; from 92.85% to

100% for signals biased toward low values; and reached 100% for

normal signals. The mean squared error reduced from 0.4875mm

to 0.1625mm, indicating that the prediction accuracy of the GA-

BP algorithm was improved. In summary, the GA-optimized BP

neural network (GA-BP algorithm model) outperforms the single

BP neural network in fault recognition and classification and is also

more efficient with higher prediction accuracy.

5.4 Analysis of the prediction fusion results
of the GA-BP model

The GA-BP algorithmmodel was used for fault recognition and

classification, with the located faulty node data input into the GA-

BP-based fitting and prediction model to achieve fusion output.

Based on the data collected from 80 nodes and input into the

GA-BP recognition algorithm model, the faulty nodes were located

and classified, as shown in Table 4.
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TABLE 5 Fusion output values of the two algorithmmodels.

Fault type Faulty node Actual value
(mm)

Fusion value predicted by
the BP algorithm model

(mm)

Fusion value predicted
by the two-layer GA-BP
algorithm model (mm)

Expected
value (mm)

Lost signal 7 (signal lost during

a partial time

interval)

14.7852 18.4816 19.4730 19.8291

11 0 18.4333 19.3237

23 (signal lost

during a partial

time interval)

9.1770 18.4373 19.4733

31 (signal lost

during a partial

time interval)

8.4280 18.4331 19.4731

41 0 18.4362 19.4724

42 0 18.4175 19.4930

55 0 18.4321 19.4233

69 0 18.4337 19.3471

Signal biased

toward high values

6 26.4699 20.5686 19.5886

18 34.7784 21.0361 20.5771

22 24.7940 20.9024 19.5687

29 39.4031 21.0368 20.6240

33 28.6831 19.6337 20.5965

57 29.8991 20.1493 19.5390

68 24.7061 21.1020 20.5439

Signal biased

toward low values

3 13.7031 18.7371 19.4419

39 12.8361 18.4821 19.4816

45 15.0951 18.4393 19.4868

52 13.8791 18.7350 20.4928

73 13.9741 18.4296 19.4462

In Figure 10, the red asterisk line represents the expected output

values, i.e., the total sum of the rainfall values collected by the 80

sensors over the last 12-h interval. The normal signal output value

is approximately 19.8291mm. As shown in Table 4, there are 20

faulty nodes in the 80-sensor array, as a result of which the red

star line fluctuates considerably, indicating data anomalies at these

nodes. The blue triangle solid line represents the output values

after the data are processed by the BP neural network model. The

output curve is clearly smooth and is close to the normal output

signal value of 19.8291mm, therefore achieving the goal of data

fusion output.

After the data are processed by the GA-BP algorithm model,

the blue solid line in Figure 11 represents the output curve

of the GA-BP model. This curve is smoother than the other

two curves and is closer to the standard daily rainfall value. A

comparison of the prediction results shows that in terms of faulty

node troubleshooting, fitting, and fusion output, GA-BP > BP >

“expected output.”

To more intuitively compare the GA-BP algorithm model and

the BP algorithm model in terms of prediction fusion effects, the

fusion output values of both models were compared with the actual

rainfall values for the day, as shown in Figure 12. The experimental

simulation results indicate that the fusion output of the GA-

BP algorithm model is closer to the actual values (see Table 5

for details), and the simulation time decreased from 2.5781 s to

0.20313 s. Themean squared error also decreased from 33.7986mm

to 30.3027 mm.

6 Conclusion

This study discusses the random and diverse sensor faults that

occur during multi-source data fusion, which lead to low accuracy

of sensor fault characteristic recognition and classification, and

inefficient handling of complex issues by algorithms. In addition,

after faults are recognized and located, the processing of data

from the faulty nodes and fusion output results are not ideal. This

study proposes a multi-source data recognition, classification, and

prediction fusion algorithm based on a GA-BP model. First, the

data of the 240 populations collected by the sensor arrays were
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preprocessed through normalization and then divided into training

and test datasets to construct an appropriate training network.

