
TYPE Original Research

PUBLISHED 23 October 2024

DOI 10.3389/fdata.2024.1485344

OPEN ACCESS

EDITED BY

Matt LeBlanc,

Brown University, United States

REVIEWED BY

Davide Costanzo,

The University of She�eld, United Kingdom

Enrico Bothmann,

University of Göttingen, Germany

*CORRESPONDENCE

Allison Reinsvold Hall

achall@usna.edu

Giuseppe Cerati

cerati@fnal.gov

RECEIVED 23 August 2024

ACCEPTED 09 October 2024

PUBLISHED 23 October 2024

CITATION

Ather H, Berkman S, Cerati G, Kortelainen MJ,

Kwok KHM, Lantz S, Lee S, Norris B, Reid M,

Reinsvold Hall A, Riley D, Strelchenko A and

Wang C (2024) Exploring code portability

solutions for HEP with a particle tracking test

code. Front. Big Data 7:1485344.

doi: 10.3389/fdata.2024.1485344

COPYRIGHT

© 2024 Ather, Berkman, Cerati, Kortelainen,

Kwok, Lantz, Lee, Norris, Reid, Reinsvold Hall,

Riley, Strelchenko and Wang. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Exploring code portability
solutions for HEP with a particle
tracking test code

Hammad Ather1, Sophie Berkman2, Giuseppe Cerati3*,

Matti J. Kortelainen3, Ka Hei Martin Kwok3, Steven Lantz4,

Seyong Lee5, Boyana Norris1, Michael Reid4,

Allison Reinsvold Hall6*, Daniel Riley4, Alexei Strelchenko3 and

Cong Wang3,7

1Department of Computer and Information Science, University of Oregon, Eugene, OR, United States,
2Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States,
3Computational Science and AI Directorate, Fermi National Accelerator Laboratory, Batavia, IL,

United States, 4Department of Physics, Cornell University, Ithaca, NY, United States, 5Computer

Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States,
6Physics Department, United States Naval Academy, Annapolis, MD, United States, 7School of

Computing, Clemson University, Clemson, SC, United States

Traditionally, high energy physics (HEP) experiments have relied on x86 CPUs for

the majority of their significant computing needs. As the field looks ahead to the

next generation of experiments such as DUNE and the High-Luminosity LHC,

the computing demands are expected to increase dramatically. To cope with

this increase, it will be necessary to take advantage of all available computing

resources, including GPUs from di�erent vendors. A broad landscape of code

portability tools—including compiler pragma-based approaches, abstraction

libraries, and other tools—allow the same source code to run e�ciently on

multiple architectures. In this paper, we use a test code taken from a HEP

tracking algorithm to compare the performance and experience of implementing

di�erent portability solutions. While in several cases portable implementations

perform close to the reference code version, we find that the performance varies

significantly depending on the details of the implementation. Achieving optimal

performance is not easy, even for relatively simple applications such as the test

codes considered in this work. Several factors can a�ect the performance, such

as the choice of the memory layout, the memory pinning strategy, and the

compiler used. The compilers and tools are being actively developed, so future

developments may be critical for their deployment in HEP experiments.

KEYWORDS

heterogeneous computing, portability solutions, heterogeneous architectures, code

portability, particle tracking

1 Introduction

Modern high energy physics (HEP) experiments have to process enormous volumes of

data in their search to probe extremely rare interactions between fundamental particles.

The Compact Muon Solenoid (CMS) experiment (CMS Collaboration, 2008) at the

CERN Large Hadron Collider (LHC), for example, processed hundreds of petabytes of

detector data and Monte Carlo (MC) simulations during Run 2 (2015–2018) of the

LHC (CMS Offline Software and Computing, 2021, 2022). Within the next decade,

HEP experiments such as the High-Luminosity LHC (HL-LHC) (Apollinari et al.,

2015) at CERN and the Deep Underground Neutrino Experiment (DUNE) (DUNE

Collaboration, 2020) at Fermilab will pose significant additional computing challenges.

The event rate at the LHC is expected to increase by a factor of 7.5, and the data

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2024.1485344
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2024.1485344&domain=pdf&date_stamp=2024-10-23
mailto:achall@usna.edu
mailto:cerati@fnal.gov
https://doi.org/10.3389/fdata.2024.1485344
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2024.1485344/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ather et al. 10.3389/fdata.2024.1485344

volumes will grow to exabyte scale. Likewise, the expected data rate

of a DUNE far-detector module is 9.4 PB per year, and so the total

tape volume is expected to exceed the exabyte scale by 2040 (DUNE

Collaboration, 2022). To handle these data volumes without

sacrificing the physics potential of each experiment, significant

R&D–and accompanying shifts in traditional HEP computing

paradigms–are required.

One paradigm shift that will help HEP experiments prepare

for upcoming computing challenges is the ability to utilize

parallel heterogeneous computing resources. Historically, the LHC

experiments have relied on traditional x86 CPUs for the vast

majority of offline computing needs. The majority of the data

processing capabilities for the LHC experiments are provided

by the Worldwide LHC Computing Grid (WLCG) (Bird, 2011),

which connects 170 computing centers in over 40 countries.

Increasingly, however, experiments are adapting their software

frameworks to take advantage of computing resources at High

Performance Computing (HPC) centers (Megino et al., 2023;

DUNE Collaboration, 2022). All planned exascale platforms rely

heavily on GPUs to achieve their anticipated compute performance,

and HEP workflows will need to run on GPUs in order to efficiently

utilize these resources (Albrecht and et al., 2019).

Adapting HEP algorithms to run on GPUs is not a trivial

task. For example, CMSSW (Jones et al., 2006), the CMS software

framework, includes almost 8 million lines of code (CMS Offline

Software and Computing, 2021) and was written by hundreds of

scientists with varying software backgrounds over the course of

decades. Additionally, it is not clear what compute architectures

will be prevalent in HPC centers or international scientific

computing grids in a decade or two, when the HL-LHC and

DUNE experiments are collecting and analyzing data. Even the

planned exascale machines in the US use a variety of architectures:

Aurora at Argonne National Laboratory uses CPUs and GPUs

from Intel, while Frontier at Oak Ridge National Laboratory and

El Capitan at Lawrence Livermore Laboratory rely on CPUs and

GPUs from AMD. Initial attempts to port HEP algorithms to

GPUs typically involved rewriting the original C++ code using

CUDA. This process is labor-intensive and only enables offloading

to NVIDIA GPUs. Moreover, significant efforts are required to

optimize the performance of the initial implementations. The HIP

programming language is very similar to CUDA and supports both

NVIDIA and AMD GPUs (with very early support for Intel GPUs

as well), but neither HIP nor CUDA support CPU architectures

directly. Writing and maintaining different implementations for

every individual computing platform would take much more

expertise and personpower than any HEP experiment can provide.

