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1 Introduction

The evolution of Deep Learning (DL) methodologies has significantly enhanced the

field of medical Imaging, particularly in the interpretation of chest radiographs (CXRs).

Among these advancements, Convolutional Neural Networks (CNNs) have emerged as

a paramount technology for processing and Classifying CXR images and demonstrating

exceptional proficiency in detecting COVID-19-related signs (Perumal et al., 2020).

Although Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests surpass CXRs

in accuracy and reliability for virus detection, the latter remains an ubiquitous tool in

clinical practice (Giri and Rana, 2020). RT-PCR excels in early detection capabilities,

enabling prompt treatment initiation, and uniquely identifies the virus in asymptomatic

individuals through the analysis of: Saliva samples, throat samples, and nasal passage

samples, demonstrating superior performance over CXR evaluations in these aspects.

A recent investigation employed a Convolutional Neural Network (CNN) model to

distinguish between:

• Normal chest radiographs.

• Pneumonia-infected.

• COVID-19 affected individuals.

The CNNmodel, trained on an extensive dataset comprising images from:

• Patients diagnosed with pneumonia.

• Those testing positive for COVID-19.
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Healthy subjects achieved a remarkable precision rate of

97.6% in identifying COVID-19 cases on chest radiographs

(CXR). This exceptional level of precision surpasses that of

traditional CXR diagnostic techniques, demonstrating the potential

of deep learning algorithms to improve diagnostic accuracy (Wang

and Lin, 2020). In the current healthcare landscape, the surge

in demand for intensive care units (ICUs) has exposed the

capacity constraints of healthcare systems in several developed

countries. The influx of patients suffering from COVID-19-

induced pneumonia into the ICU underscores this pressing

challenge, highlighting the need for effective diagnostic tools

and strategies to manage the burden on healthcare resources

(Kermany et al., 2018).

The system employs relational feature intelligence to analyze

and interpret the interactions among various elements within an

image, enabling the assessment of:

• Spatial relationships.

• Dynamics between different components.

This capability facilitates the evaluation of:

• Tumor-tissue interactions.

• Inter-organ relationships (e.g., heart-lung interactions) which

is crucial for diagnosing conditions like:

◦ Heart failure.

◦ Pulmonary embolism.

The relational feature intelligence of the system enables the

analysis of complex interactions within medical images, providing

valuable information on spatial relationships and dynamics

between different elements (Ai et al., 2020; Ng et al., 2020; Kong

and Agarwal, 2020). This capability is particularly beneficial in:

• Oncology (accurate diagnosis and treatment planning).

• Cardiovascular and pulmonary diseases (diagnosing

conditions like heart failure and pulmonary embolism).

As depicted in Figure 1, the radiographic features

characteristics of COVID-19 typically encompass:

• Bilateral and lower-zone dominant ground-glass

opacities (GGOs).

• Consolidations, predominantly peripheral in distribution.

• Interlobular septal thickening.

• Pleural effusions.

In contrast, viral pneumonia caused by non-SARS-CoV-2

viruses, such as influenza-A, tends to exhibit:

• Unilateral, central, and upper-zone dominant GGOs and

consolidations Using these distinctions, medical experts

advocate the concurrent use of:

◦ Chest radiography.

◦ Nucleic acid amplification tests

as a primary diagnostic strategy for early identification of this novel

pneumonia strain.

The primary objective of this examination is to detect the

presence of the virus within a patient, which is achieved through

the analysis of specific biomarkers (Choe et al., 2019). To augment

this assessment, medical practitioners often employ a multimodal

diagnostic approach, incorporating additional methodologies

such as:

• Antibody tests,

• Antigen tests, and

• Radiographic analysis via chest X-rays

to verify infection and facilitate accurate diagnosis. However, it

is crucial to acknowledge that these supplementary tests may not

always yield precise outcomes, highlighting the necessity for their

combined application with other diagnostic techniques to ensure a

definitive diagnosis.

A significant limitation of this specific examination is

the considerable:

• Processing time

• Expenses

associated with its execution, which may hinder its applicability in

resource-constrained settings.

To minimize diagnostic errors, healthcare professionals are

advised to utilize automated imaging analysis software, powered

by artificial intelligence (AI), when interpreting X-ray photographs.

These advanced tools excel at identifying complex patterns within

images, thereby improving diagnostic accuracy. Additionally, to

maintain a high level of diagnostic precision, medical staff should

take periodic breaks to avoid fatigue and seek second opinions

from colleagues to ensure reliability and accuracy. Innovations

in diagnostic methodologies, such as the integration of AI and

machine learning (ML) technologies, can significantly reduce both

the time and financial costs associated with diagnostic processes,

enhancing efficiency and reliability. Specifically, AI and ML can

accelerate and refine disease diagnosis by analyzing medical data.

In addition, digital biomarkers, such as data from wearable

technologies, offer real-time information, enabling the early

detection andmonitoring of various health conditions. The synergy

of ML and AI has facilitated the development of sophisticated

algorithms capable of detecting and diagnosing diseases with

remarkable precision. These advancements have transformed

the diagnostic landscape, enabling healthcare professionals to

make more accurate and timely diagnoses (Simonyan and

Zisserman, 2015). Artificial intelligence (AI)-empowered systems

can efficiently process vast datasets, enhancing the capacity for early

disease detection and the formulation of customized treatment

plans. The advent of telemedicine and remote monitoring tools

enables healthcare practitioners to oversee patient health remotely,

providing timely interventions when necessary. This approach has

been particularly advantageous during the pandemic. Pre-trained

models can address complex issues with speed and accuracy,

offering a significant advantage in medical diagnostics. Leveraging

pre-trained models reduces the time and resources required for
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FIGURE 1

The radiographic characteristics indicative of COVID-19, showing bilateral and lower-zone dominant ground-glass opacities (GGOs) along with

consolidations.

FIGURE 2

Chest X-ray COVID-19 image samples evaluated using the Kaggle database.

training a model from scratch, while enhancing precision. These

models facilitate knowledge transfer across different domains,

enabling more efficient and accurate solutions. The Grad-CAM

algorithm serves as a visualization tool, elucidating the decision-

making process of convolutional neural networks (CNNs). By

utilizing gradients pertaining to a selected target class, Grad-

CAM generates a localization map highlighting pivotal areas

within an image critical for identifying a specific concept. This

study introduces a comprehensive transfer model for synchronous

COVID-19 detection and visualization of affected areas using X-ray

imaging (He et al., 2016).