Second, an appropriate GA and BP neural network model was

built to establish a GA-BP algorithm model for multi-source data

fault recognition and classification. Finally, an appropriate GA-

BP network structure was created, with the recognized fault data

serving as the input to the second-layer GA-BP algorithm model in

order to achieve data fitting and fusion output.

The experimental simulation results show that:

• The GA-BP algorithm model all outperforms a single BP

neural network in terms of operational efficiency. At the fault

recognition and classification stage, the GA-BPmodel reduced

the run time by 0.6 s compared to the BP model. As the size

of the sensor array increased, the simulation time disparity

increased. At the data fusion stage, the program ran more

efficiently, and the GA-BP model reduced the run time by

2.37497 s compared to the BP neural network model.

• Compared to the BP neural network model, the GA-BP

model improved the recognition accuracy for lost signals

from 69.56% to 95.65% and improved the accuracy for

signals biased toward high values from 68.18% to 86.36%, the

accuracy for signals biased toward low values from 92.85% to

100%, and the accuracy for normal signals to 100%, indicating

that normal signals were all correctly identified. This further

validates the superior recognition and fusion accuracy of the

GA-BP model.

• On the basis of the existing BP neural network, the fault

recognition output of the first layer served as the input to

the second-layer GA-BP algorithm model. An appropriate BP

network structure was selected and various GA parameters

were constructed, with specific sub-functions written for fault

recognition and troubleshooting. The mean squared error

decreased from 33.7986mm to 30.3027mm, and the output

data were smooth with less fluctuation. This enhanced the

robustness and generalization ability of the system.

This thesis has analyzed the rainfall data but has not yet carried

out research on larger and more complex datasets and more meta-

heuristic optimization methods, which is one of the directions for

future research and exploration.
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Misevičius, A., and Verene, D. (2021). A hybrid genetic-hierarchical algorithm for
the quadratic assignment problem. Entropy 23:108. doi: 10.3390/e23010108

Sun, P., Shi, Y., and Shi, Y. (2023). Multivariate regression in conjunction with GA-
BP for optimization of data processing of trace no gas flow in active pumping electronic
nose. Sensors 23:1524. doi: 10.3390/s23031524

Tan, S., Zhao, S., and Wu, J. (2023). QL-ADIFA: hybrid optimization using Q-
learning and an adaptive logarithmic spiral-levy firefly algorithm.Mathem. Biosci. Eng.
20, 13542–13561. doi: 10.3934/mbe.2023604

Wang, H., Zhu, H., and Li, H. (2023). A rotating machinery fault diagnosis
method based on multi-sensor fusion and ECA-CNN. IEEE[[Inline Image]] Access.
doi: 10.1109/ACCESS.2023.3320065

Wang, X., Li, X., Wang, J., Gao, J., and Xin, L. (2024). Short-term power grid load
forecasting based on optimized VMD and GA-BP. Int. J. Low-Carbon Technol. 19,
980–986. doi: 10.1093/ijlct/ctae039

Wang, Z., Wu, J., Wang, H., Wang, H., and Hao, Y. (2022). Optimal underwater
acoustic warfare strategy based on a three-layer GA-BP neural network. Sensors
22:9701. doi: 10.3390/s22249701

Xu, Z., Li, Q., Qian, L., and Wang, M. (2022). Multi-sensor fault diagnosis
based on time series in an intelligent mechanical system. Sensors 22:9973.
doi: 10.3390/s22249973

Yang, Y., Lou, H., Wang, Z., and Wu, J. (2024). Pinball-Huber extreme learning
machine regression: a multiobjective approach to accurate power load forecasting.
Appl. Intellig. 54, 8745–8760. doi: 10.1007/s10489-024-05651-3