This is a widely recognized challenge in scientific computing,

and there is a broad, rapidly changing landscape of portability

solutions that allow a single source code to be compiled and run on

a variety of computing backends. The available portability solutions

vary widely in terms of overall approach, performance, maturity,

and support for different backends or compilers. It is clear,

however, that taking advantage of these portability tools will be an

essential part of modernizing HEP software. Ideally, a portability

solution would achieve two important goals. First, the portability

solution should enable straightforward adaptations of existing HEP

algorithms, with minimal rewriting and optimization required.

Second, the tool should enable algorithms to run efficiently on

a variety of different computing architectures, including both

CPU and GPU platforms from different manufacturers. The

performance on different architectures needs to be reasonable,

on the same order of magnitude, although it is unlikely to

match that of a fully optimized native implementation. In this

paper, we used a standalone benchmark algorithm to test different

code portability solutions and evaluated each in terms of its

computational performance and subjective ease of use.

Programming models and C++ libraries such as

Kokkos (Edwards et al., 2014; Trott et al., 2022) and

Alpaka (Matthes et al., 2017) provide high level data structures

and parallel execution options that can be adapted to produce

optimized code for a variety of backends, including CPUs and

GPUs from NVIDIA, AMD, or Intel (preliminary). Another

portability solution is the std::execution::par (stdpar)

interface, which has been included in the C++ standard since

C++ 17. The application programming interface (API) allows

for a high level description of concurrent loops, but does not

allow for low level optimizations that can be used to enhance

performance in native CUDA or HIP. Various C++ compilers and

associated libraries—such as the oneAPI DPC++/C++ Compiler

(dpcpp) from Intel, and nvc++ from NVIDIA—provide support

for offloading loops to GPUs, but these compilers are still relatively

new. Similarly, SYCL is a programming model based on the ISO

C++17 standard that enables host and kernel (device) code to be

included in the same source file. Finally, there is a category of

directive-based portability solutions, which includes OpenMP and

OpenACC: through the use of pragmas, developers can specify

high level parallelization and memory management behaviors,

with the compilers managing the low level optimizations. It should

be noted that all these portability solutions, though they are based

on open specifications and open-source libraries, generally rely on

proprietary, vendor-supplied software stacks (and often compilers)

in order to run on particular GPUs.

This paper is organized as follows: In Section 2, we describe

the motivation and context for this work. In Section 3, the

benchmark algorithm is described in more detail. The different

implementations are covered in Section 4, including technical

details and a subjective discussion of the experience porting the

algorithm to each tool. Compute performance results are shown

in Section 5, and Section 6 provides an overall discussion of our

experience and lessons learned.

2 Background and related work

There are several processing steps involved in analyzing

data from a HEP experiment. For example, analyzing a time

window at the LHC that contains at least one proton-proton

collision (referred to as an “event”), includes the initial data

acquisition, “reconstruction” of the raw detector data into higher

level information including what particles were observed and their

energies, and the final data analysis and statistical interpretations.

This process is similar for other HEP experiments. In CMS and

ATLAS (ATLAS Collaboration, 2008), the most computationally

expensive reconstruction step is track finding, which is the

combinatorial process of reconstructing the trajectories of charged

particles from the energy deposits (“hits”) they leave in different

layers of the detector (see CMS Collaboration, 2014 for a full

description from CMS). The benchmarks used for the results in
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this paper represent the propagation and Kalman update steps

(described below) of a traditional Kalman Filter (KF) tracking

algorithm (Fruhwirth, 1987). There are two test codes, referred to

as the “propagate to z” or “propagate to r” benchmarks, denoted

by p2z and p2r, respectively. These compact programs (“mini

apps”), although including functions extracted from the CMS

tracking code, are standalone applications that can be more easily

replicated, profiled, and optimized for the purpose of this work.

The work described in this paper builds off efforts by

several other groups working to modernize HEP reconstruction

algorithms. The p2z and p2r benchmarks are part of a larger

algorithm development effort known as MKFIT (Lantz et al., 2020).

The goal of the MKFIT project is to rewrite the traditional KF

tracking algorithms used by most major HEP experiments and

develop a newCPU implementation that is efficient, vectorized, and

multithreaded. Depending on the compiler, the MKFIT algorithm

achieves up to a factor of six speedup compared to previous KF

tracking implementations, and it is now the default algorithm used

to reconstruct the majority of tracks in the CMS experiment (Cerati

et al., 2023). The key insight of the MKFIT project is that the

KF calculations can be parallelized over the thousands of tracks

that may be present within a single detector event. Moreover, if

the small matrices and vectors holding the data for each track

are arranged in memory so that matching elements from different

tracks are stored in adjacent locations, then vector or SIMD (Single

Instruction, Multiple Data) operations can be used to perform the

KF calculations. Similar efforts have also been effective at speeding

up code for Liquid Argon Time Projection Chamber (LArTPC)

neutrino experiments (Berkman et al., 2022).

The MKFIT effort has so far targeted optimizations for Intel

multicore CPU architectures such as the Intel Xeon and Intel Xeon

Phi processors and coprocessors, but efficient implementations for

other architectures will become increasingly important, especially

during the HL-LHC era. Given that MKFIT was explicitly designed

to create opportunities for vector or SIMD operations, it seems

that GPUs should also make a suitable target platform for the

MKFIT approach to parallelizing Kalman filtering. However, initial

attempts to port MKFIT to the NVIDIA Kepler GPU (K40) using

CUDA were not very encouraging, both in terms of difficulty

and in terms of observed performance [for a full discussion,

see Section 4 of Cerati et al. (2017)]. The irregular patterns

of memory access that are occasionally needed in order to

reorganize the data coming from different tracks turned out

to be particularly challenging to manage on GPUs. Even with

well-structured data, however, translating standard C++ code

to be compatible with NVIDIA CUDA required significant low

level re-coding effort to achieve acceptable performance for the

basic KF operations. Since it is not feasible to rewrite MKFIT

for every possible architecture, the p2z project was started

to explore code portability tools in the context of charged

particle tracking.