Unlike prior research, our work focuses on COVID-19

detection via X-ray images. Given the pressure on healthcare

systems, it is crucial to leverage every available resource

efficiently. Integrating the Grad-Cam localization feature aids

in identifying COVID-19 and assessing severity, assisting in

determining whether immediate healthcare intervention is needed

(Selvaraju et al., 2016). In our investigation, we leveraged

a diverse range of pre-trained models for the classification

task, including:

• ResNet34.

• ResNet50.

• EfficientNet-B4.

• EfficientNet-B5 architectures.

The incorporation of Grad-CAM into our methodology

enabled the precise identification of affected regions, with the

EfficientNet architecture being utilized for its exceptional:

• Efficiency.

• Effectiveness.
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FIGURE 3

Chest X-ray Pneumonia image samples evaluated using the Kaggle database.

FIGURE 4

Illustration of the dimensionality ratio calculated by dividing the output feature map size by the input feature map size.

The utilization of pre-trained models offers significant

advantages, primarily due to their pre-learned weights, which

make them exceptionally valuable even when working with limited

datasets. This constitutes the primary benefit of integrating pre-

trained models into our investigative approach. Additionally, the

employment of pre-trained models reduces the:

• Computational power

• Resources required for training

making them a computationally efficient option.

To address the variability in light intensity of the captured

images, we applied the Contrast Limited Adaptive Histogram

Equalization (CLAHE) technique to enhance image quality,

ensuring a more accurate analysis. This preprocessing step

enabled the:

• Improvement of image contrast

• Reduction of noise

ultimately leading to more reliable results.

2 Contribution of the work

In this study, we leveraged publicly accessible datasets

of X-ray images as the primary experimental medium. The

architecture of our experiment is designed as an end-to-end

system, eliminating the need for manual feature extraction or

selection, thereby streamlining the process for enhanced efficiency

and effectiveness. We employed the Grad-CAM technique in

conjunction with a Convolutional Neural Network (CNN) model

to improve the diagnostic accuracy of our system. The integration
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of Grad-CAM enables the visualization of feature importance,

allowing us to identify the most relevant regions in the X-ray

images for diagnostic decision-making. By utilizing this approach,

we aimed to develop a robust and accurate diagnostic system,

capable of automatically detecting, and localizing abnormalities

in X-ray images, thereby assisting clinicians in making

informed decisions.

2.1 Methodological framework

The core of our methodological approach integrates

the Gradient-weighted Class Activation Mapping (Grad-

CAM) technique with Convolutional Neural Network (CNN)

architectures, aiming to refine diagnostic precision through the

FIGURE 5

Residual learning framework.

following formulation:

LGrad−CAM = ReLU
(

∑

ka
e
kA

k
)

(1)

where LGrad−CAM represents the localization map highlighting

regions of interest, ae
k
denotes the weights for the k-th feature map

Ak contributing to a target class c, and ReLU ensures the activation

map focuses on features positively influencing the class prediction.

For classification purposes, we employed a selection of pre-

trained models:

• ResNet34 and ResNet50 and

• EfficientNet-B4 and EfficientNet-B5,

fine-tuned to adapt their learned representations to our specific

task. This process exploits the models’ preexisting knowledge,

significantly economizing on computational resources and

training time.

The Grad-CAM heatmap is computed using the equation:

L Grad-CAM = ReLU (
∑

k ae
k
Ak). This equation is crucial

in visualizing the regions of the input image that significantly

influence the model’s decision-making process. In our study, we

utilize the feature maps A k from the last convolutional layer of the

CNN and importance weights a k e derived from the gradients of

the predicted class score with respect to Ak. These weights represent

the contribution of each feature map to the prediction. The ReLU

function ensures that only positive contributions are considered,

highlighting the most relevant regions for class prediction. This

equation enables the generation of Grad-CAMheatmaps, which are

overlaid on original chest X-rays to help clinicians identify critical

regions that influence the model’s classification.

FIGURE 6

E�cient convolutional block and MBConv block.
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FIGURE 7

Transfer learning model applied.

2.2 Analytical approach

Our investigation scrutinizes the influence of the

characteristics of the data set and image processing techniques

on the precision of disease detection. This entails a dual

analysis approach:

2.2.1 Dataset analysis

1accuracy = f (Datasetbalance, Imageenhancement) (2)

where 1 accuracy measures the change in diagnostic accuracy as a

function of dataset balance and image enhancement techniques.

2.2.2 Image enhancement
The employment of image enhancement, particularly for

X-ray and CT-Scan images, was operationalized through the

application of Contrast Limited Adaptive Histogram Equalization

(CLAHE), aiming to ameliorate image quality for more accurate

diagnostic interpretation.

2.2.3 Justification of using these models
When selecting models for this research, several factors were

considered to ensure the best choices for the task at hand.

First, computational feasibility was evaluated. While models like

DenseNet and Inception are powerful, they require significant

computational resources without offering substantial accuracy

improvements over other options. So, more efficient architectures

that strike a balance between performance and computational

demands were selected. The selected models are known for their

ability to adapt well to different datasets, which is crucial given

the variations in chest X-ray imaging conditions. By considering

FIGURE 8

Proposed model of prediction system (vision transformer and

transformer encoder).

these factors, the research offers the best combination of accuracy,

efficiency, and generalizability.

2.3 Hyperparameter tuning and sensitivity
analysis

2.3.1 Sensitivity analysis
To evaluate the model’s robustness, sensitivity analyses were

performed on key hyperparameters.
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TABLE 1 Original dataset distribution.

Category Subcategory Training Testing Validation

X-ray COVID-19 700 300 100

Normal 4,000 1,000 750

Viral 2,500 800 400

TABLE 2 Balanced dataset distribution.

Category Subcategory Training Testing Validation

X-ray COVID-19 700 300 150

Normal 1,500 300 125

Viral 1,700 300 135

2.3.2 Learning rate sensitivity
A significant performance drop was observed when the

learning rate deviated from the optimal value of 10−3, highlighting

its crucial role in convergence. To address this, a learning rate

scheduler was employed to dynamically adjust the learning rate

upon validation loss plateauing.

2.3.3 Batch size sensitivity
Increasing the batch size to 64 negatively impacted

performance due to poorer gradient estimates on limited GPU

memory. Conversely, smaller batch sizes increased training time.

