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The emergence of advanced artificial intelligence (AI) models has driven the

development of frameworks and approaches that focus on automating model

training and hyperparameter tuning of end-to-end AI pipelines. However, other

crucial stages of these pipelines such as dataset selection, feature engineering,

and model optimization for deployment have received less attention. Improving

e�ciency of end-to-end AI pipelines requires metadata of past executions of

AI pipelines and all their stages. Regenerating metadata history by re-executing

existing AI pipelines is computationally challenging and impractical. To address

this issue, we propose to source AI pipeline metadata from open-source

platforms such as Papers-with-Code, OpenML, and Hugging Face. However,

integrating and unifying the varying terminologies and data formats from these

diverse sources is a challenge. In this study, we present a solution by introducing

Common Metadata Ontology (CMO) which is used to construct an extensive

AI Pipeline Metadata Knowledge Graph (AIMKG) consisting of 1.6 million

pipelines. Through semantic enhancements, the pipeline metadata in AIMKG

is also enriched for downstream tasks such as search and recommendation

of AI pipelines. We perform quantitative and qualitative evaluations on AIMKG

to search and recommend relevant pipelines to user query. For quantitative

evaluation, we propose a custom aggregation model that outperforms other

baselines by achieving a retrieval accuracy (R@1) of 76.3%.Our qualitative analysis

shows that AIMKG-based recommender retrieved relevant pipelines in 78% of

test cases compared to the state-of-the-art MLSchema-based recommender

which retrieved relevant responses in 51% of the cases. AIMKG serves as an

atlas for navigating the evolving AI landscape, providing practitioners with a

comprehensive factsheet for their applications. It guides AI pipeline optimization,

o�ers insights and recommendations for improving AI pipelines, and serves as a

foundation for data mining and analysis of evolving AI workflows.
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AI pipeline metadata, graph learning, graph recommendation, AIMKG, metadata
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1 Introduction

The rapid evolution of artificial intelligence (AI) has led to

significant advancements in techniques, necessitating continuous

knowledge updates. The submission rates at conferences such as

NeurIPS, which constitutes several thousand papers, demonstrate

the rapid growth and competitiveness in AI research. Furthermore,

there are several versions of generative models being released

for various tasks which are difficult to keep track of. The rate

of invention of new AI methods also introduces a challenge of

suitable model selection for a given task and dataset. The success

of AI methods has also led to the development of larger and more

complex models to tackle various challenges, due to which training

of AI models has become increasing challenging with its increasing

complexity. To improve training efficiency, AutoML methods (He

et al., 2021; Karmaker et al., 2021) have been introduced for

optimizing models and hyperparameter tuning. MLFlow (Zaharia

et al., 2018) andMLSchema (Publio et al., 2018) use amodel-centric

approach for metadata logging, requiring separate instances for

each trained model for a given pipeline, say, entity extraction from

health records. Openlineage (Hariharan et al., 2024) tracks data

lineage through its lifecycle. However, AI pipeline development

also includes stages such as dataset selection, preprocessing,

feature engineering, and deployment. For reproducibility, metadata

logging must encompass all stages, not just model selection and

tuning. A comprehensive framework is needed to track all stages,

executions, models, and datasets to solve a given AI task.

The Common Metadata Framework (CMF; Koomthanam

et al., 2024) addresses this by serving as a pipeline-centric

metadata logging system that captures metadata for all stages,

executions, models, datasets, and metrics in an integrated manner,

enabling the search for the optimal execution path. While CMF

provides a holistic approach to metadata logging, a robust

framework is required to facilitate AI pipeline optimization. Such

optimization can be achieved by leveraging logged metadata to

recommend past successful pipeline executions as a seed, reducing

the overall experimentation runs. This recommendation requires

detailed metadata of numerous pipelines executed, capturing

the interactions and dependencies (e.g., input/output datasets,

parameters, and configurations) of each stage. Generating such

metadata by executing pipelines is not feasible as it demands time

and computational resources. On the other hand, open-source

platforms such as Papers-with-code (2018), OpenML (Vanschoren

et al., 2014), Hugging Face (2016), and Kaggle (2010) expose

metadata of already executed pipelines which can be leveraged.

To enable metadata interoperability from diverse sources, they

must be integrated. However, it poses challenges such as differing

nomenclature, data structure variations, and lack of component

semantics to understand context and perform reasoning on

the entities.

To address these challenges, we introduce the Common

Metadata Ontology (CMO), built on the foundations of CMF’s

pipeline-centric approach. CMO is an unifying schema to

integrate metadata from these diverse sources to construct AI

pipeline Metadata Knowledge Graph (AIMKG) that enables search

and recommendation of relevant AI pipelines for optimization.

Knowledge graphs (KG) provide a deeper understanding of

relationships and enable context-aware recommendations by

capturing both explicit and implicit connections. CMO supports

such semantic and multimodal properties which are computed

while constructing AIMKG. For example, AIMKG can identify

the shared semantics between pipelines for object detection and

3d instance segmentation, recognizing them as vision-based tasks

even without explicit naming and facilitate reasoning. As a

downstream application, we develop a search and recommender

system that demonstrates the potential of AIMKG to recommend

relevant pipelines for optimization. The recommender system

provides explainable recommendations and ensures reproducibility

by providing source information of AI pipelines. The specific

contributions of the study are as follows:

1. Proposing Common Metadata Ontology with a pipeline-centric

view to integrate and aggregate themetadatamined from diverse

sources. CMO supports semantic properties and multimodal

properties such as text and embedding vectors.

2. Construction of the first of its kind AIMKG using CMO that

serves as an atlas to navigate the ever-growing AI field.

3. Enriching the AIMKG with additional knowledge and by

computing semantic properties.

4. Introducing custom heuristic ranking function to recommend

relevant pipelines using task, dataset, or model.

5. Introducing a custom aggregation model to generate graph

embeddings that enable AI pipeline recommendation for natural

language queries.

Conventional knowledge graphs capture relationships among

concepts or entities and their semantic properties. For example,

Linked Open Data Cloud (Musto et al., 2016) and DSKG (Färber

and Lamprecht, 2021) capture semantic relationships among

datasets. In contrast, AIMKG consists of process graphs that

capture procedural interactions of entities in the context of training

and execution, such as how datasets and models combine to

produce performance metrics (e.g., dataset + model metrics,

model weights). AIMKG follows the traditional semantics of

entities and extends it further to process graphs. This procedural

representation is a notable contribution not typically found in

traditional knowledge graphs.

2 Related work

With the growth of AI models (Menghani, 2023; Mathew

et al., 2021; Shrestha and Mahmood, 2019; Mohammadi et al.,

2024; Berahmand et al., 2024), several frameworks have been

proposed to enable the search and discoverability of these

models and architectures. DeepSciKG (Kannan et al., 2020)

project proposes a mechanism to create and query knowledge

graphs to represent multimodal information from AI publication

metadata, i.e., code, pseudocode, tables, images, and diagrams in

addition to text/equations in publications. STM-KG (Brack et al.,

2021) proceeds along similar lines to demonstrate how science,

technology, and medicine papers can be automatically mined to

automatically populate a scientific concepts knowledge graph and

drive a “citation recommender.” ML Schema (Publio et al., 2018)

proposed a model-centric ontology to formalize only OpenML

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2024.1476506
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Venkataramanan et al. 10.3389/fdata.2024.1476506

data. Humm and Zender (2021) developed an ontology to represent

ML metadata to organize and store limited number of tasks (15

as compared to 5 k in our study). AI-KG (Dessì et al., 2020)

generated AI knowledge graph from published papers consisting

of 330k research publications with 14 M triples that describes five

types of entities (tasks, methods, metrics, materials, and others).