A broader effort with similar motivation is the HEP

Computational Center for Excellence (HEP-CCE) collaboration’s

Portable Parallelization Strategies (PPS) activity (Bhattacharya

et al., 2022; Atif et al., 2023). The HEP-CCE PPS project is

exploring portability solutions using representative reconstruction

algorithms from CMS and ATLAS as well as LArTPC neutrino

experiments such as DUNE. Collaborators from the HEP-CCE PPS

activity became involved in this project and have used the p2rmini

app to evaluate GPU offloading via different technologies, such as

CUDA, OpenACC, and stdpar, as described in detail below.

Having two teams working simultaneously on these two

complementary mini apps has proven to be important to the

project’s success. For many of the implementations described in

Section 4, we found that it was relatively straightforward to do

an initial porting of the algorithm but fairly difficult to have

a fully optimized version. Different initial strategies in porting

the p2z or p2r benchmark meant that multiple approaches

could be simultaneously developed and tested. In several cases,

an issue was identified in a specific p2z or p2r implementation

and the solution was propagated to both mini apps. Having two

different teams with unique expertise also expanded the number

of portability technologies we could test. Finally, as explained in

Section 5, slightly different approaches were taken to measure

the final results, giving additional insight into the performance of

each tool.

3 Description of algorithm

Track finding (also known as track building) is the process of

reconstructing a particle’s trajectory by identifying which hits in an

event likely came from the same particle. It requires testing many

potential combinations of hits to find a set that is consistent with

the expected helical trajectory of a charged particle in a magnetic

field. Track fitting, on the other hand, is the process of taking a

pre-determined set of hits and determining the final parameters of

the track. The p2z and p2r benchmarks include everything that

would be needed for a realistic track fitting algorithm, but do not

include the combinatorial selection required for track finding.

The CMS and ATLAS detectors are divided into two main

sections: the cylindrical region coaxial with the beam pipe, known

as the barrel, and a disk region on either end of the barrel, known

as the endcaps. To first approximation, the individual tracker layers

can be approximated as being located at constant radius r or

constant z position for the barrel and endcap layers, respectively.

Charged particles in a constant magnetic field will travel in a helix,

so if the position and momentum are known on layer N, then the

expected position can be calculated for layer N + 1.

The mini apps used in this analysis perform two key steps of

KF tracking:

1. Track propagation: Propagate the track state—including

the track’s momentum and position vectors and associated

uncertainties in the form of a covariance matrix—at layer N

to a prediction at layer N + 1, which is specified by either a

z coordinate or a radius r for the p2z and p2r benchmarks,

respectively.

2. Kalman update: Update the track state on layer N + 1 by

combining information about the propagated track state and the

coordinates of a compatible hit on that layer.

These two steps are the most arithmetically intensive steps

of both track finding and track fitting. They are relatively simple

algorithms but have the biggest impact on the overall execution

time, making them suitable for a standalone test code.

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2024.1485344
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ather et al. 10.3389/fdata.2024.1485344

3.1 Input data

The starting point for a KF track finding algorithm is a track

“seed”, an initial guess at the track state. For the full MKFIT

algorithm, the input track seeds are built in an upstream algorithm

using three or four hits from the innermost layers of the CMS

detector. For simplicity, the p2z and p2r benchmarks use an

artificial standalone input consisting of a single track seed. The

parameters of the initial seed are smeared according to a Gaussian

distribution, in order to prevent the algorithm from performing

identical numerical operations for each track.

The tracks are built by first propagating the initial seed

parameters to the next layer. In the full combinatorial MKFIT

application, the next step is to search for compatible hits on that

layer. In the p2z and p2r benchmarks, only one hit per layer is

considered, similar to what is required for track fitting. The hit

parameters—the hit locations and uncertainties on each layer—are

smeared per track according to the same procedure as the input

track parameters.

The total number of tracks generated with this procedure is split

into “events” with a fixed number of tracks per event.

For the GPU implementations of the benchmark, the track

propagation and Kalman update steps are run as a single GPU

kernel. The data for all tracks and hits are prepared on the CPU,

transferred to the GPU for the computations in two bulk transfers,

and the output data are transferred back to the CPU.

3.2 Computations and data structure

The “propagation to z” or p2z benchmark uses the expected

helical trajectory of the charged particle to calculate the track

parameters and the covariance matrix on endcap layer N + 1.

In contrast, the “propagation to r” or p2r benchmark uses an

iterative approach to propagation, advancing the track state from

the initial barrel radius to the final radius in discrete steps. In

practice, both approaches involve a series of operations involving

sin() and cos() functions, as well as matrix multiplication of up to

6x6 matrices. The two benchmarks are expected to be similar in

terms of arithmetic intensity.

The second task in both benchmarks is the Kalman update step,

which “updates” the track state using the parameters of a hit on

that layer. The hit parameters include three coordinates for the hit

position and a 3x3 covariance matrix. Similar to the propagation

step, the update step involves small matrix multiplication and

matrix inverse operations as well as trigonometric functions.

Both benchmarks employ an Array-Of-Structures-Of-Arrays

(AOSOA) data structure, as illustrated in Figure 1. Each benchmark

runs over a fixed number of events (nevts) and processes a fixed

number of tracks in each event (ntrks). Within one event, tracks

are grouped into batches of bsize tracks, and each batch of

tracks is put into a Structure-Of-Arrays construct referred to as an

MPTRK. Here, as in the full MKFIT algorithm, the goal of organizing

tracks into different batches is to enable SIMD operations across

batch elements. The value of bsize can be optimized for different

platforms; for example, on a GPU it might be the NVIDIA warp

size of 32, while on a CPU it might be a multiple of the AVX-512

vector width of 16; for consistency we use 32 everywhere.

FIGURE 1

Representation of the data structure used in the p2r benchmark.

The p2z data structure is similar, but has ntrks equal to 9,600.

To maximize the opportunities for SIMD operations, the

storage order in the AOSOA follows the same general scheme as

in MKFIT. Within an MPTRK, the first elements of bsize different

vectors (or matrices) get stored in adjacent locations, followed by

the second elements of bsize different vectors (or matrices), and

so on, until the full structure representing a batch of bsize tracks

is completely populated. Then the next MPTRK structure is written

into memory, and the next, until all ntrks tracks (8192 for p2r

and 9600 for p2z) for the first event are present in memory. This

first event corresponds to the first row of SOAs in Figure 1. It is

followed by a second row of SOAs for the second event, etc. A

similar memory layout applies to the hit data.