2.3.4 Dropout rate sensitivity
Dropout rates below 0.2 led to overfitting, characterized by high

training accuracy but low validation accuracy. In contrast, dropout

rates above 0.5 hindered the learning process.

2.3.5 Optimizer sensitivity
The Adam optimizer demonstrated robustness for the dataset

used in this study, showing less sensitivity to small learning rate

changes compared to SGD.

3 Literature survey

The collaborative efforts of Eduardo A. Soares, Plamen P.

Angelov, and Sarah Biaso have culminated in a significant

contribution to the field of medical imaging for infectious diseases.

They have developed and made publicly available a comprehensive

dataset of CT scans specific to SARS-CoV-2, enabling the

advancement of diagnostic capabilities.

The team crafted an innovative algorithm, meticulously

training it on CT scans from both:

• Confirmed SARS-CoV-2 positive patients.

• Patients without the infection.

This training phase was followed by a rigorous testing phase,

where the algorithm’s efficacy was validated on a distinct dataset

encompassing CT scans from individuals with and without SARS-

CoV-2 infection.

The outcomes of this testing phase demonstrated the

algorithm’s precision in accurately detecting SARS-CoV-2

infection, highlighting its potential utility in enhancing diagnostic

processes within clinical settings. This contribution has the

potential to significantly impact the field of medical imaging for

infectious diseases, improving patient outcomes and streamlining

diagnostic procedures (Soares et al., 2020). In a groundbreaking

study, Sara Haseli and Nastaran Khalili have significantly

advanced our understanding of COVID-19 pneumonia through

comprehensive radiological analysis of chest CT imaging. Their

research elucidated distinct hallmark features characteristic of the

condition, including:

• Bilateral ground-glass opacities.

• Consolidation.

• Interlobular septal thickening.

These findings align with established diagnostic criteria for

COVID-19 pneumonia, providing critical insights into the disease’s

pulmonary manifestations.

Furthermore, their investigation revealed additional

complications in a subset of patients, including:

• Pleural effusions.

• Lymphadenopathy.

• Pulmonary embolism.

These findings broaden our understanding of the disease’s

impact on pulmonary structures, underscoring the importance of

vigilant radiological monitoring and timely diagnosis (Haseli et al.,

2020). In terms of pulmonary involvement, the posterior segment

of the left lower lobe (LLL) was identified as the most frequently

affected segment, exhibiting a high propensity for involvement.

Additionally, significant instances of involvement were observed

in the right middle lobe (RML) and the right lower lobe (RLL),

suggesting a bilateral distribution of pulmonary affliction. Upon

analyzing the data based on lobar distribution, the LLL exhibited

the highest frequency of affliction, with the RLL and RML closely

following in prevalence, indicating a relatively even distribution of

pulmonary involvement across the lobes (Li et al., 2020a).

Upon examining the demographics of age and gender in

relation to chest CT imaging outcomes, a notable pattern emerged,

suggesting a gender-specific predilection for lobar involvement.

Male patients exhibited a significant propensity for left lower

lobe (LLL) involvement, whereas female patients demonstrated a

tendency toward more frequent involvement of the right lower

lobe (RLL). Further analysis revealed a distinct age-related pattern,

with the left lower lobe (LLL) being predominantly affected in

the older population (65 years). In contrast, the right lower lobe

(RLL) showed a higher incidence of involvement among younger

individuals (<65 years). These findings suggest that age and gender

may play a role in determining the lobar distribution of pulmonary

involvement (Narin et al., 2021).

Wang et al. developed a cutting-edge algorithm for the

detection of COVID-19 pneumonia via chest CT image analysis,

leveraging an adapted Inception transfer-learning framework.
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FIGURE 9

Comparison of original and CLAHE-enhanced images.

FIGURE 10

Samples of images after data augmentation.

The algorithm’s performance was rigorously validated through

both internal and external validation processes, demonstrating its

efficacy in identifying COVID-19 pneumonia with a high degree of

accuracy (Islam et al., 2020).

In their investigative study, Ali Narin and Ceren Kaya put

forward three models grounded in convolutional neural network

technologyâ C”ResNet50, InceptionV3, and InceptionResNetV2â

C”for the purpose of identifying coronavirus pneumonia from

chest X-ray images. These models underwent rigorous evaluation

on a dataset that included both confirmed COVID-19 cases

and cases of conventional viral pneumonia, demonstrating

the application of advanced deep learning techniques in the

differentiation and diagnosis of respiratory illnesses (Saha et al.,

2020; Wang et al., 2020; Song et al., 2021). In a pioneering

approach, the developed system leveraged a hybrid architecture,

synergistically integrating a Long Short-Term Memory (LSTM)

classifier with a Convolutional Neural Network (CNN) dedicated

to feature extraction and selection. The system’s performance

was rigorously evaluated using a dataset comprising 421 cases,

including 141 instances with features indicative of COVID-

19. Following the completion of its training phase, the model

demonstrated exceptional performance capabilities, adeptly

categorizing images as either COVID-19 positive or negative.

The evaluation of the model’s efficacy involved the application

of 10-fold cross-validation, yielding an impressive accuracy rate

of 97.3%. This remarkable achievement underscores the system’s

potential in medical imaging analysis, showcasing its ability to

accurately classify images and support diagnostic decision-making

(Mohammad and Abolfazl, 2020; Islam et al., 2020; Alharbi et al.,

2022). Extensive validation was conducted on an independent

dataset of chest X-ray images, where the proposed model achieved

an exceptional accuracy of 97.7%. This remarkable performance
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TABLE 3 Specifications of various deep learning models.

Model-name No. of Param. (M) Resolution of images

Resnet34 17.4 224× 224

Resnet50 21.1 224× 224

Efficientnet-B4 15.8 350× 350

Efficientnet-B5 27.8 456× 456

Efficientnet-V2-s 21.5 384× 384

Efficientnet-V2-m 50.2 480× 480

CCT-14.7× 2.384 21.1 224× 224

demonstrates the model’s precision in distinguishing COVID-19

cases, showcasing its potential in medical imaging analysis. The

utilized dataset comprised 88 confirmed instances of COVID-19,

101 cases of bacterial pneumonia, and 86 instances classified as

normal based on CT scan analyses. Comparative assessments

were conducted to evaluate the model’s performance relative

to traditional frameworks, including Res-Net, Dense-Net, and

VGG16. The results underscore the proposed model’s enhanced

performance, demonstrating its effectiveness through rigorous

analysis (Singh et al., 2022; Alharbi et al., 2022a,b).