AIMKG consists of combination of published papers (1 million)

and also user-recorded metadata from OpenML and HuggingFace.

The extraction of knowledge from publicly available resources

remains an active and dynamic area of research. Notably, the

GraphGen4Code (Abdelaziz et al., 2021) approach has emerged

as a comprehensive toolkit for constructing knowledge graphs

from program code, effectively facilitating subsequent endeavors to

address the creation of AutoML pipelines utilizing such knowledge

graphs (Helali et al., 2022). These endeavors complement our

own study, which leverages existing public repositories and

published research to infer relations between AI pipeline entities.

By constructing a knowledge graph, our approach aims to solve

downstream tasks within the field.

In literature, there has been a consistent effort to recommend

datasets for scientific problems, e.g., DataHunter (Färber and

Leisinger, 2021) and DataFinder (Viswanathan et al., 2023).

Croissant is a high-level format for machine learning datasets

that combines metadata, resource file descriptions, data structure,

and default ML semantics into a single file for downstream tasks

(Akhtar et al., 2024). SIGMOD (Kumar et al., 2023) recommends

datasets, models, processing steps etc. along with pipeline lineage.

Similarly, other studies such as Müllner et al. (2022) use the

history of AI pipelines to recommend datasets and models to

solve new tasks allowing sharing of these artifacts among multiple

pipelines. In our study, we integrate and aggregate multiple

data sources instead of focusing on a particular data source.

Specifically, our study focuses on pipeline optimization, knowledge

discovery, search, and recommendation through mining metadata

from diverse open sources. HuggingGPT (Shen et al., 2023) is

a collaborative system that consists of an LLM as the controller

and numerous expert models as collaborative executors from

HuggingFace. It uses LLM-based chat interface to recommend

models for tasks from different domains. We plan to incorporate

an LLM interface similar to HuggingGPT in the future while

focusing recommending pipeline that includes task, dataset, dataset

preprocessing steps, model, metrics, and hyperparameters.

Several techniques such as CASH (Thornton et al., 2013; Guo

et al., 2019) and NAS (Elsken et al., 2019) have been proposed

for model optimization and hyperparameter tuning. However,

our study distinguishes itself by extending beyond the confines of

solely addressing problem-dataset or model-hyperparameter

relationships. Instead, it delves into capturing intricate

associations among models, datasets, and tasks, encompassing

their hierarchical connections.

3 AI pipeline Metadata Knowledge
Graph construction

3.1 Data sources

In this study, we collect AI pipelinemetadata fromPapers-with-

Code, OpenML, and HuggingFace to construct AIMKG. The data

TABLE 1 Availability of pipeline metadata from open-source platforms.

Entities PWC OpenML HF Kaggle

# Pipelines 1 Million + 10 million + 267,000 160 k

# Tasks 4 k 1.6 K 41 200+

# Datasets 12 k 3.4 k 56,000 173 K

# Models 2 k 16 k 267,000 NA

availability of each source can be found in Table 1. In the future, we

also plan to incorporate the metadata from Kaggle.

3.1.1 Papers-with-Code
Papers-with-Code provides extensive metadata for research

papers and associated code repositories, encompassing over 1

million entries at the time of this paper submission. The metadata

covers various components and stages of AI pipelines described in

the papers. Through their API, Papers-with-Code offers metadata

including PDF URLs, GitHub repository links, task details, dataset

information, methods employed, and evaluation metrics and

results.While not all stages of metadata are available for every paper

through the API, the information can still be obtained by referring

to the research papers and their code repositories.

3.1.2 OpenML
OpenML provides metadata on ML pipelines logged by users,

offering detailed information on tasks, datasets, flows, runs with

parameter settings, and evaluations. OpenML encompasses eight

major task types executed on various datasets, resulting in 1,600

unique tasks. For each task, the most recent 500 runs have been

collected which amounts to a total of 330,000 runs.

3.1.3 HuggingFace
Huggingface is a model hub that offers users access to

numerous pretrained models. It covers a wide range of tasks,

including domains such as computer vision, natural language

processing, tabular data, reinforcement learning, and multimodal

learning. Huggingface provides model-centric information, along

with datasets and evaluations, enabling the construction of

complete pipelines. At the time of paper submission, ∼270,000+
pipelines have been collected from HuggingFace.

3.2 Common metadata ontology

The metadata from these sources follows different data

structures and nomenclatures. For example, the concept “Model” is

referred to as “Methods” in Papers-with-Code, “Flow” in OpenML,

and “Model” in Hugging Face. We propose the CommonMetadata

Ontology (CMO), a unifying schema to integrate diverse data

structures from Papers-with-Code, OpenML, and Hugging Face.

Built on the Common Metadata Framework (CMF; Koomthanam

et al., 2024), CMO ensures interoperability of metadata, enabling

knowledge discovery, search, and reasoning capabilities. The

overview of CMO is shown in Figure 1. The novel features of
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FIGURE 1

Overview of proposed Common Metadata Ontology. The detailed version of CMO with properties can be found at Venkataramanan (2024). The

ontology consists of a pipeline node executing several stages such as data preprocessing, train, test, and validation. Each stage can have several

Executions. Each Execution can use a Model and Dataset to produce Metrics and trained model weights. The Task captures a broader view of

pipelines such as anomaly detection or demand forecasting. The code base is captured by Framework node and any published report or papers are

present in Report node.

CMO are as follows: (i) following a pipeline-centric approach,

similar to CMF, to capture multiple experimentation runs for each

stage (train, test, validation) with parameter settings, facilitating

the identification of the best execution path; (ii) modularity that

allows distributed experiments and parallel logging of pipeline

metadata, enabling seamless metadata capture across different

teams and machines; (iii) support for additional semantic and

statistical properties that can be extracted, computed, or generated

from entity names (e.g., identifying tasks as image-based, text-

based, or audio-based); and (iv) support for multimodal properties,

including text and vector embeddings of entity names, to enable

keyword and approximate search. A detailed overview of CMO and

its properties can be found in Venkataramanan (2024). MLSchema

(Publio et al., 2018) and MLFlow (Zaharia et al., 2018) adopt

a model-centric approach. When building a pipeline, say, entity

extraction from semi-structured electronic health records and

testing it with multiple models, MLSchema and MLFlow require

creating several instances “one for each model” to record metadata.

In contrast, CMO allows all models, variations, hyperparameters,

metrics, and datasets to be documented as a single instance,

facilitating a scaleable and flexible metadata recording process by

taking a holistic view of the entire pipeline. Hence, CMO builds

upon the principles of CMF.