4 Implementations

The state-of-the-art of portability tools is a moving target,

as many tools are undergoing very active development, with

additional features, backends, and compiler support being added

on a regular basis (O(monthly)). In total, we tested nine different

parallelization tools on four different architectures, but testing

the full matrix of possibilities was beyond the scope of this

paper. The final set of p2z implementations is shown in Table 1,

including which backends and compilers were used to test each

implementation, and the full set of p2r implementations is shown

in Table 2. Note that this does not include the full set of backends

or compilers that each tool is capable of supporting.

For both test codes, the original CPU implementation was

multithreaded using the oneAPI Threading Building Blocks (TBB)

library and compiled with gcc, since this is the combination that

most closely matches what the MKFIT project uses for its highly

optimized implementation. The reference GPU implementation

is the one written using CUDA and compiled with nvcc.

Below we describe each tool, its corresponding p2r and p2z

implementations, and our subjective experience porting these

benchmarks using the different portability solutions.

4.1 TBB

Our reference CPU implementation is based on the oneAPI

Threading Building Blocks (or oneTBB, or just TBB) library. TBB

is a template library originated by Intel for parallel programming

on multi-core processors that simplifies the definition and
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optimization of threaded applications. For a given executable, TBB

collects all tasks that are specified to run in parallel and the library

manages and schedules threads to execute them. TBB is used

as the CPU thread manager in the software framework of the

CMS experiment.

In our code, nested TBB parallel_for loops are over

events and batches of tracks. Each batch of tracks is then vectorized,

so that tracks in the batch are processed in a SIMD fashion.

Vectorization is implemented following the approach used in

MKFIT, where groups of matrices are processed concurrently and

loops over the matrix index in the group are decorated with omp

TABLE 1 Summary of p2z implementations used for the results shown in

Section 5.

NVIDIA GPU V100 x86 CPU
Xeon gold

TBB

(oneTBB/2021.10.0)

- gcc/12.3.0

CUDA cuda/11.2

nvcc/11.0.221

-

Alpaka (v0.8.0) cuda/11.2

nvcc/11.0.221

Alpaka v0.9.0

oneTBB/2021.10.20

gcc/12.3.0

Kokkos (v4.0) cuda/11.2

nvcc/11.0.221

gcc/12.3.0

stdpar nvc++/24.5 nvc++/24.5

OpenMPv4 OpenARC/0.76 (Lee and

Vetter, 2014)

nvcc/11.0.221

gcc/12.3.0

OpenACC OpenARC/0.76 (Lee and

Vetter, 2014)

nvcc/11.0.221

-

Results shown in: Figure 2, top Figure 7, top

The table lists the compiler versions used for each implementation.

simd pragmas. These pragmas were activated by the -fopenmp

compiler option.

4.2 CUDA and HIP

Our reference GPU implementation is based on the CUDA

programming model, which is a multi-threaded SIMD model

for general purpose GPU programming, introduced by NVIDIA.

The CUDA implementation is ported from the TBB version,

which shares the same AOSOA data structure for input

data. The main difference in CUDA is that each MPTRK

is processed by a block of GPU threads, and each thread

processes the computation for one track in the MPTRK. Since

the computation of each track is independent of the others,

we find keeping the intermediate results in the local registers

to have the most efficient memory access. We explored using

shared memory to store the intermediate results within an

MPTRK for all the threads in the block, but it was shown

to have significantly lower memory throughput in a detailed

profiling study.

In relation to other portability technologies, CUDA provides

a level of abstraction similar to the general accelerator

execution model and memory model that is also employed

by general GPU programming models such as OpenCL and

SYCL. As a proprietary NVIDIA GPU programming model,

however, it exposes several NVIDIA-GPU-specific features,

which allows available architecture-specific features to be fully

exploited, but it also means that the code is not portable across

heterogeneous accelerators.

HIP is the vendor-supported, native programming model for

AMD GPUs and is designed to be portable across NVIDIA and

AMD GPUs. It is also designed to be syntactically similar to

CUDA so that most API calls can be simple translations of

names. In the case of p2z and p2r, the kernels only rely on

TABLE 2 Summary of p2r implementations used for the results shown in Section 5.

NVIDIA GPU A100 AMD GPU MI100 Intel GPU A770 x86 CPU Xeon Gold

TBB

(oneTBB/2021.10.0)

- - - gcc/12.3.0

CUDA cuda/11.6.2

nvcc/11.6.124

- - -

HIP - rocm/5.2.0 - -

Alpaka (v0.9.0) cuda/11.6.2

nvcc/11.6.124

rocm/5.1.3

hipcc/3.5.0

- oneTBB/2021.10.0

gcc/12.3.0

Kokkos (v3.6.1) cuda/11.6.2

nvcc/11.6.124

rocm/5.1.3

hipcc/3.5.0

Kokkos 4.0

dpcpp/2023.0.0

Kokkos 4.0.0

gcc/12.3.0

SYCL cuda/11.6.2

intel/llvm-sycl

rocm/5.1.3

intel/llvm-sycl

dpcpp/2023.0.0 dpcpp/2023.1.0

stdpar nvc++/22.7 - dpcpp/2023.0.0

dpl/2022.0.0

nvc++/24.5

Results shown in: Figure 2, bottom Figure 6, top Figure 6, bottom Figure 7, bottom

The table lists the compiler versions used for each implementation. For SYCL, the intel/llvm-sycl repository is used to compile dpc++ tool chains to be compatible with NVIDIA/AMD GPUs.

This is not the full list of all possible combinations of tools and backends. For example, HIP could be compiled for NVIDIA GPUs as well, but that was not tested in this work. Similarly, we note

that the oneAPI toolkit recently included a plugin that enables stdpar to be used on AMD GPUs, and Alpaka has recently introduced experimental support for Intel GPUs in v0.9.0, but neither

was tested here.
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the core functionalities of CUDA, such as memory allocation

and kernel dispatches, which are supported in HIP. This leads

to a straightforward port to the HIP version starting from the

CUDA version.

4.3 Directive-based solutions, OpenMP
and OpenACC

Directive-based, high-level programming models such as

OpenMP and OpenACC use a set of directives (a special

type of comments that a compiler can understand) that

allow a programmer to provide the compilers with important

characteristics of an application, such as available parallelism

and data sharing/mapping rules, so that much of the low-level

programming and optimization burdens are automatically handled

by the directive compilers.