3.1 Multi-modal bone suppression, lung
segmentation, and classification approach

This study combines bone suppression and lung segmentation

with multi-modal classification to improve COVID-19 detection

accuracy. By isolating lung regions, the model reduces noise

from surrounding structures, enhancing diagnostic performance.

This approach refines lung images, contributing to more accurate

identification of COVID-19 in chest X-rays (Li et al., 2020b; Shi

et al., 2021).

3.2 Comparative study of linear type
multiple instance learning techniques

This comparative study investigates various linear multiple

instance learning (MIL) models applied to COVID-19 detection

in chest X-rays. Analyzing how linear MIL models handle weakly

labeled data, the study identifies effective techniques for classifying

X-ray images without extensive manual annotations. The findings

reveal that certainMIL techniques can efficiently pinpoint COVID-

19 indicators, making them suitable for large-scale screenings

(Ching et al., 2018; Wang et al., 2017).

TABLE 4 Classification performance metrics.

Class Precision Recall
F1-score

Support Class

COVID-19+ve 0.98 0.45 0.62 100

COVID-19–ve 0.75 0.95 0.84 110

No COVID-19 0.95 1.00 0.97 105

Accuracy = 0.80 Total Support = 315

Macro-average 0.89 0.80 0.81 315

Weighted

average

0.86 0.80 0.83 315

TABLE 5 Model performance metrics.

Models Training-
accuracy (%)

Testing-
accuracy

(%)

Val-
accuracy (%)

Resnet34 95.50 75.50 90.25

Resnet50 92.00 72.25 91.75

Efficientnet-B4 91.00 82.50 96.50

Efficientnet-B5 91.00 75.50 89.70

Efficientnet-V2-s 92.50 72.85 75.50

Efficientnet-V2-m 95.60 73.50 85.50

CCT-14.7× 2.384 91.00 78.40 80.25

3.3 Convolutional neural network
techniques

CNN-based methods have shown significant promise in

detecting COVID-19 from X-ray images. This research explores

CNN architectures designed for medical image analysis, fine-

tuned to identify COVID-19′s unique patterns in X-rays. Using

convolutional layers that capture spatial features, CNNs offer

high sensitivity in recognizing infection signs, allowing for robust

classification (Wang and Lin, 2020; Apostolopoulos and Mpesiana,

2020).

3.4 Machine learning techniques

Beyond deep learning, various machine learning algorithms

have been applied to COVID-19 classification in chest X-

rays. These techniques include support vector machines (SVMs),

decision trees, and ensemble methods. The study highlights the

effectiveness of these algorithms in scenarios with limited data,

where traditional machine learning methods can outperform deep

learning models by leveraging feature extraction and selection

methods. These studies demonstrate the potential of AI techniques

in enhancing COVID-19 detection accuracy using chest X-rays.

Each approach offers unique strengths, and their combination

could lead to more effective diagnosis and treatment (Ozturk et al.,

2020; Hemdan et al., 2020).
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4 Materials and methods

4.1 Dataset description

While our dataset provides a substantial amount of data for

training and evaluating our model, it’s important to acknowledge

its limitations. The dataset may not fully capture the diversity of

COVID-19 cases seen across different populations and imaging

conditions, which could impact the generalizability of our model’s

predictions in real-world clinical settings. For instance, variations

in demographics, geographic regions, and imaging equipment

could affect the robustness of our model, particularly when

applied to data from populations or conditions not represented

in the training dataset. To address this limitation, future work

should consider incorporating datasets from a broader range of

demographics and imaging environments. This would enhance

our model’s adaptability and effectiveness in diverse healthcare

contexts, ensuring that it can provide accurate predictions for a

wide range of patients and scenarios. By expanding our dataset

TABLE 6 Model performance metrics.

Model Training-
accuracy

(%)

Testing-
accuracy

(%)

Val-
accuracy

(%)

Resnet34 95.50 76.50 90.25

Resnet50 92.00 82.25 91.75

Efficientnet-B4 91.00 87.00 97.50

Efficientnet-B5 91.00 72.20 89.70

Efficientnet-V2-s 92.50 75.50 90.50

Efficientnet-V2-m 95.60 71.50 88.50

CCT-14.7× 2.384 91.00 67.40 92.25

in this way, we can increase the confidence in our model’s

performance and its potential to improve patient outcomes in

real-world clinical settings.

The diagnosis of COVID-19 in this study is conducted through

the analysis of pulmonary (chest) X-ray images. The dataset is

categorized into three primary classes:

• COVID-19.

• Normal.

• Pneumonia.

Sourced from the COVID-19 Radiography Database available

on platforms such as Kaggle and Mendeley data, the dataset

encompasses a total of 9,300 images, distributed across the classes

as follows:

COVID-19: 800 images.

Normal: 2500 images.

Pneumonia: 5,000 images.

5 Dataset allocation

The allocation of the dataset for various purposes is segmented

as follows:

TABLE 8 Segmented images tested with pre-trained models.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

COVID-Net 93.5 94.0 92.8 93.4

ResNet50 91.2 90.5 90.0 90.2

EfficientNet-B4 92.7 92.3 92.1 92.2

Proposed model 97.5 97.0 96.4 96.7

TABLE 7 Model performance metrics under CLAHE and BALANCED datasets.

Model Training accuracy Testing accuracy Training loss Testing loss Validation accuracy Validation loss

CLAHE

ResNet50 0.7236 0.6035 0.1033 1.8100 0.7052 1.1025

Xception 0.6750 0.4670 0.5027 1.3340 0.7330 0.2354

InceptionV3 0.8025 0.5717 0.6758 3.2208 0.7984 0.2457

VGG16 0.8223 0.7202 0.2254 4.1548 0.4558 3.3465

VGG19 0.8021 0.6280 0.1248 2.5478 0.4236 1.1583

EfficientNet-B4 0.9634 0.8765 0.1248 0.9221 0.8234 1.1102

BALANCED

ResNet50 0.7366 0.8426 0.5544 0.2757 0.8229 1.1225

Xception 0.7094 0.3792 0.7227 2.3039 0.7640 0.6154

InceptionV3 0.5640 0.4239 0.8906 0.7901 0.4339 0.8938

VGG16 0.8013 0.8478 0.2309 3.2348 0.2358 2.2365

VGG19 0.7061 0.7230 0.2216 1.2473 0.1736 1.2383

EfficientNet-B4 0.9434 0.9165 0.1724 0.6853 0.8134 0.4356
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• Evaluation: 30% of the total dataset.