3.3 Problem statement

The goal is to design a correspondence mapping function F that

maps the Entity-Relationship-Attributes present in the relational

database of three data sources to the Nodes-Relationships-

Properties of CMO. Each data source D = {E,R,A} where E =
{e1, e2, . . . , ei} represent the set of entities, R = {r1, r2, . . . , rj}
represent the relationship between ei and ej, A = {a1, a2, . . . , an}
represents the set of attributes for any entity ei. First, each data

sourceD is mapped to a graph G using a mapping function f :D→
G.G = {V ,M,K} where V = {v1, v2, . . . , vi} represents the set

of vertices, M = {m1,m2, . . . ,mj} represents the set of edges

between vertices, and K = {k1, k2, . . . , kn} represents the set of

properties of the vertices. The graph G of each data source consists

of inherent entities, their associations, and properties present in

relational database. Then, we compute a correspondence function

F :G → KG that maps the elements from graph G by computing,

extracting, or generating necessary information. KG = {N,R, P}
where N = {n1, n2, . . . , ni} are the set of nodes, R = {r1, r2, . . . , rj}
are the set of relationships between nodes, and P = {p1, p2, . . . , pn}
are the set of properties of the nodes. For each G, F :V →
N, F :M→ R and F :K → P. Finally, the AIMKG is constructed as

(KG1 ∪ KG2 ∪ KG3).
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Input: Data Sources DS = {D1,D2,D3}
Output: Integrated Knowledge Graph AIMKG = KG1 ∪

KG2 ∪ KG3

1 // Constructing Graph Data Models for Each Data

Source

2 GG← {}
3 for Di in DS do

4 f :Di → Gi, where Gi = {Vi,Mi,Ki}, where

Vi = {v1,v2,...,vn} are vertices,

Mi = {m1,m2,...,mn} are edges, and

K = {k1,k2,...,kn} are properties.

5 Add Gi to GG

6 end

7 Return GG = {G1,G2,G3}
8 // Construction of AIMKG

9 AIMKG← {}
10 KGi ← {} where KGi = {Ni,Ri,Pi}, Ni = {n1,n2,...,nj}

are nodes, Ri = {r1,r2,...,rj} are relationships,

and Pi = {p1,p2,...,pj} are properties.

11 for Gi in GG do

12 Compute F :Vi → Ni, F :Mi → Ri, F :Ki → Pi using

CMO

13 Add KGi to AIMKG

14 end

15 Return AIMKG = (KG1 ∪ KG2 ∪ KG3)

Algorithm 1. Construction of AIMKG.

3.4 AIMKG construction and enrichment

3.4.1 Construction
The algorithm for construction of AIMKG is described in

Algorithm 1, and the system architecture is shown in Figure 2.

We collect metadata from Papers-with-Code, OpenML, and

HuggingFace and represent the data using relational database.

The metadata, in the relational database format D, is then

converted into graph data models G through a mapping function

f :D −→ G to analyze the inherent graph structure of each

data source. To align the concepts of graph G to the concepts

in the CMO, we implement a correspondence mapping function

F :G −→ KG. The mapping function F consists of a predefined

set of mappings of concepts presented in Supplementary Table 1.

While specific nodes, relationships, and properties in G directly

correspond to CMO, additional elements are computed, extracted,

or generated by analyzing indirect associations among the entities

in each data source. For example, while mapping OpenML data

to CMO, the concept node Hyperparameters and Metrics needs

to be computed from attributes of Runs given by OpenML.

Since these are computed nodes, the relationships need to be

computed by studying the associations between tables in relational

database provided by OpenML. The mapping of entities from the

data sources to CMO can be found in Supplementary material.

Currently, AIMKG exists as both Resource Description Format

(RDF) and Labeled Property Graph (LPG), and the results are

presented in Section 6.

3.4.2 AIMKG enrichment
To enable advanced search and recommendation capabilities,

we compute semantic properties for pipeline entities, specifically

tasks, and datasets.We aim to identify required semantic properties

for other nodes in the future work. These semantic properties

capture implicit knowledge about entities, providing valuable

insights. For instance, the semantic propertymodality identifies the

visual nature of tasks such as object detection and video instance

segmentation, even if not explicitly stated. Similarly, capturing

task categories such as segmentation, classification, or regression

clarifies the nature of tasks and aids in organizing and categorizing

pipelines by problem type.

3.4.2.1 Rule-based entity extraction

To identify the modality and category of tasks, we utilize a

rule-based entity extraction approach. An extensive vocabulary is

curated that includes synonyms for each modality and category,

such as dialogue, translation, and text for the text modality, and

terms such as classification and summarization for categories.

Task names and descriptions are analyzed to assign modality and

category. The main modalities we consider are Image, Text, Audio,

Video, and Multimodal. While this information is available in

Papers-with-Code and Huggingface, OpenML presents a challenge

as task names are generated by combining task type and dataset

name, which obscures modality. To address this, we analyze dataset

entities in OpenML, marked as nominal or numeric, to infer task

modality. Although the method is straightforward and reliable,

using amanually curated vocabularymay introduce biases and limit

scalability. Future research will focus on developing more scalable,

automated approaches that mitigate biases and enhance robustness.

3.4.2.2 Graph-based labeling of dataset modalities

For the datasets, we determine only modality because category

varies for every pipeline as per the task. For example, MS-COCO

dataset can be used for detection, segmentation, or localization.

The dataset from all these data sources does not contain sufficient

information such as description to identify the modality. Therefore,

we study the association between the task and dataset nodes to label

modality for each dataset. The calculation of dataset modality is

as follows:

Mod(D1) = Mod(T1) ∪Mod(T2) ∪ ... ∪Mod(Tn) (1)

Where D1 is the dataset, T1 to Tn are the associated tasks, and

Mod(T1) represents themodality computed for a given task.

3.4.2.3 External knowledge

AIMKG also incorporates additional knowledge from various

sources to enhance its semantic properties. We crawl task hierarchy

information from Papers-with-Code, comprising of three levels:

The first level represents task areas such as computer vision, natural

language processing, or speech. The second level groups tasks into

categories such as segmentation, classification, or detection. Finally,

at the leaf nodes, we find the specific tasks provided by Papers-

with-Code through their API. This hierarchical structure adds

valuable knowledge to AIMKG, enabling a more comprehensive

understanding of different task domains.
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FIGURE 2

Overview of AIMKG construction. The data collected from Papers-with-code, OpenML, and Huggingface are translated into their relational database

formats and then to their graph data models G1, G2, and G3. Then, they are mapped onto CMO. The pipeline metadata undergoes semantic

enhancements before loaded as AIMKG.

3.4.3 Node embeddings
To facilitate recommendations or approximate searches, we

also compute and store embeddings for the names of tasks, datasets,

models, and pipelines. A sentence transformer, all-mpnet-base-v2

(SBERT Documentation, 2023), with default embedding size 768

was used to create embeddings. The computation of embeddings

can be extended to other components of the pipeline as needed.

These embeddings, along with the semantic properties, are used

in similarity metric calculation to rank relevant recommendation

described in the following section. The embeddings are computed

and added after standing up AIMKG, allowing flexibility with

different models.

4 AI pipeline search and
recommendation

In certain cases, the exact pipeline the user is searching for

can be found in AIMKG. However, it is not always the case.

We propose two different recommender systems to search and

recommend relevant pipelines to user input query that can seed

the experimentation.

4.1 Relevant pipeline recommendation
using custom heuristics

In this section, we propose a recommender system that enables

user to query a relevant pipeline based on its entities such as tasks,

datasets, models, or combinations of them. Currently, we develop a

custom heuristic ranking metric for tasks, datasets, and models to

identify similar pipeline as these three entities are most indicative

of a pipeline.