The biggest advantage of the directive programming model

is that it allows incremental porting of existing sequential CPU

applications written in standard programming languages such

as C, C++, and Fortran to parallel versions that can offload

work to heterogeneous accelerators, without requiring major

changes in the existing code structures. The initial OpenMP

version was created by converting the reference TBB CPU

implementation into an OpenMP CPU implementation, which is

relatively straightforward due to the similarity between the TBB

parallel syntax (using lambdas) and OpenMP parallel constructs.

Then, the GPU offloading version was created by extending the

OpenMP CPU implementation with OpenMP target-offloading

directives and data mapping directives. The CPU version and

the GPU version have different parallelism and data mapping

strategies. For instance, on GPUs, the OpenMP target and data

mapping directives are essential, but when targeting CPUs, they

are unnecessary since the original host data and corresponding

device data will share storage; in the latter case, how the OpenMP

compiler implements those unnecessary directives on the CPUs is

implementation-defined. Another issue is that on CPUs, team-level

parallelism may or may not be ignored depending on the compiler

implementations, possibly resulting in additional overheads due to

loop serialization.

The initial conversion from the OpenMP GPU implementation

into the OpenACC implementation was straightforward since

both OpenMP and OpenACC are directive-based accelerator

programming models and provide very similar execution and

memory models. However, the main issue in converting between

OpenMP and OpenACC was that different OpenMP/OpenACC

compilers may choose different parallelism mapping strategies and

vary in terms of maturity and supported features (see Section 5.1.1

for results and a more detailed discussion).

4.4 Alpaka

Alpaka (Matthes et al., 2017) is a single-source, header-only

C++ parallelization library. The API level is similar to CUDA,

with an abstraction layer added between the application and

the vendor-specific programming models to achieve portability.

For example, the kernel functions in Alpaka are templated

with an accelerator type, which is resolved at compile time

for different execution backends of the kernel. One difference

between Alpaka and CUDA is that Alpaka has an additional

abstraction level called elements in the parallel hierarchy model,

where multiple elements can be processed in a thread. Having

an explicit level allows compilers to take advantage of the SIMD

vector registers when compiling for the CPU backends. Each

SOA (MPTRK) is processed by a block, and the thread/element

level is mapped differently between CPU and GPU backends to

take full advantage of the parallel hierarchy. For GPU backends,

blocks of bsize threads are assigned to process each MPTRK,

whereas one thread with bsize elements is assigned to process

each MPTRK for CPU backends. In each case, enough threads

are defined so that all ntrks tracks are processed for an event.

Profiling results confirm the use of vectorized instructions in the

regions where the original MKFIT implementation was also able

to vectorize.

The overall conversion from CUDA to Alpaka is relatively

smooth due to the similarity between the two programming

models, except that the heavy use of templating often leads to a

more verbose coding style and convoluted error messages during

debugging. Nevertheless, Alpaka versions are often able to produce

close-to-native performance after some effort of optimization. A

particular relevant note for HEP experiment is that CMS has chosen

to use Alpaka as its supported portability solution for the GPU

usage in LHC Run 3 (Kortelainen et al., 2021; Bocci et al., 2023).

4.5 Kokkos

Similar to Alpaka, Kokkos (Edwards et al., 2014; Trott et al.,

2022) serves as a single-source C++ template metaprogramming

(TMP) library, intended to achieve architecture agnosticism and

alleviate programmers from the complexities of vendor- or target-

specific programming paradigms and heterogeneous hardware

architectures. By embracing TMP methodologies, Kokkos

facilitates device-specific code generation and optimizations

via template specialization. To cater to diverse computing

environments, Kokkos offers multiple device-specific backends,

implemented as template libraries atop various HPC programming

models like CUDA, HIP, OpenMP, HPX, SYCL, and OpenACC.

These backends are tailored to adhere to advancements in the C++

standard, ensuring compatibility and efficacy.

A notable departure from Alpaka is Kokkos’ emphasis on

descriptive rather than prescriptive parallelism. Kokkos prompts

developers to articulate algorithms in general parallel programming

concepts, which are subsequently mapped to hardware by the

Kokkos framework. The Kokkos programming model revolves

around two fundamental abstractions: the first being the user data

abstraction (Kokkos::View), a template library facilitating the

representation of multidimensional arrays while managing efficient

data layout for both CPU and GPU. The second abstraction

revolves around parallel execution patterns (parallel_for,

parallel_reduce, and parallel_scan), which can be

executed under three distinct execution policies: RangePolicy

for mapping single parallel loops, MDRangePolicy for mapping

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2024.1485344
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ather et al. 10.3389/fdata.2024.1485344

directly nested parallel loops, and TeamPolicy for hierarchical

mapping of multiple nested parallel loops.

In this study, Kokkos versions were developed by translating

CUDA code to Kokkos using the Kokkos View and parallel

dispatch abstractions. The initial translation process was relatively

straightforward, owing to the striking similarities between the

Kokkos and CUDA execution models and memory models, except

for the added complexity due to Kokkos-specific restrictions on

C++ template programming. Efficient execution on both CPU and

GPU took further optimization and was achieved by configuring

the teamSize and vectorSize in the TeamPolicy used in

the parallel_for execution pattern, as the defaults were found

not to be optimal.

4.6 Standard parallelization using stdpar in
C++

The C++ programming language is often the preferred choice

for implementing high performance scientific applications. The

recent revisions of the ISO C++ standard introduced a suite of

algorithms capable of being executed on accelerators. Although this

approachmay not yield the best performance, it can present a viable

balance between code productivity and computational efficiency.

Numerous production-grade compilers are available, such as clang

and its variants from various providers, or the recently released

NVHPC from NVIDIA.

With the introduction of the C++17 standard, the C++

Standard Template Library (STL) underwent a substantial overhaul

of its suite of algorithms, now updated with execution policies

to adapt across various computing architectures, including multi-

core x86 systems and GPUs. These parallel algorithms extended

most of the existing STL algorithms with an additional argument,

which is an execution policy. The policy enables programmers

to specify the intended parallelism of an algorithm, which can

result in performance improvements for the computational task. In

particular, the execution policies in C++17 include:

• std::execution::seq

• std::execution::unseq

• std::execution::par

• std::execution::par_unseq

The first option forces the algorithm to run sequentially,

while the remaining three options allow the algorithm to be

vectorized or run in parallel (with additional vectorization).