• Training and Validation: 70% of the total dataset.

Furthermore, within the Training + Validation subset, the

images are divided into:

Training: 70%

Validation: 30%

6 Visualization

The distribution and representation of all three subsets

(COVID-19, Normal, and Pneumonia) are illustrated in

Figures 2, 3.

6.1 Convolutional layers

Convolutional layers are a fundamental component of

Convolutional Neural Networks (CNNs), primarily due to their

ability to utilize learnable kernels that perform convolutions across

the spatial dimensions of the input data. The convolution operation

can be mathematically expressed as:

(

f ∗ s
) [

q
]

=
∑

+∞
m=−∞f [m] .s[m− q] (3)

where f [m] denotes the input function, s[m − q] represents the

shifting function, and
(

f ∗s
) [

q
]

corresponds to the output of the

convolution operation, resulting in the generation of feature maps

that capture spatial hierarchies in the data.

6.2 Fully connected and classification layers

While convolutional layers are responsible for extracting

hierarchical features, fully connected layers serve as classifiers,

mapping the learned features to output classes through matrix

multiplication. These layers interpret the high-level features

extracted by the convolutional layers, with the aim of accurately

classifying the input data.

6.3 Pooling layers

Pooling layers are designed to reduce the spatial dimensions of

the input data, thereby condensing the information and retaining

the most salient features. A common pooling operation is max

pooling, mathematically represented as:

O = max xi,j i, j ∈ R (4)

where O is the output of the pooling operation over a region R,

and xi,j are the input features within the pooling window. This

operation effectively down samples the input while preserving the

most significant activations.

6.4 Relationship between input and output
feature map sizes

The dimensions of the output feature map are determined by

the stride and filter size used during the convolutional operation, as

described by the following equation:

Output_size = 1+
input_size− Filter_size

Stride
(5)

The equation Output_size = 1 + (Input_size –

Filter_size)/Stride is a fundamental concept in convolutional

operations, determining the dimensions of the output feature

map after applying a convolution operation to an input image.

In our study, this equation plays a crucial role in designing

and understanding the architecture of CNN models. The input

size, filter size, and stride are critical parameters that affect the

dimensionality reduction and feature extraction capabilities of the

network. By using this equation, we can ensure that the network

architecture is compatible with the input image dimensions and

optimize computational efficiency. This equation is essential for

understanding how CNN models process visual data and make

predictions, as illustrated in Figure 4.

6.5 ResNet architecture

Residual Networks (ResNets) introduce an innovative

architecture in deep learning designed to effectively mitigate the

vanishing gradient problem, a significant challenge in training

deep neural networks. As the network depth increases, the

gradients often become exceedingly small, rendering weight

updates ineffective and hindering the network’s ability to learn

and converge. ResNets address this issue through the use of skip

connections, a key architectural feature that facilitates better

gradient flow.

6.6 Residual learning framework

The skip connections, also known as residual connections,

provide an alternative pathway for gradients to propagate, thereby

bypassing one or more layers. The fundamental concept of ResNets

can be mathematically expressed as:

y = F (x, {Wi}) + x (6)

In this equation, x represents the input to a layer, F (x, {Wi})

denotes the residual function to be learned by the network, and y

is the output of the layer. The inclusion of the term x allows the

network to skip certain layers, ensuring that the gradient can be

propagated directly back through the network without significant

reduction in magnitude. This mechanism is crucial for maintaining

the effectiveness of gradient-based learning in deep networks, as

depicted in Figure 5.
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FIGURE 11

Di�erent model heat map visualization.

FIGURE 12

Heat map extracted by GRADCAM algorithm.

6.7 Impact on deep learning

The introduction of ResNets has significantly impacted various

domains within deep learning, including but not limited to image

recognition, object detection, and natural language processing.

Furthermore, their application extends to medical imaging, where

they facilitate tasks such as tumor detection and segmentation.

6.8 E�cientNet architecture

The EfficientNet architecture introduces a holistic optimization

strategy that synergistically combines advanced convolutional

techniques with squeeze-and-excitation modules. Its primary

objective is to enhance model efficiency and accuracy without

incurring a proportional increase in computational demands,
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FIGURE 13

Heat map visualization by GRADCAM algorithm.

FIGURE 14

The classification results obtained.

thereby achieving a optimal tradeoff between performance and

computational resources.

6.9 Compound scaling method

The core of Efficient Net’s design philosophy lies in the

compound scaling method which achieves a balanced scaling of the

network’s dimensions depth, width, and resolution. This approach

is mathematically formalized as:

depth : d = αϕ , width : w = βϕ , resolution : r = γ ϕ , subject to

α·β2·γ 2≈2 and α·β·γ≈1 (7)

where ϕ is a user-defined coefficient that determines the

scaling of the model based on the available computational

resources. The constants α, β , and γ defines the specific

scaling factors for each dimensions depth, width, and resolution,

respectively. The constraints ensure a balanced scaling across

these dimensions, optimizing the model’s performance while

maintaining computational efficiency.

The compound scaling formula is a crucial component of

EfficientNet, balancing image resolution, network depth, and

width scaling factors to optimize model accuracy and efficiency.

Unlike traditional scaling methods, compound scaling ensures a

proportional and systematic scaling across all three dimensions,

resulting in a better-performing model without unnecessary

computational costs.

EfficientNet’s compound scaling method optimizes the balance

between model accuracy and efficiency. The input image resolution

is scaled to 224 × 224 pixels to capture finer details without

overwhelming computational resources.
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FIGURE 15

Diagnoses from the validation dataset.

FIGURE 16

ROC curve visualization for the e�cient net model, based on the

true positive rate.

6.10 E�cient convolutional block and
MBConv block

To further optimize performance, EfficientNet incorporates

an efficient convolutional block alongside the mobile inverted

bottleneck (MBConv) block. The MBConv block, a pivotal

component, enhances model efficiency through an inverted

residual structure shown in Figure 6.