4.1.1 Problem formulation
For a given task ti, dataset di, or model mi, rank the tasks

T = {t1, t2, ...tn}, datasets D = {d1, d2, ...dn}, or models

M = {m1,m2, ...mn} present in AIMKG, respectively, using

custom heuristics defined below. Once the most similar entities

are identified, identify the pipelines associated with top-ranked

items by traversing through the graph. Presently, the pipelines

recommended consist of coarse-level entities such as tasks, datasets,

models, metrics, frameworks, reports, and code repositories. These

custom heuristic functions can be used alone or in combination

as required. These recommendations act as a seed, reducing the

search space for ML practitioners and minimizing the number of

experiments needed to achieve optimal solutions.

4.1.2 Heuristic functions
Task similarity:Using themodality and category properties, we

compute similarity for the task nodes in AIMKG as follows:

task_sim(ti, tj)

=
cos(ei, ej)+ J(namei, namej)+ J(modi,modj)+ J(cati, catj)

4
(2)

where ti, tj are any two task nodes, ei, ej are task name embeddings,

namei, namej are the task name tokens, modi, modj are task

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2024.1476506
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Venkataramanan et al. 10.3389/fdata.2024.1476506

modalities (image, text, audio, etc.), and cati, catj are task categories

(detection, summarization, classification, etc.). J is the Jaccard

similarity, and cos is the cosine similarity of embeddings.

Dataset similarity: Dataset consists of modality calculated

using Equation 1. They do not have category as a semantic property

as a given dataset might be suitable for two task categories such

as segmentation and detection. Therefore, dataset similarity is

calculated as

dataset_sim(di, dj)

=
cos(ei, ej)+ J(namei, namej)+ J(modi,modj)+ U(urli, urlj)

4
(3)

where di, di are any two dataset nodes, ei, ej are dataset name

embeddings, namei, namej are the dataset name tokens,modi,modj
are dataset modalities (image, text, audio, etc.) of the dataset names,

urli, urlj are dataset URLs, and U is token-based URL similarity

metric that quantifies the degree of resemblance between twoURLs.

Model similarity:Model similarity is computed using the given

semantic property class such as CNN and GPT. The URL given by

the sources is also used as in some sources it aids in capturing the

root of the model origin (Example: HuggingFace)

model_sim(mi,mj)

=
cos(ei, ej)+ J(namei, namej)+ J(classi, classj)+ U(urli, urlj)

4
(4)

where mi, mi are any two model nodes, ei, ej are model name

embeddings, namei, namej are model name tokens, and classi, classj
are model classes (transformers, CNN, GRU, etc.).

We found through empirical experiments that a combination

of embedding and keyword similarity offers the best results. For

example, embedding similarity captures that “fault” and “anomaly”

are synonyms. Simultaneously, in Figure 3A, segmentation tasks

must be closer than classification tasks. Similarly, in Figure 3B,

image-based tasks need to be closer than text-based tasks.

These semantics are not captured by the embedding similarity

but through keyword-based similarity of semantic properties

computed for pipeline components. The ability to design and

implement meta-similarity based on sets and the proximity of

textual embeddings is a unique differentiator compared to existing

methods such as Achille et al. (2019).

4.2 Relevant pipeline recommendation
using graph learning

In contrast to the recommender discussed in the section above,

this section proposes a custom graph embedding learning model

that retrieves relevant pipelines to user input queries given in

natural language.

4.2.1 Problem formulation
The goal is to learn a common embedding space for the natural

language query and its corresponding pipeline graph to retrieve

relevant pipelines. AIMKG graph consists of several pipeline graphs

FIGURE 3

Illustration to show the necessity of embedding and keyword

similarity. (A) Task category semantics (B) Task modality semantics.

{P1, P2, P3, . . .Pn}. Each Pi = {N,E}, where N is the set of nodes

and E is the set of edges. The nodes N = {p, s, e, a, d,m,met, f , r, t}
represent different elements: p is pipeline, s is stages, e is executions,

a is artifacts, d is datasets, m is model, met is metrics, f is

framework, r is reports, and t is tasks. For each pipeline, we have a

set of queries Qi = {q1, q2, . . . , qn}. The goal is to learn a common

embedding space for graph embedding gei that takes Pi = {N,E} as
input and query embedding qei that takes in one-sentence query qi
as input.

4.2.2 Query generation
Since there is no ground truth information, ChatGPT was used

to generate a one-sentence query that describes the pipeline, which

can simulate a user query to search for a pipeline. Similar to studies

that involve the Retrieval Augmented Generation (RAG) approach

(Jadon and Kumar, 2023; Guo and Chen, 2024), we utilized

ChatGPT API to generate queries for a given pipeline based on

the name and description of node entities such as pipeline, model,

task, dataset, and metrics. These generated queries are different

from the title of the paper from Papers-with-Code or title of the

report or model cards from HuggingFace. The detailed analysis

on queries generated can be found in Supplementary material. The

following prompt was used to generate one-sentence description

for each pipeline:

PROMPT:

Generate a vague two-line query summarizing

the pipeline

information below, utilizing pipeline

description, list

of tasks, list of datasets and list of

methods. Avoid forming

the query as a question. Generate these
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1 // Dataset Preparation

2 for each Pi = {Ni,Ei} do

3 Generate Queries: Pi ⇒ Qi = {q1,q2, . . .,qn} using
LLM, where Qi is the set of queries

4 Prepare Knowledge: Pi ⇒ spi where spi is the

string of semantic data

5 Compute Node Embeddings: for each node n in Ni do

6 Compute ni → nei ∈ Nei using pretrained

sentence transformer

7 where, nei = embed(name)+ embed(description)

8 end

9 Return Nei = {pei,sei,...tei} ∈ RN×d where pe is

pipeline node embeddings, se is stage node

embeddings and so on.

10 Compute Knowledge Embeddings: spi → yei using

Pretrained Sentence Transformer where yei ∈ RN×d

11 Compute Query Embeddings: for each query qi in

Qi do

12 qi → xei using pretrained sentence

transformer where xei ∈ RN×d

13 end

14 Return Qi = q1,q2,..qn ∈ RN×d

15 end

16 Output: Preprocessed data with text embeddings

17 // Model Training

18 for each batch in Dataset do

19 hei ← Nei = {pei,sei,...tei} using model M in

Algorithm 3

20 kei ← TanH(WFC1.yei + bFC1)
21 gei ← (α.hei + β.kei)

22 qi = random_choice(Qi = {q1,q2,..)}
23 qei ← TanH(WFC2.qi + bFC2)
24 loss← NCELoss(ge1,qe1)

25 end

26 Output: Trained Model

Algorithm 2. Model training.

queries as if a user

is searching for a pipeline based on the

following pipeline

information. Note, these queries should be

very different

from the pipeline name given below.

Return the query as

bullets numbered as 1., 2., and 3.

Pipeline Description:

{data[’pipeline_description’]}

Pipeline Name: {data[’pipeline_name’]}

List of Tasks:

{task_string}

List of Datasets:

{dataset_string}

List of Models:

{model_string}

4.2.3 Dataset
For this evaluation, we randomly picked 5,000 pipelines

from Papers-with-Code and HuggingFace each, totaling 10,000

pipelines. Only the pipelines with complete information such

as model, dataset, task, and metrics were chosen. The pipelines

from Papers-with-Code and HuggingFace are more descriptive

which is essential for query generation. For example, Papers-

with-Code has abstract, dataset description, task description,

and so on. Similarly, HuggingFace has model cards, dataset

description, and so on. Such descriptive information was not

found in OpenML pipelines, and so they are omitted for this

evaluation. For each pipeline, on an average of two queries

were generated by ChatGPT using the prompt mentioned in

Section 4.2.2

4.2.4 Model architecture
In this section, we propose a custom model described in

Algorithm 2 that utilizes self-attention based aggregation to learn

embedding for each pipeline graphs as described in Figure 4.