Both the p2z and p2r stdpar implementations use the

std::execution::par_unseq execution policy. Currently,

only the nvc++ compiler offers support for stdpar algorithms

to be offloaded on NVIDIA GPUs. It leverages CUDA Unified

Memory to handle automatic data movement between CPU

and GPU. On the systems that do not support Heterogeneous

Memory Management, only data that is dynamically allocated in

CPU code compiled by nvc++ is automatically managed, whereas

memory allocated in GPU code is exclusively for GPU use and

remains unmanaged. Thus, on such systems, CPU and GPU stack

memory, along with global objects, are outside nvc++’s automatic

management scope. Even data allocated on the CPU heap outside

units compiled by nvc++ is not managed. When dealing with

parallel algorithm invocations, pointers and objects must refer to

data on the managed CPU heap to avoid errors. Any dereferencing

of pointers to CPU stack or global objects in GPU code can lead to

memory violations. These aspects encapsulate the nvc++ compiler’s

precise approach to memory management across CPU and GPU,

emphasizing careful allocation and reference handling to ensure

efficient operations. In our experience, developing code for this

application is largely similar to standard C++ programming, with

the primary distinction being the need to consider the previously

mentioned limitations.

4.7 SYCL

SYCL represents a cross-platform abstraction layer that enables

code for heterogeneous processors to be written in a “single-

source” style using completely standard C++. This approach aims

to enhance the efficiency and accessibility of programming for a

variety of compute architectures. While the SYCL programming

language was promoted by the Khronos Group, it is predominantly

advocated for by Intel, so the primary focus is on the optimization

for Intel GPUs.

One of the key advantages of SYCL is the ability to handle

regular C++ code for the host CPU and a subset of C++ for the

device code within the same source file. This ability paves the

way for an integrated and simplified development process. It also

enables parallelism and the usage of memory hierarchies through

a class template library. This effectively allows the expression of

parallel STL, thus further integrating SYCL with standard C++

features. Since it was designed to be fully compatible with standard

C++, it allows developers to utilize any C++ library within a SYCL

application. This compatibility with standard C++ makes SYCL a

versatile tool for developers. Moreover, SYCL’s design prioritizes

performance portability, aiming to provide high performance

across a wide range of hardware architectures. Its abstractions are

constructed to allow optimization but do not require a particular

architecture or kernel language.

For the benchmarks described in this paper, the programming

approach for SYCL is nearly a direct replication of the CUDA

approach. In our implementation, we utilized SYCL’s Unified

Shared Memory feature for data management. To compile SYCL

for NVIDIA and AMD GPUs, we compiled the dpc++ tool

chain following the instructions in Intel’s open-source llvm-sycl

repository.1

5 Results

The most important computing metric, from the point of view

of HEP computing as a whole, is the algorithm’s throughput,

defined here as the number of tracks that can be processed

per second. To measure the throughput, all versions processed

approximately 800k tracks in a single kernel. The kernel, together

1 Intel llvm/sycl branch, https://github.com/intel/llvm/tree/

70c2dc6dcf73f645248aa7c70c8cefdabf37e9b7.
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with the data movement operations, are then iterated a fixed

number of times to sustain a total program run time of around one

minute. The measurements were repeated multiple times to ensure

stability of results. We tested the performance of different tools on

a number of different hardware systems, including NVIDIA GPUs

(Section 5.1), Intel and AMD GPUs (Section 5.2), and Intel CPUs

(Section 5.3).

The code used for the results in this paper is directly extracted

from the MKFIT application. In order to reduce overheads,

it does not have its own setup for validating the results in

terms of physics output. For a discussion of the MKFIT physics

performance results, see the MKFIT papers (Cerati et al., 2017;

Lantz et al., 2020). Numerical reproducibility and consistency of

results across different p2z and p2r versions are verified with

summary printouts. Since the artificial sample is produced by

smearing the inputs from a single track, printouts report the mean

and RMS values of the track parameters computed over the full

sample. Output results from different versions are numerically

identical when the same compiler is used. Compilers may introduce

differences in the average parameter values at or below the ppm

level. Such differences are due to numerical precision in floating

point operations and the different levels of optimization used by

default by different compilers. The level of agreement in the output

guarantees that all versions perform the same operations, making

the comparisons in terms of computing performance meaningful.

5.1 NVIDIA GPU results

The throughput of the p2z and p2r benchmarks were

measured using two different systems with two different NVIDIA

GPUs. To test the p2r implementations, we used the Joint

Laboratory for System Evaluation (JLSE), a collection of HPC

testbeds hosted at Argonne National Lab. The NVIDIA GPU that

was used for testing is an A100 GPU with an AMD 7532 CPU as

the host machine. For the p2z implementations, themeasurements

were performed on a test node for the Summit HPC system at

Oak Ridge National Laboratory. Each Summit node includes six

NVIDIA V100 GPUs and two IBM Power9 CPUs, although only

one GPU was utilized in our tests.

The throughput measurements on NVIDIA GPUs are shown

in Figure 2 for both the p2z and p2r benchmarks. In both

cases, the native CUDA implementation is used as the reference

implementation, and the measurement time includes the kernel

execution only. Several different compilers are used for the

different implementations: the CUDA, Alpaka, and Kokkos

implementations are compiled with the nvcc compiler; OpenMP

and OpenACC are compiled with the OpenARC (Lee and Vetter,

2014) compiler; the stdpar versions are compiled with nvc++;

and for SYCL, the intel/llvm-sycl repository is used to compile

dpc++ tool chains to be compatible with NVIDIA/AMDGPUs. For

evaluation, whenever possible, we use the same launch parameters,

including number of blocks and number of threads per block.

In the OpenACC and OpenMP versions, different compilers

varied in how they enforced the user-specified configurations (see

Section 5.1.1). The launch parameters need to bemanually specified

for Alpaka and Kokkos, otherwise the libraries choose suboptimal

FIGURE 2

Throughput measurements for the p2z (top) and p2r (bottom)

benchmarks on NVIDIA GPUs. The p2z measurements were

performed on a V100 GPU and the p2r measurements were

performed on an A100 GPU. In both cases, only the kernel

execution time was considered in the throughput.

values and the performance is about 30% worse, taking those

versions even further from the native CUDA version. Setting the

number of registers per thread is another approximately 10%

effect. These parameters cannot be manually specified in the stdpar

implementation. In the SYCL implementations, we specified the

execution volume manually but relied on the defaults for the other

launch parameters.