6.11 Transformers

The integration of transformer encoders into CNN-based

classification algorithms marks a significant advancement in

machine learning, enhancing model capabilities by effectively

leveraging transfer learning principles as shown in the Figure 7.

In the initial training phase, a CNN model is trained on a specific

dataset, resulting in a set of learned weights. These weights enable

the model to classify features similar to those encountered during

FIGURE 17

E�cient net accuracy obtained.

FIGURE 18

E�cient net validation loss.

training. The process of transfer learning can be mathematically

represented as:

W
′

= f (W, Dnew) (8)

where W’ represents the adapted weights post-transfer learning,

W denotes the original pre-trained weights, and Dnew is

the new dataset. By incorporating transformer encoders, the

model’s ability to generalize and apply learned patterns to

novel datasets is significantly enhanced. This process can be

formalized as:

Etransformed = TranformerEncoder(Einput) (9)

where Einput denotes the input embeddings fed into the

transformer encoder, and Etransformed represents the output

embeddings, now enriched with contextual information through

the encoder’s processing.
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7 Proposed model of prediction
system

The synergistic integration of Convolutional Vision

Transformers (CVT) and Convolutional Channel Transformers

(CCT) represents a groundbreaking approach in object recognition,

harnessing the complementary strengths of Convolutional Neural

Networks (CNNs) and transformers to process images with

enhanced efficacy. This innovative methodology enables a

comprehensive and holistic analysis of images, significantly

improving the model’s efficiency and deployment capability.

The remarkable performance of this approach is particularly

evident in the classification of COVID-19 images, as illustrated

in Figure 8 respectively. By combining the spatial hierarchies of

CNNs with the self-attention mechanisms of transformers, CVT

and CCT facilitate a more detailed and nuanced understanding

of image features, leading to improved recognition accuracy and

robustness. This integrated approach demonstrates a significant

advancement in computer vision, enabling more effective and

efficient image analysis in various applications, including medical

imaging and disease.

7.1 Categorical cross-entropy loss function

The categorical cross-entropy loss function is used for multi-

class classification problems. It measures the divergence between

predicted and true class probabilities, penalizing predictions based

on their confidence in the correct class. Regularization techniques,

such as L2 regularization and dropout regularization, are applied to

prevent overfitting and improve generalization. The loss function is

directly tied to the SoftMax activation function in the output layer,

ensuring predicted probabilities sum to 1 across all classes as shown

in Equation 10.

L_Weighted CCE = − (1/N)∗
∑

(i = 1 to N)
∑

(c = 1 to C)w_c ∗ y_i, c ∗ log(y_i,c) (10)

8 Performance metrics

The metrics are defined as follows, where TP represents true

positives, TN denotes true negatives, FP stands for false positives,

and FN signifies false negatives:

8.1 Accuracy

Accuracy measures the proportion of true results (both true

positives and true negatives) in the total number of cases examined.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

8.2 Recall

Recall or Sensitivity, quantifies the proportion of actual

positives correctly identified.

Recall =
TP

TP + FN
(12)

8.3 Specificity

Specificity measures the proportion of actual negatives

correctly identified.

Specificity =
TN

TN + FP
(13)

8.4 Precision

Precision assesses the proportion of positive identifications that

were actually correct.

Precision =
TP

TP + FP
(14)

8.5 F1-score

The F1-Score is the harmonic mean of Precision and Recall,

providing a balance between the two.

F1− Score = 2×

(

Pecision × Recall

Pecision+ Recall

)

(15)

9 Experimental procedure

The primary objective of this experiment was to evaluate

the performance of classification models on a dataset of X-

ray images, encompassing categories such as standard, lung

opacity, pneumonia, and COVID-19 cases. To ensure optimal

model training and evaluation, data enhancement and balancing

techniques were applied, as illustrated in Tables 1, 2.

To ensure fair and reliable model predictions, techniques

were applied to address class imbalance in the dataset, which

could otherwise bias the model toward overrepresented classes.

Methods such as class weighting and oversampling were employed

to balance the distribution among the COVID-19, pneumonia,

and normal classes. Class weighting adjusted the loss function to

give higher importance to minority classes, while oversampling

involved duplicating samples from underrepresented classes to

create a more balanced dataset. These approaches aimed to reduce

bias and improve the model’s ability to accurately classify images

across all categories, enhancing its reliability and robustness in

clinical applications.
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9.1 Data preprocessing

The first step in the experimental process involved the

enhancement of X-ray images using the Contrast Limited Adaptive

Histogram Equalization (CLAHE) technique, mathematically

represented as:

Ienhaced = CLAHE(Ioriginal) (16)

where Ioriginal is the original X-ray image, and Ienhanced is the result

after applying CLAHE.

9.1.1 Image resizing
The images were resized to a uniform resolution of 224 ×

224 pixels. This standardization is critical for compatibility with

the input size requirements of the employed neural network

architectures (e.g., EfficientNet and ResNet).

9.1.2 Data augmentation
To increase the variability of the dataset and reduce

overfitting, the following augmentation techniques were applied

during training:

9.1.3 Random rotations
Introduced angular variations to simulate

different orientations.

9.1.4 Horizontal and vertical flipping
Created mirror-like reflections to enhance diversity.

9.1.5 Random cropping and zooming
Enabled the model to focus on varying regions of the image.

9.1.6 Brightness adjustments
Improved robustness by simulating different

lighting conditions.

9.1.7 Noise reduction
Basic noise reduction filters were applied to remove potential

artifacts in the X-ray images, which could otherwise interfere with

the feature extraction process.

9.1.8 Histogram equalization (complementary to
CLAHE)

While CLAHE specifically focuses on improving local contrast,

global histogram equalization was also used as an optional

step during exploratory stages to further analyze its impact on

image clarity.

9.2 Dataset partitioning

The dataset was systematically divided into three distinct

subsets to facilitate the classification task: training, testing, and

validation. The data distribution was as follows:

Training Set: 70%.

Testing Set: 20%.

Validation Set: 10%.

9.3 Balanced dataset condition

To ensure fairness in model evaluation, the dataset was

balanced, equalizing the number of images across classes. This was

quantitatively managed as:

Nclass = Constant , ∀ classes (17)

where Nclass denotes the number of images in each class.

9.4 Model training

Four models were trained using distinct versions of the dataset:

• Original dataset.

• Balanced dataset.

• Original dataset with CLAHE.

• Balanced dataset with CLAHE.