For each node in N, where N = {p, s, e, a, d,m,met, f , r, t},
the name and description present as text are converted to

768-dimensional embedding using sentence transformer.

Using the semantic properties computed for each pipeline

graph nodes (Section 3), we create a knowledge string.

The knowledge is then passed to a sentence transformer to

create embedding for knowledge. Similarly, the generated

queries are passed to the sentence transformer to generate

respective embeddings. Through empirical analysis, we

found that the sentence transformer embeddings perform

better compared to a learnable embedding layer with

one-hot embeddings.

Then, these embeddings are given as an input to the self-

attention block (Algorithm 3) to generate an intermediate graph

embedding of 1024-dimensional vector. Similarly, the embeddings

generated for knowledge vector are also transformed into 1024-

dimensional vector using a learnable fully connected layer. The

learnt embeddings of the nodes and the knowledge vector are

combined using a weighted sum to generate final graph embedding

gei. We present the results of the model with and without

knowledge embedding in Table 5. The embeddings generated

for query vector using sentence transformer embedding are also

transformed into 1024-dimensional vector to obtain qei. The

objective function described in Section 4.2.5 trains the model to

such that gei and qei are closer in the embedding space.

In the case of AIMKG, 1.6 million pipeline graphs follow the

graph structure described by CMO (Section 3.2). To add, the textual

information present in the nodes holds the most information

compared to the graph structure. While the connectivity between

models, datasets, tasks, and other nodes of the pipeline is
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FIGURE 4

Architecture and workflow of the custom aggregation model utilized to learn the graph embedding.

essential to learning an appropriate graph embedding, graph-

based models such as graph convolutional neural networks or

graph attention neural networks prioritize learning graph topology

compared to node features (Section 6.4). For this reason, a

custom aggregation model was proposed to learn embedding for

each pipeline graph. Table 5 shows the necessity of representing

pipelines as a graph.

1: Input: Node Embeddings

Nei = {pei, sei, . . ., tei} ∈ R
N×d

2: Output: Weighted aggregated embedding hei ∈ R
d

3: Parameters: WQ,WK,WV,WFC ∈ R
d×d, bFC ∈ R

d

4: Compute query, key, and value matrices:

Q← EWQ, K← EWK, V← EWV

5: Compute self-attention scores: A← softmax
(

QKT
√
d

)

6: Compute weighted sum of value embeddings: Z←AV

7: Apply fully connected layer and activation

function: hei ← TanH(WFCZ+ bFC)

8: Return: hei

Algorithm 3. Self-attention based aggregation model (M).

4.2.5 Objective function
To train the query embedding qei and the corresponding

graph embedding gei to be closer in the embedding

space, we use noise contrastive estimation (NCE) loss

(Chen et al., 2020). NCE loss has the ability to normalize

large probability distributions making it effective for

scalable training datasets. The equation for NCE loss is

as follows:

LNCE =−
1

N

N
∑

i=1

(

log
exp(gei · qei)

exp(gei · qei)+
∑k

j=1 exp(gei · qej)

+ log
exp(gei · qej)

exp(gei · qej)+
∑k

j=1 exp(gej · qei)

)

where N is the batch size, gei and qei are the embeddings for the

i-th instance in the batch, and k is the number of negative samples

which is N − 1 where i 6= j.

5 Experimentation

In this section, we define evaluation metrics performed to test

the robustness of AIMKG and recommendation ability of AIMKG.

5.1 AIMKG robustness

To evaluate the reliability of our knowledge graph construction,

we employ a statistical technique called bootstrapping (Anirudh

and Thiagarajan, 2019). We take a random sample of 75% of the

data and utilize it to create a partial knowledge graph using our

proposed approach (AIMKG). We repeat this process 10 times to

generate 10 distinct knowledge graphs. A robust knowledge graph

construction method should show low variance in node properties

within partial graphs. We measure variance in node degrees and

other distributional properties, comparing these with knowledge

graphs built using the MLSchema ontology. The performance

improvements are detailed in the result section.
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5.2 Custom heuristics: qualitative analysis

Through user evaluation, we evaluate the ability of custom

heuristic function to rank similar tasks for a given unknown task

and return its associated pipelines. Due to the abscence of ground

truth, we rely on domain experts to evaluate the relevance of results

returned by the recommender. For comparison, a knowledge graph

constructed using same data but using state-of-the-art MLSchema

ontology is used. Using the custom heuristic function, the tasks

in AIMKG and MLSchema-based KG are ranked and associated

pipelines are returned to the domain experts for evaluation.

The task nodes in AIMKG contain properties such as Name,

Modality, Category, and Description. Modality and Category are

computed using NLP techniques. In contrast, MLSchema-based

task nodes only have properties such as Name, Description,

and custom user-reported properties. Therefore, Smod and Scat
from Equation 2 are always 0 for the recommender that uses

MLSchema-based KG whereas cos(ei, ej) and J(Ti,Tj) are calculated

using the same procedure. We configure the recommender to

return the top-k relevant tasks and n pipelines for each task,

where k and n are set to 3. We randomly select query tasks

from various AI fields from AIMKG (Table 4) and drop the

query task node to simulate unknown query task. This ensures

the validity of the query task names. Eighteen domain experts

aged between 24 and 50 participated in the evaluation study,

each assigned 10 query tasks to determine the relevance of the

recommendations provided.

5.3 Graph embedding learning

5.3.1 Implementation details
We utilize sentence transformer all-mpnet-base-v2 to generate

the text encodings for node features, semantic properties

(knowledge), and queries generated by ChatGPT. The default

embedding size of 768 was used. Each of these text encodings

are transformed into 1024-dimensional vector using a fully

connected layer, one for knowledge vector and another for

query encodings. We initialize the network with random weights

for training. During training, for each pipeline, we randomly

sample one query from the available generated queries. The

batch size is set to 512. The Adam optimizer (Kingma

and Ba, 2014) was used with learning rate 10-4 and weight

decay set to 1e-5. We employ early stopping to prevent the

model from overfitting and train it for several epochs until

it converges.

5.3.2 Evaluation protocols
The custom aggregation model learns a common embedding

space to retrieve a process graph given a natural language

query. These can be considered two modalities of data, namely,

graph and text. Therefore, we evaluate the custom aggregation

model described in Section 4.2.4 using retrieval metrics reported

by Salvador et al. (2017). For a given query embedding

qei, we retrieve the k closest graph embeddings ge1...k using

cosine similarity and present the results for k = 1, 3, and 5.

We perform retrieval evaluation for 1,000 data samples and

report results in Table 5. The definition of models reported is

as follows:

• GCN: A graph convolutional neural network that takes

pipeline graph Pi with node encodings Nei to generate gei
obtained using global mean pool of learned node embeddings.

• GAT: A graph attention neural network that takes pipeline

graph Pi with node encodings Nei to generate gei obtained

using global mean pool of learned node embeddings.

• Sent_Trans: Use pretrained sentence transformer to generate

gei using pipeline name and description. Use query text to

generate qei. Both gei and qei are 768-dimensional vector as

that is the default embedding size for sentence transformers.