In general, most of the different portability solutions

managed to produce close-to-native performance. The stdpar

implementation did not perform well for either benchmark, mainly

because the stdpar implemented in the nvc++ compiler relies on

CUDA Unified Memory for all data movements between CPU

and GPU memory, which fetches data needed by the GPU kernel

on demand, exposing memory transfer overheads to the kernel

execution. CUDA Unified Memory provides APIs to prefetch or

migrate data between CPU and GPU memory to hide or reduce

the memory transfer overheads, but the current stdpar does not

include such functionalities. In order to mitigate the effects of

data transfers while measuring the kernel execution time, we

introduced implicit prefetching using the parallel std::copy

algorithm. For the p2r benchmark, the worst performing version
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FIGURE 3

Throughput measurement for the p2z benchmark on NVIDIA V100

GPUs, including kernel execution time as well as data transfer times.

is the SYCL implementation. Detailed profiling using NVIDIA

NSight Compute shows significant branching when using SYCL,

but preliminary investigations have not revealed an obvious

explanation for the branching.

For the p2z benchmark, most of the different implementations

achieved similar performance except for the stdpar version. While

similar to other p2z implementations, the relative performance

of p2z Kokkos version is lower than that of the p2r Kokkos

version, when compared to their corresponding CUDA versions.

Detailed profiling shows that the Kokkos version of p2z uses more

registers than the CUDA version, while the Kokkos version of p2r

uses a similar number of registers compared to the CUDA version.

Further investigations of the branching of the p2r SYCL version

and of the difference in register usage in the p2z and p2r Kokkos

version are beyond the scope of the present paper.

Figure 3 shows the throughput of the p2z implementations

on the NVIDIA V100 GPUs, this time including both the kernel

execution time and the memory transfer times. The transfer times

are generally 2 to 5 times larger then the kernel execution times,

which means that much of the variability between implementations

is concealed. With the exception of stdpar, all implementations

have close to identical performance because they provide memory

management features to facilitate explicit data transfers, and in

some cases memory prepinning as discussed in Section 5.1.2.

5.1.1 Compiler dependence
Different compilers can yield very different timing results,

especially for the directive-based portability solutions. Figure 4

shows the throughput performance for the OpenACC and

OpenMP p2z versions on NVIDIA V100 GPUs, including both

kernel execution time and data transfer times. The left bars

in Figure 4 show that the OpenARC-compiled OpenMP version

performs better than the versions compiled with llvm, gcc, or

IBM. Detailed profiling shows that the llvm, gcc, and IBM

compiled versions use different launch parameters (the number

of threads in a thread block and the number of thread blocks)

than those specified in the OpenMP program, while the OpenARC-

compiled version literally follows the user-specified configuration.

Different launch parameters in the llvm/gcc/IBM compiled versions

adversely affected the concurrency. The OpenMP version of p2z

allocates temporary user data in the team-private memory: the

OpenARC-compiled version allocates the team-private data in the

CUDA shared memory, but the llvm/gcc/IBM compiled versions

only partially use the CUDA shared memory, which incurs more

device global memory accesses than the OpenARC-generated

version. Lower concurrency and more global memory accesses

seem to be the main reasons for the lower performance of the

llvm/gcc/IBM compiled OpenMP versions.

In the OpenACC version of p2z (the right bars in Figure 4),

both the nvc++ and OpenARC compiled versions achieved similar

kernel computation times, but the OpenARC-compiled version had

better memory transfer performance than the version compiled

with nvc++. OpenARC literally translates the OpenACC data

clauses into correspondingmemory transfer APIs (one transfer API

call per list item in a memory transfer data clause), but the nvc++

compiler automatically splits memory transfers into multiple, small

asynchronous memory transfer calls. Splitting memory transfers

may expose more communication and computation overlapping

opportunities, but in the p2z case, too many small asynchronous

memory transfers in the nvc++ version perform worse than the

simple memory transfers implemented in OpenARC, which is the

main reason for the better performance of the OpenARC version

than the nvc++ version. Like OpenARC, gcc also generates one

memory transfer API call per list item in a memory transfer

data clause, but the gcc version achieves lower memory transfer

throughput than the OpenARC version, which may be caused by

the host memory pre-pinning optimization, which is supported by

OpenARC but not by gcc, as shown in the next section.

5.1.2 E�ect of memory prepinning
For GPU versions, implementing host memory pinning was

found to greatly improve the performance, which is shown in

Figure 5 for the Kokkos and OpenACC p2z versions, including

both kernel execution time and data transfer times. In the system

with NVIDIA GPUs, prepinning the host memory enables direct-

memory access (DMA) transfers, which achieve better memory

transfer bandwidth than non-DMA transfers.

We compared the performance with and without explicit

prepinning for three OpenACC versions (Figure 5, left). The

first uses batched shared memory and synchronous transfers.

The second implementation uses batched shared memory and

asynchronous transfers, and the final version uses thread-private

data on local memory with asynchronous transfers. Like the CUDA

and HIP implementations (see Section 4.2), the results show that

keeping the intermediate results in the local register (thread-private

data version) performs better than using the sharedmemory.When

host memory prepinning is on, all of the host data appearing

in OpenACC clauses are prepinned. In all cases, prepinning is

observed to improve the performance. The asynchronous versions

have on-demand host-memory pre-pinning, which means the host

memory is prepinned before each asynchronous memory transfer

if it is not already prepinned. Therefore, a smaller impact from
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FIGURE 4

Comparison of the throughput performance on a V100 GPU using

di�erent compilers for the OpenMP (left) and OpenACC (right)

versions of the p2z benchmark. Measurements include both kernel

execution time and data transfer times.

explicit prepinning is observed than for the synchronous transfer

version. The performance improvement from the host memory

prepinning is more pronounced in the Kokkos results (Figure 6,

right), because the internal implementation of the Kokkos library

requires additional memory transfers, such as copying the functor

objects, while the OpenACC/OpenMP versions do not.

5.2 AMD and Intel GPU results

Support for other GPU architectures is in general less mature

than the support for NVIDIA GPUs, although this is an area of

rapid expansion. We explored the preliminary performance of the

p2r benchmark on both AMD and Intel GPUs, and the kernel-only

throughput measurements are shown in Figure 6. This is an out-of-

the-box comparison of each tool’s portability; no dedicated effort

was made to optimize for AMD or Intel GPU architectures. For

example, the HIP implementation for the AMD GPU is a carbon

copy of the native CUDA version. For both Alpaka and Kokkos,

switching backends is relatively seamless and does not require any

code changes.