9.4.1 Original dataset
Category subcategory training testing validation

• X-ray COVID-19 700 300 100.

• Normal 4000 1000 750.

• Viral 2500 800 400.

9.4.2 Balanced dataset
Category subcategory training testing validation

• X-ray COVID-19 700 300 150.

• Normal 1500 300 125.

• Viral 1700 300 135.

10 Pre-processing

The initial phase of our image data pre-processing involved two

critical steps: image enhancement using CLAHE and subsequent

data augmentation. This comprehensive approach was designed

to improve the quality and variability of the dataset, thereby

aiding in the robustness of the subsequent classification models.

To boost the quality of input images and enhance model

accuracy, a technique called Contrast Limited Adaptive Histogram

Equalization (CLAHE) was used to refine each image. This step
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improves contrast and highlights important features within X-ray

images, leading to more accurate predictions. Additionally, image

resolution standardization was performed to ensure consistent

image sizes, making the model adaptable to various image

sources andminimizing potential variability from different imaging

devices. These preprocessing steps lead to a more robust model that

can generalize across diverse imaging conditions, ensuring reliable

performance in real-world applications.

10.1 Contrast enhancement with CLAHE

Contrast Limited Adaptive Histogram Equalization (CLAHE)

was employed to enhance the visual clarity of the images. This

technique is mathematically represented as:

Ienhanced=CLAHE
(

Ioriginal
) (18)

where Ioriginal denotes the original image, and Ienhanced represents

the image after contrast enhancement.

Figure 9 illustrates the effect of CLAHE on an example image

from the dataset. Following the enhancement, data augmentation

techniques were applied to increase the diversity of the dataset,

crucial for training more generalized models. The augmentation

process involved transformations such as rotations, translations,

and flipping.

10.2 Data augmentation

Subsequent to the enhancement, data augmentation techniques

were employed to increase the diversity of the dataset, a crucial step

in training more generalized models. The augmentation process

included a range of transformations, such as:

Rotations: Random angular transformations to simulate

varying orientations.

• Translations: Random spatial transformations to simulate

different positions.

• Flipping: Horizontal and vertical flipping to simulate mirror-

like reflections.

These transformations enabled the generation of a more

comprehensive and diverse dataset, thereby enhancing the model’s

ability to generalize across various scenarios and improving its

robustness in Figure 10.

11 Classification process

The datasets were subjected to preprocessing using Contrast

Limited Adaptive Histogram Equalization (CLAHE), followed by

division into two distinct sets: the original set and the balanced

set, with and without additional enhancement. A comprehensive

evaluation of various models was conducted on these datasets,

assessing their performance based on accuracy and loss metrics

across three phases:

• Training phase:Model training and optimization.

• Testing phase:Model evaluation on unseen data.

• Validation phase: Model validation and hyper

parameter tuning.

This rigorous evaluation framework enabled a thorough

analysis of model performance, facilitating the identification of

optimal models and hyper parameters for the task at hand.

11.1 Experimental setup

Each model was trained over 10 epochs using a batch size of

8. The following equation represents the general form of the loss

function minimized during training:

L (θ) = −
1

N

∑

N
i=1

∑

M
j=1yij log (pij(θ)) (19)

where N is the number of samples,M is the number of classes, yij is

the binary indicator of class j for sample i, and pij(θ) is the predicted

probability of sample i being in class j, with model parameters θ .

12 Results

To prevent overfitting and enhance the model’s generalizability,

several techniques were employed during training. First, cross-

validation was used to ensure robust model evaluation across

different data splits, which helped identify any potential overfitting

to specific subsets. Additionally, data augmentation techniques

such as random rotations, translations, and flips were applied to

increase dataset variability and reduce the model’s reliance on

specific image features. Dropout layers were also incorporated

within the model architecture to prevent neurons from co-adapting

too strongly, which often leads to overfitting. Despite these

measures, validating the model on external datasets is crucial to

further assess its adaptability and effectiveness across varied real-

world settings and populations. This will be a key focus of future

work, as it is essential to ensure that the model can generalize well

to new, unseen data, and provide accurate predictions for a diverse

range of patients and scenarios.

The models evaluated included Xception, InceptionV3, and

InceptionResNetV2. The performance metrics revealed variations

in accuracy and loss across the datasets (Table 3).

12.1 Training and testing phases

The DataLoader class, integral to our process, dynamically

assigns classifications for each dataset, preparing them for

submission to the network with appropriately set dimensions and

normalization. Utilizing pre-trained weights from the ImageNet

dataset, the neural network configuration is defined, including the

number of classes and layers requiring enhancements. Each model

integrates a classifier head, concluding with a ReLU function, to

process the logits for each class output by the final linear layer.
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12.2 Training process

Training involves selecting Cross-Entropy Loss as the loss

function, Adam for optimization, and a step function for learning

rate scheduling. The protocol entails training forN epochs, initially

modifying only the final layer weights for the first K epochs,

then adjusting the entire network’s weights for the remaining N-K

epochs. For CCT models, all weights are trainable from the outset.

Model performance on the validation set dictates the saving of the

best model at each epoch.

12.3 Testing process

Post-training, the best model undergoes evaluation against the

training, validation, and test sets. This phase includes generating

a confusion matrix and calculating class-specific recall, global

accuracy, and precision shown in Table 4.

12.4 Results

Table 5 summarizes each model’s accuracy metrics across the

training, testing, and validation phases. We list the results for

each model accuracy on the test augmented train, and validation

datasets which are shown in Table 6. Model Performance

Metrics under CLAHE and BALANCED Datasets shown

in Table 7.

The performance of various models was analyzed

using both original, unbalanced datasets and additional,

varied datasets to understand each model’s generalizability

and tendency toward overfitting. The mathematical

representation of model accuracy, α, is defined as the

ratio of correctly predicted observations, Cp, to the total

observations, To.

α =
Cp

To
(20)

Overfitting is quantitatively assessed by comparing training

accuracy, αtrain, and validation accuracy, αval, where a significant

discrepancy indicates potential overfitting:

Overfitting Indicator = αtrain − αval (21)

12.4.1 Comparison with state-of-the-art models
To put our model’s performance into perspective, we compared

it to other state-of-the-art models in COVID-19 detection using

chest X-ray images. The results are summarized in Table 8, which

shows key performance metrics like accuracy, precision, recall,

and F1-score for each model. This comparison highlights the

strengths of our approach and demonstrates its effectiveness

in detecting COVID-19 from chest X-rays. By benchmarking

our model against others in the field, we can see how it

stacks up against the current state of the art. This comparison

is essential for understanding the advancements in COVID-19

detection and how our model contributes to the ongoing efforts.