Yu, H., Chang, H.,Wen, Z., Ge, Y., Hao, L.,Wang, X., et al. (2022). Prediction of real
driving emission of light vehicles in China VI based on GA-BP algorithm. Atmosphere
13:1800. doi: 10.3390/atmos13111800

Yu, K., Zhu, X., and Cao, W. (2024). Study on traveling wave fault
localization of transmission line based on NGO-VMD algorithm. Energies 17:2003.
doi: 10.3390/en17092003

Yu, Z., Wang, B., Xu, W., and Yan, Y. (2023). Microgrid Fault Identification Based
on VMD-MPE. J. Phys. 2433:012021. doi: 10.1088/1742-6596/2433/1/012021

Zhang, W., Zhong, W., Liu, Z., Du, B., Li, M., Huang, M., et al. (2024). Precision
regulation and forecasting of greenhouse tomato growth conditions using an improved
GA-BP model. Sustainability 16:4161. doi: 10.3390/su16104161

Zheng, F., Peng, Y., Jiang, C., Lin, Y., and Liang, N. (2023). Research on the
identification of high-resistance ground faults in the flexible DC distribution
network based on VMD–inception–CNN. Front. Energy Res. 11:1258619.
doi: 10.3389/fenrg.2023.1258619

Zheng, H., Shi, S., Jiang, B., Zheng, Y., Li, S., and Wang, H. (2022).
Research on coal dust wettability identification based on GA–BP model.
Int. J. Environ. Res. Public Health 20: 624. doi: 10.3390/ijerph200
10624

Zheng, Y., Li, L., Qian, L., Cheng, B., Hou, W., and Zhuang, Y.
(2023). Sine-SSA-BP ship trajectory prediction based on chaotic mapping
improved sparrow search algorithm. Sensors 23:704. doi: 10.3390/s23
020704

Zhu, W., Fan, C., Xu, C., Dong, H., Guo, J., Liang, A., et al. (2023).
Anchor fault identification method for high-voltage DC submarine cable
based on VMD-volterra-SVM. Energies 16:3053. doi: 10.3390/en160
73053

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2024.1520605
https://doi.org/10.3390/s24154992
https://doi.org/10.1016/j.heliyon.2023.e17117
https://doi.org/10.3390/s21134370
https://doi.org/10.3390/machines10050345
https://doi.org/10.3389/fenrg.2021.824691
https://doi.org/10.3390/su14031386
https://doi.org/10.3389/fenrg.2023.1229695
https://doi.org/10.3390/e23010108
https://doi.org/10.3390/s23031524
https://doi.org/10.3934/mbe.2023604
https://doi.org/10.1109/ACCESS.2023.3320065
https://doi.org/10.1093/ijlct/ctae039
https://doi.org/10.3390/s22249701
https://doi.org/10.3390/s22249973
https://doi.org/10.1007/s10489-024-05651-3
https://doi.org/10.3390/atmos13111800
https://doi.org/10.3390/en17092003
https://doi.org/10.1088/1742-6596/2433/1/012021
https://doi.org/10.3390/su16104161
https://doi.org/10.3389/fenrg.2023.1258619
https://doi.org/10.3390/ijerph20010624
https://doi.org/10.3390/s23020704
https://doi.org/10.3390/en16073053
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Multi-source data recognition and fusion algorithm based on a two-layer genetic algorithm–back propagation model
	1 Introduction
	2 Related research
	2.1 Research regarding multi-sensor fault recognition and multi-source data prediction fusion
	2.2 Research methods

	3 System model
	4 GA-BP-based multi-source data recognition and prediction model
	4.1 BP neural network
	4.2 Genetic algorithm (GA)
	4.2.1 Selection operator
	4.2.2 Crossover operator
	4.2.3 Mutation operator

	4.3 GA-BP-based multi-source data processing model

	5 Experimental and comparative analysis
	5.1 Data source
	5.2 Parameter optimization of GA-BP model
	5.3 Analysis of GA-BP recognition and classification results
	5.4 Analysis of the prediction fusion results of the GA-BP model

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