The results on the AMD GPU are shown in the left plot

of Figure 6. The AMD GPU tests were performed on the JLSE

testbed, which includes two AMD EPYC 7543 32c (Milan) CPUs

and four AMD MI100 32GB GPUs. Only one GPU was used to

perform the measurements. Both Kokkos and Alpaka include HIP

backends which achieve reasonable performance: Alpaka actually

outperforms the HIP version that was ported from CUDA, and

Kokkos is within a factor of about 2. The same launch parameters as

the CUDA implementation are used for the native HIP, Alpaka:HIP,

and Kokkos:HIP measurements.

FIGURE 5

Throughput comparison on a V100 GPU showing the e�ect of

turning memory prepinning on or o� for di�erent OpenACC (top)

and Kokkos implementations (bottom) of the p2z benchmark:

batch shared memory with synchronous or asynchronous transfers,

and thread-private data on local memory with synchronous or

asynchronous transfers. Measurements include both kernel

execution time and data transfer times. The percentages in the

figure refer to the throughput with memory prepinning on

compared to the corresponding non-prepinned version.

The throughput measurements on an Intel A770 GPU are

shown in the right plot of Figure 6. Since the A770 is not

an HPC-class GPU, all calculations were converted to single-

precision operations. Relying on double-precision emulation

results in performance that is 3 to 30 times slower, depending

on the implementation. The SYCL backend for Alpaka has only

experimental support (introduced in v0.9.0) and was not tested
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FIGURE 6

Throughput measurements for the p2r benchmark on an AMD

MI-100 GPU (top) and on an Intel A770 GPU (bottom). The

performance of each implementation is compared to the

performance of the native version (HIP for the AMD GPU and SYCL

for the Intel GPU). Only the kernel execution time was included in

the measurements.

here. The Kokkos SYCL backend is still under active development:

we observed a factor of 2 improvement in the throughput of the

Kokkos:SYCL implementation whenwe updated fromKokkos 3.6.1

to Kokkos 4.1.0.

5.3 CPU results

The original MKFIT application is parallelized using the

Threading Building Blocks (TBB) library from Intel, so we also

used TBB as the reference native implementation on the CPU.

This implementation is multithreaded and vectorized. It is worth

noting that the original version was initially developed based

on the “classic” Intel C++ Compiler (icc version 19), which

led to improved vectorization performance compared to more

recent compilers, resulting in p2z execution times that were

approximately 2.7x faster. However, since this version is not

supported anymore, we choose not to include it in our main results.

Figure 7 shows the throughput performance of the p2z and p2r

benchmarks on a two-socket system equipped with Intel Xeon Gold

6248 CPUs. All implementations were compiled with gcc except

stdpar, which was compiled with nvc++, and SYCL, which was

compiled with dpcpp. Nonstandard options such as -ffast-

math are not included in the compilation since, while they may

help vectorizing loops including trigonometric functions, they do

not guarantee numerical reproducibility.

Using the portability layers, we are able to achieve throughput

equal to or better than 70% of the original, native performance on

the CPU for most implementations. The Alpaka implementation

of the p2z benchmark actually outperformed the TBB reference

implementation. The reason for the better performance of

p2z Alpaka is not currently known, and the results might be

platform dependent. Note that the p2z Alpaka implementation

uses the OpenMP execution backend, while the p2r Alpaka

implementation relies on the TBB execution backend. The

p2r SYCL implementation only achieves 27% of the reference

implementation, but unlike many of the other implementations,

SYCL is a language extension and depends heavily on compiler

optimizations rather than a performance-tuned library. When

optimizing these implementations, considerations included

deciding on an optimal data layout that works for both CPUs and

GPUs and ensuring that the loops are properly vectorized when

run on the CPU.

6 Summary

In the project described in this paper, we ported two benchmark

applications for charged-particle track reconstruction using state-

of-the-art portability tools and compared the results to the native

implementations. These benchmarks could form the backbone of

a realistic track fitting algorithm. We have tested our ports on

Intel CPUs and on GPUs from different vendors. In developing

and testing these benchmarks, we found that the performance can

vary significantly depending on the details of the implementation.

Achieving optimal performance was not easy, even for relatively

simple applications such as these. Each implementation took

several iterations of profiling and development to achieve the

results shown here. Ranking the difficulty of each porting effort

would not be straightforward, since the lessons learned when

implementing one solution would often apply to subsequent

solutions, without the need for rediscovery. Even so, the steps that

were taken to improve performance on one type of accelerator

(NVIDIA GPUs, for example) did not necessarily translate into

analogous gains on other types of GPUs or CPUs.

Several factors were found to have large effects on the

final performance. We found that optimizing the memory

layout and enabling explicit memory prepinning (in the case of
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FIGURE 7

Throughput measurements for p2z (top) and p2r benchmarks

(bottom) on a two-socket system equipped with Intel Xeon Gold

6248 CPUs. The performance of each implementation is compared

to the performance of the native TBB version.

NVIDIA GPUs) led to big improvements in the performance

of each implementation, up to a factor of six speedup. The

choice of compiler also changed the throughput performance

on NVIDIA GPUs by an order of magnitude or more for

OpenMP andOpenACC implementations. Because these compilers

are undergoing very active development, regularly checking

performance with the latest versions is important. The same is

true for the tools themselves, especially with respect to support for

AMD and Intel GPUs. For example, we observed a factor of two

speedup on an Intel GPU when updating to a newer version of the

Kokkos library.

In summary, we explored major portability solutions using

two benchmark applications fromHEP, including implementations

using Alpaka, Kokkos, SYCL, stdpar, OpenMP, and OpenACC.

Most of these solutions can give reasonable performance, on the

same order of magnitude, on different architectures, but most cases

required significant optimization. The ability to run algorithms on

GPUs from different vendors will allow HEP experiments to take

advantage of a variety of computing resources, including current,

planned, and future HPCs. This paper demonstrates that while

tools exist to effectively port existing CPU algorithms to GPUs,

reaching the desired performance is not yet straightforward. Future

development of these portability solutions and their application, or

alternative methods, will be necessary for the successful operation

and data analysis of these experiments.
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