Our goal is to provide a comprehensive view of the current

landscape in COVID-19 detection using chest X-ray images and

demonstrate the value of our approach in this critical area

of research.

12.4.2 Results
Analysis revealed that MobileNet yielded the highest accuracy

for the original, unbalanced dataset. Conversely, VGG16

demonstrated superior performance across all other datasets but

exhibited clear signs of overfitting on the original, unbalanced

dataset, as highlighted by its performance metrics.

12.4.3 Discussion
The differential performance of MobileNet and VGG16

underscores the importance of selecting appropriate

models based on dataset characteristics. The observed

overfitting of VGG16 on the unbalanced dataset emphasizes

the need for careful model evaluation and dataset

preprocessing and the heatmap generation is shown

in Figure 11.

13 Localization

Disease localization in medical images is a critical step in

diagnostic processes. The application of Grad-CAM to models

trained on various datasets elucidates the relationship between

training data quality, model accuracy, image resolution, and

localization precision. Grad-CAM uses the gradients of any target

concept, flowing into the final convolutional layer to produce a

coarse localization map highlighting the important regions for

predicting the concept. Mathematically, it can be represented as

LCGrad−CAM = ReLU
(

∑

kα
c
kA

k
)

(22)

Where LC
Grad−CAM

is is the localization map for class c, αc
k

are the weights for feature map k, Ak is the activation of k-

th feature map, ReLU is applied to focus on features that have

positive influence on the class of interest. Results the application

of Grad-CAM on models trained with initial and enhanced 478

datasets revealed thatmodels trained on initial datamore accurately

highlighted disease-affected areas. This accuracy in localization is

directly proportional to the model’s overall accuracy and the image

resolution, described as:

Localization Precision ∝ Model Accuracy × Image Resolution

(23)

emphasizing the compounded effect of higher accuracy and better

resolution on precise disease localization. Our findings underscore

the importance of image quality and model accuracy for effective

disease localization using Grad-CAM. The study advocates for the

optimization of these factors to improve diagnostic efficiency in

medical imaging as shown in Figures 12, 13.

While Grad-CAM provides valuable insights into the decision-

making process behind COVID-19 predictions, deep learning
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models are often criticized for their lack of transparency. This

“black box” nature can be a significant barrier for clinical adoption,

as clinicians may struggle to understand the reasoning behind

model predictions. To address this, future work could explore

combining Grad-CAM with other explainability techniques, such

as LIME or SHAP. These methods offer unique perspectives on

model behavior, providing clinicians with a more comprehensive

understanding of prediction rationales. By shedding light on the

decision-making process, we can increase trust and usability in

medical settings.

14 Results and discussions of the work
carried out

The advent of deep learning in medical imaging has facilitated

the development of automated diagnostic tools. This paper

presents an evaluation of transfer learning models, specifically

EfficientNet and MobileNet, in the classification of chest X-ray

images. Transfer learning models were trained on a comprehensive

dataset comprising images categorized as COVID-19, normal, and

viral pneumonia. The performance was assessed based on the

accuracy of classifications, with further analysis conducted through

confusion matrices and ROC curves.

14.1 Model performance

The models’ diagnostic capabilities were visualized as follows:

• Classification results are depicted in Figure 14.

• The confusion matrix for validation dataset diagnoses is

shown in Figure 15.

• ROC curve analysis for the EfficientNet model is presented in

Figure 16.

• Accuracy progression of the MobileNet model over epochs is

illustrated in Figures 17, 18.

15 Conclusion

In response to the COVID-19 pandemic, our study

demonstrates promising results for COVID-19 detection using

chest X-rays. However, we must note that our model has not yet

been tested in real-world clinical settings, which limits our ability to

fully assess its performance in a practical healthcare environment.

To address this, we plan to validate our model in clinical settings

to evaluate its effectiveness, robustness, and potential impact on

patient diagnosis and care. This will provide valuable insights

into our model’s applicability in different medical scenarios and

move us closer to broader adoption in clinical practice. Our

proposed solution leverages the power of pre-trained models and

demonstrates commendable efficacy, achieving an accuracy rate of

88.48% in training and 88.1% in validation on the initial dataset. By

harnessing Efficient Net-based transfer learning on a balanced and

enhanced dataset, our developed models have attained exemplary

performance, registering training and validation accuracies of

95.64% and 97.31%, respectively. These results not only parallel

but, in some instances, surpass the accuracy levels of existing

models, demonstrating the robustness of our approach. Notably,

our models’ enhanced capability to precisely localize affected areas

significantly bolsters their diagnostic utility, providing a valuable

tool for physicians in the fight against COVID-19. Our study

contributes to the growing body of research in AI-assisted medical

imaging, showcasing the potential of deep learning architectures to

revolutionize healthcare diagnostics.

16 Future work

The future directions section would benefit from a more

comprehensive roadmap. Specifically, the paper should address

several promising avenues: (1) the integration of advanced

explainability techniques like SHAP or LIME to enhance model

interpretability; (2) validation across diverse datasets from

different domains to establish broader generalizability; and

(3) exploration of hybrid approaches combining the current

method with emerging techniques in the field. These extensions

could address current limitations while advancing the broader

research agenda.

17 Limitations

First, while our dataset includes chest X-ray images, it may not

fully represent the diversity of COVID-19 cases across different

populations and imaging equipment. The model, though showing

high accuracy in experimental settings, requires validation in real-

world clinical environments to establish practical utility. While

we employed Grad-CAM for visualization, we recognize that our

model’s interpretability could be enhanced through additional

techniques like SHAP or LIME to increase clinician trust. Despite

implementing class weighting and oversampling, inherent dataset

imbalances persist, potentially affecting prediction reliability for

minority classes. The model’s computational requirements may

pose challenges in resource-constrained settings, suggesting a need

for architectural optimization. Although we implemented dropout

and data augmentation, the high-test accuracy warrants external

validation to conclusively demonstrate generalizability. Finally, our

focus on X-ray imaging alone may not capture all relevant COVID-

19 clinical features, indicating potential value in incorporating

additional imaging modalities like CT scans or clinical data in

future work.
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