• Sent_Trans_Finetune: Use qei and gei from Sent_Trans

model and transform them into 1024-dimensional vector

using a learnable fully connected layer.

• Custom_Agg: Model described in Algorithm 3 that takes in

node encodings Nei for each pipeline graph Pi to learn graph

embedding hei (equivalent of gei for this model).

• Custom_Agg_Knowledge: Model described in Algorithm 2.

It takes the output from Custom_Agg hei and transformed

knowledge vector kei to learn gei = α.hei + β .kei where α

and β are learnable weights.

6 Result and discussion

6.1 AIMKG overview

The statistical overview of AIMKG can be found in Table 2.

The AIMKG consisting of knowledge graphs KG1, KG2, and

KG3 contains 8 million nodes and 25 million relationships in

label property graph (LPG) format. There are ∼78 million triples

in RDF format which include the vector embeddings computed

as properties. There are 11 types of nodes that represent each

component of AI pipeline metadata and 13 types of relationships

among those entities. Currently, the knowledge graph consists

of 1.6 million AI pipelines executed for ∼10 k tasks with

∼53 k datasets and ∼270k models. The knowledge graph is

currently growing in size to include more pipelines and additional

knowledge. A sample pipeline present in AIMKG is described in

Supplementary material. The details of system maintenance and

performance are also included in Supplementary material.

TABLE 2 Overall statistics of AIMKG.

Components Quantity

# Nodes (LPG) 8 million

# Relationships (LPG) 25 million

# of triples (RDF) 78 million

# Types of nodes 14

# Types of relationships 15

# AI piplines ∼1.6 million
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TABLE 3 Comparative analysis of robustness of AIMKG and MLS-KG.

KGs Mean variance Median degree Max degree

MLS-KG 3.465 1 103

AIMKG 2.383 1 389

TABLE 4 User evaluation study.

Areas AIMKG MLS-KG

Computer vision 17/20 8/20

Natural language processing 16/20 10/20

Audio/speech 15/20 11/20

Video 15/20 10/20

Multimodal 6/10 6/10

Other 9/10 6/10

Total 78/100 51/100

Relevance of recommendations produced by AIMKG and MLS-KG recommenders.

6.2 AIMKG robustness

The first row in Table 3 shows the results obtained from

knowledge graph constructed using MLSchema ontology. It is

evident that the variance in node degrees is higher compared

to AIMKG. AIMKG demonstrates lower variance, confirming

the robustness of the knowledge graph construction scheme.

Furthermore, we observe that when using theMLSchema ontology,

only 71% of the nodes are part of the largest connected component

in the knowledge graph, while the remaining nodes are part of other

disconnected components. In contrast, AIKMG includes 93% of

the nodes in the largest connected component, indicating a more

coherent graph structure for performing downstream tasks.

6.3 Relevant pipeline recommendation
using custom heuristics

The results of user agreement on the relevance of

recommendations provided for query tasks are summarized

in Table 4. The goal is to return relevant pipelines for a given query

of unknown task. For each areas such as computer vision, natural

language processing, audio/speech, and video, 20 query tasks

were evaluated. Due to limited number of pipelines in AIMKG,

10 queries were evaluated for multimodal and other areas that

includes graphs, reasoning, and game-related learning. In total,

100 queries were evaluated for each recommender. According

to domain experts, the recommender utilizing AIMKG achieved

relevant results for 78% of the queries, while the MLSchema-based

recommender had a lower success rate of 51%. The Cohen’s kappa

score computed for the subset (25%) of the queries was found to

be 0.657, which is considered a substantial agreement between the

domain experts on the recommendation relevance. The computed

semantic properties utilized by the custom heuristic function

(Equation 2) played a significant role in understanding task nature

and capturing synonyms. For example, a query for Dialogue

Interpretation returned Dialogue Understanding as a relevant task,

showcasing the recommender’s ability to recognize synonyms.

In computer vision queries, there was a notable difference in

relevance scores due to significant number of challenging queries

which did not explicitly mention the word “image.” For example,

3D object detection and 3D human pose estimation do not have the

word image in it, but they are image-based tasks. Similarly, NLP-

based tasks also benefited from semantic enhancements present

in AIMKG. Video-based tasks are extensions of computer vision-

based tasks that includes temporal factor. Therefore, like computer

vision-based queries, a significant amount of video-based queries

did not explicitly have the word “video” in it. Some examples

include motion detection and human movement detection. The

category other was challenging for both recommenders as the

vocabulary curated for these areas is relatively small to identify

modalities of these tasks.

When AIMKG is deployed as an open-source platform, it

serves as a curated knowledge repository of open-source AI

innovations that are searchable, discoverable, and executable. Users

can search among 280 k models, 53 k datasets used for 10 k

tasks at one place. It is an AI exploration and experimentation

platform that hosts, serves, and refreshes state-of-the-art open-

source AI innovations. This enables the reproduction of AI

pipelines, including data preprocessing, pretraining, fine-tuning,

and model deployment, which are impactful across various

use cases. The broader practical impacts of AIMKG in fields

such as healthcare, finance, and legal for pipeline optimization

through relevant pipeline recommendation can be found in

Supplementary material.

6.4 Relevant pipeline recommendation
using graph learning

From Table 5, it can be observed that our

Custom_Agg_Knowledge model performed the best and

Custom_Agg performed second best against other baseline

approaches. The difference is that the former model utilizes

semantic properties computed for various pipeline graph

component entities as described in Section 3.4.2. Furthermore,

the proposed method demonstrated statistically significant

improvements over baseline methods, confirmed by both

Friedman’s test (p < 0.01) and pairwise Wilcoxon signed-rank

tests (p < 0.01). The results of sensitivity analysis and ablation

study can be found in Supplementary material. GCN and GAT

models weigh in more on learning the topological structure of

the graphs compared to node features. In AIMKG, all pipeline

graphs follow similar graph structure defined by CMO. To add,

most information about the pipeline is present as text in the node

features. Due to this, the text information gets diluted over graph

structure in GCN and GAT models. As expected, these models

have the least retrieval scores. The sentence transformer model was

evaluated with and without fine-tuning to test whether pipeline

descriptions (abstract, model-card) suffice for relevant retrieval.

The fine-tuned model performed better for the HuggingFace

and Combined datasets but not for Papers-with-Code, likely

due to its detailed description on pipelines already present in
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TABLE 5 Retrieval results of models for 1,000 datapoints, reported in percentage.

Models Papers-with-Code Huggingface Combined

R1 R3 R5 R1 R3 R5 R1 R3 R5

GAT 47.3 65.8 72.2 33 51.8 60.5 44.3 60 66.2

GCN 52.3 66.1 72.5 39 56.9 64.7 48.4 62.8 69

Sent_Trans 82.6 89.3 91.4 25.8 38.5 44.8 57.6 66.8 70.7

Sent_Trans_Finetune 65.4 80 83.2 47.8 65.6 73.2 69.0 79.6 83.6

Custom_Agg 85.9 90.8 92.2 55.9 69.2 73.9 74.8 82.7 85.8

Custom_Agg_Knowledge 87.1 91.5 94.1 58 71.1 75.7 76.3 85.4 87.7

The bold indicates the best performing model.

TABLE 6 Result of pipeline optimization achieved using AIMKG recommender.

Churn modeling TelcoCustomerChurn ForectCoverType

SpeedUp LossDi� SpeedUp LossDi� SpeedUp LossDi�

8.60 –0.11% 11.84 –0.63% 1.47 –0.02%

FIGURE 5

Sample query: list all the image detection pipelines with dataset and evaluations. The tasks “3d object detection” and “2d object detection” are

returned by AIMKG even though no explicit mention of “image.” To add, the graph traversed from task to datasets and models to identify models and

datasets used for image detection task. More sample queries of pipelines with hyperparameters can be found at Venkataramanan (2023).

abstract. Fine-tuning may have caused embedding instability for

Papers-with-Code, while it improved accuracy for HuggingFace

and the Combined dataset.

In summary, the Sent_Trans and Sent_Trans_Finetune

results show that pipeline graphs are essential for effective retrieval,

capturing relationships between datasets, models, tasks, and

entities. Descriptions from Papers-with-Code and HuggingFace

are limited. Traditional graph models such as GCN and GAT

underperformed on AIMKG due to their focus on topology

over node features. The proposed custom aggregation model,

emphasizing node features, outperformed others with added

knowledge-boosting results.
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FIGURE 6

Query: identify datasets similar to Awesome-chatgpt-prompts. In this example, similar datasets were identified based on graph traversal. That is, if the

datasets are used for the same task, they might be similar in certain aspects.

6.5 Pipeline optimization

In this section, we present the results on utilizing

recommendations from AIMKG to seed the AI pipeline

experimentations. Existing work Pedretti et al. (2023)

demonstrated the use of novel in-memory accelerator engines to

speed-up the inference of tree-based machine learning models

for heterogeneous (tabular) data, the most widely used type of

data across various industries. We employed seven widely used

real-world tabular datasets for binary/multi-class classification

and regression problems from research papers. In this section, we

demonstrate the improvements in executing the hyperparameter

optimization AI pipelines for gradient-boosted trees (XGBoost;

Chen and Guestrin, 2016) on several binary and multi-class

classification problems from that paper. Concretely, we collected

results from hyperparameter optimization pipelines for four

datasets (Eye Movement, Gas Concentration, Gesture Phase

Segmentation, and Rossmann Stores Sales). We then imported

the pipeline performance data into the AIMKG using one

of the developed parses and asked it to recommend pipeline

configurations for new, previously unseen, similar problems—

churn modeling, telco customer churn, and forest cover type.

We then used these recommendations from AIMKG to warm-up

the Bayesian (TPE—tree-structured Parzen Estimators; Bergstra

et al., 2011) hyperparameter optimization. We compared results

with the reference results where no warm-up initialization was

made. Table 6 shows three datasets. For each dataset, we report

observed speed-up (wall time) to optimize hyperparameters of

respective models to same or lower loss. In addition, we observed

that the final loss was lower compared to experiments without

warm-up initialization.

6.6 Additional attributes of AIMKG

6.6.1 Search using semantic enrichment and
graph traversal

We illustrate the potential of AIMKG to perform complex

queries that utilizes combination of custom heuristic functions in

Section 4.1 and graph traversal to return desired results through

Figure 5. We queried recommender to return datasets and models

used for image detection task. Since this task does not exist in the

repository, it identifies 2d-object detection and 3d object detection

as similar tasks using the heuristic function in Equation 2. Even

though the task names did not have explicit mention of the

word “image,” they are identified as image-based tasks due to

the semantic property modality. In addition, the recommender

traverses the path from Task → Pipeline → Stage →
Execution → Artifact → Dataset and Task → Pipeline →
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TABLE 7 Comparison of AIMKG at two di�erent timestamps.

Timestamp 1

Input Query:Models and Pipelines for the task “Question Answering”

Response:

Result-1:

Model: (i) BERT, (ii) GELU,

Pipeline: Leveraging Commonsense Knowledge on Classifying False News

and Determining Checkworthiness of Claims,

URL: https://arxiv.org/pdf/2108.03731v1.pdf,

Code: none,

Year of publication: 2021

Result-2:

Model: (i) VisualBERT, (ii) Learning Cross-Modality Encoder

Representations from Transformers

Pipeline: “A Comparison of Pre-trained Vision-and-Language Models for

Multimodal Representation Learning across Medical Images and Reports,”

URL: https://arxiv.org/pdf/2009.01523v1.pdf,

Code: https://github.com/YIKUAN8/Transformers-VQA7,

Year of publication: 2020

. . .

Timestamp 2

Input Query:Models and Pipelines for the task “Question Answering”

Response:

Result-1:

Model: mulinski/bert-finetuned-squad,

Pipeline: Question Answering using bert-finetuned-squad,

URL: https://huggingface.co/mulinski/bert-finetuned-squad,

Code: https://huggingface.co/mulinski/bert-finetuned-squad/tree/main,

Year of publication: 2023

Result-2:

Model: dantern/xlm-roberta-base-vn-dplat,

Pipeline: Question Answering using dantern/xlm-roberta-base-vn-dplat,

URL: https://huggingface.co/dantern/xlm-roberta-base-vn-dplat,

Code: https://huggingface.co/dantern/xlm-roberta-base-vn-dplat/tree/

main,

Year of publication: 2023

. . .

Stage → Execution → Artifact → Model to retrieve models

and datasets. More sample queries and their results can be found

at Venkataramanan (2023).

6.6.2 Relevant pipeline recommendation using
graph traversal

In addition to Equation 3, similar datasets can also be obtained

through graph traversal as shown in Figure 6. The query is to return

datasets similar to Awesome-chatgpt-prompts. Using the inference

that if the datasets are used for the same task, they can be similar

in certain aspects, we performed graph traversal query, and the

resulting graph is shown in Figure 6. To perform the same query,

that is to return similar datasets to a given dataset, other kinds of

inferences can be used such as (i) if the datasets are used in the

same pipeline, they can be considered; (ii) if the datasets are used in

the same pipeline with same model, they can be considered similar

and so on.

6.6.3 AIMKG: dynamic AI pipeline knowledge
repository

AIMKG is a constantly evolving graph that updates itself

periodically by fetching data from Papers-with-Code, OpenML,

and HuggingFace. We are also working toward including other

metadata sources mentioned in Table 1. This iterative process of

periodic updates involves continuousmonitoring, ensuring that the

graph remains current and reflective of the evolving information

landscape. Given that AI domain is ever changing with newmodels

being introduced and manuscripts being published, it is imminent

that AIMKG is live and dynamic. We demonstrate the importance

of maintaining a live pipeline for AIMKG using the example

described in Table 7.

We query AIMKG to return pipelines and models for the

task Question Answering. Before the integration of most recent

models from HuggingFace, AIMKG returned pipelines that

were published in 2021 and 2020, respectively. Each of these

pipelines used two models in their experimentation. When the

same query was ran at a different timestamp, after integrating

the most recent models, it returned bert-finetuned-squad and

xlm-roberta-base-vn-dplat as the models used for Question

Answering along with their pipelines. These models were

published in 2023. The result from AIMKG now contains

most recent models used for Question Answering. This

self-updating mechanism not only enhances the graph’s

comprehensiveness but also ensures that it consistently serves

as a reliable and up-to-date resource for users seeking the

latest insights and connections within the represented domain.

System maintenance and performance details are included in

Supplementary material.

6.6.4 Integration of multiple data sources
As mentioned in Section 3, AIMKG consists of pipeline

metadata obtained from multiple sources such as Papers-with-

Code, OpenML, and HuggingFace. It is worth noting that Papers-

with-Code and HuggingFace have information overlap to certain

degree. While the overlap has been identified and unified, it has

also helped in pipeline completion in certain cases. For example,

in Figure 7, AIMKG had pipeline name and report from Papers-

with-Code. For these pipelines, the model and dataset information

is not available via Papers-with-Code API as they were not recorded

by users explicitly. On the other hand, HuggingFace had model

and dataset information for these pipelines. By utilizing paper arxiv

ID and paper title, our AIMKG construction pipeline identified

that these two are from the same pipeline by mapping them to

CMO. While there are several such example, a few of them are

included in Figure 7 to demonstrate the concept of integration
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FIGURE 7

Sample of pipeline completion done by AIMKG by identifying identical concepts from Papers-with-Code and Huggingface.

of data sources that can aid in completion of pipeline metadata.

Ontologies and knowledge graphs excel at the task of recognizing

identical concepts present in various data sources. The ability

of ontologies and knowledge graphs to discern shared meanings

has enabled AIMKG to identify identical concepts from disparate

data contexts.

6.7 Comparison with ChatGPT

As Large Language Models (LLMs) have been known

to perform several tasks, we compared our AI pipeline

recommendation task with ChatGPT-3.5 (OpenAI, 2022).

We queried both our AIMKG recommender and ChatGPT

to return pipelines executed for the task Supervised Anomaly

Detection and reported the results in Table 8. Anomaly detection

is the task of detecting data instances that significantly deviate

from the majority of the data points (Pang et al., 2021). ChatGPT

offers an interactive framework for querying, and it returns the

models and their papers for common tasks such as 3D-aware

image synthesis. The model seems to generate relevant information

for familiar tasks from computer vision or natural language

processing. However, the model seems to generate non-existent

information for less familiar tasks such as anomaly detection or

sequence-to-sequence speech generation. ChatGPT was prompted

with sample query and sample expected response as mentioned

in Table 8. The model generated similar response as given in the

prompt. However, the pipelines returned by ChatGPT, in terms

of papers, seem to be non-existent in literature. That is, ChatGPT

exhibited instances of hallucination, generating information

that does not exist in a convincingly realistic manner which is a

well-known issue (Zuccon et al., 2023). In the response presented

in Table 8, all of GitHub links return 404 when attempted to

reach. For all the three recommended papers, the arxiv link is the

same and it does not belong to any of the papers recommended.

Paper 1 that was recommended with the title “DeepOne-Class:

Outlier Detection with Deep Learning” does not exist. This means

the model and dataset generated in the response are also in

question. For paper 2 and paper 3, the titles are partially correct

but papers with exact titles do not exist. Similarly, the datasets

mentioned in paper 2 and paper 3 are not the datasets used in

the actual paper. It is evident that the recommendations from

ChatGPT are not reliable to reproduce or train an AI pipeline.

More example responses along with explanations can be found in

Supplementary material.

On the other hand, AIMKG returns a list of relevant pipelines

for Supervised Anomaly Detection tasks as the exact match of the

task is unavailable. For brevity, the responses currently include

the paper and git repository from which the pipeline can be

reproduced. However, AIMKG can also list associated datasets,

models, and metrics for some of these pipelines. It is noteworthy

that the first recommendation task, Weakly Supervised Defect

Detection, did not explicitly mention the word anomaly. However,

our recommender captured that defect detection is synonymous

with anomaly detection in the domain of AI by just using a model

pretrained for generic tasks. This also demonstrates the efficiency
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TABLE 8 Comparison of AIMKG recommender with ChatGPT.

AIMKG results

Input query: Supervised Anomaly Detection

Response: Since the exact match is not found, we recommend the following

pipelines from relevant task:

Recommendation 1:

Similar Task Name: Weakly Supervised Defect Detection

Similarity: 0.4752

Pipline-1: S2D2Net: An Improved Approach For Robust Steel Surface

Defects Diagnosis With Small Sample Learning, URL: https://ieeexplore.

ieee.org/document/9506405, Git: https://github.com/vikxoxo/S2D2Net

Pipline-2: Mixed supervision for surface-defect detection: from weakly to

fully supervised learning, URL: https://arxiv.org/pdf/2104.06064v3.pdf, Git:

https://github.com/aws-samples/amazon-sagemaker-edge-defect-

detection-computer-vision

. . .

Recommendation 2:

Similar Task Name: Semi-supervised Anomaly Detection

Similarity: 0.4643

Pipline-1: Deep Semi-Supervised Anomaly Detection, URL: https://arxiv.

org/pdf/1906.02694v2.pdf, Git: https://github.com/Fraunhofer-AISEC/R2-

AD2

Pipline-2: Real-world Anomaly Detection in Surveillance Videos, URL:

http://arxiv.org/pdf/1801.04264v3.pdf, Git: https://github.com/

ShreyasArthur/AbnormalEventDetection

. . .

ChatGPT results

Input prompt: Create a session where you are an AI pipeline recommender.

I will request for a pipeline that has been executed in the past. You can use

any source you want. For example, when I request to recommend a pipeline

for “3d video object tracking”, I expect a response as follows:

Similar Task Name: 3D Object Tracking, Similarity: 0.6083, Piplines:

Exploring Point-BEV Fusion for 3D Point Cloud Object Tracking with

Transformer, URL: https://arxiv.org/pdf/2208.05216v1.pdf, Model:

Transformer, Dataset: KITTI, Github: https://github.com/jasonkks/pttr

Piplines: MOTSLAM: MOT-assisted monocular dynamic SLAM using

single-view depth estimation, URL: https://arxiv.org/pdf/2210.02038v1.pdf,

Model: SLAM, Dataset: KITTI, Github: none

Now give me the pipelines executed for supervised anomaly detection.

Response: Similar Task Name: Supervised Anomaly Detection, Similarity:

0.7254

1) Paper Title: “DeepOne-Class: Outlier Detection with Deep Learning,”

URL: https://arxiv.org/abs/1802.06360, Model: Deep Neural Networks,

Dataset: Credit Card Fraud, NAB, Github: https://github.com/hpzhao/

Anomaly-Detection-DeepOneClass

2) Paper Title: “Autoencoder-Based Anomaly Detection,” URL: https://

arxiv.org/abs/1802.06360, Model: Autoencoder, Dataset: MNIST, CIFAR-10,

Github: https://github.com/abnormal-1/anomaly-detection-resources

3) Paper Title: “LSTM-based Encoder-Decoder for Anomaly Detection,”

URL: https://arxiv.org/abs/1802.06360, Model: Long Short-Term Memory

(LSTM), Dataset: Time Series Anomaly Detection Benchmark, Github:

https://github.com/ChunFan-AST/LSTM_Anomaly_Detection

AIMKG responses can include model and dataset for each pipeline. Please refer Table 7

for model related examples. Please refer Supplementary material for more experiments with

ChatGPT.

of embedding and semantic property-based ranking functions

described in Equation 2. To add, the AIMKG recommender is

explainable by design and the results are explainable.

To summarize, AIMKG produces relevant explainable results

and also ensures the reproducibility of the recommended pipelines.

While ChatGPT may respond with relevant models for familiar

tasks, it hallucinates for many other cases, making it unreliable.

Though ChatGPT has access to the data sources AIMKG is

constructed with, it cannot construct an AI pipeline from the

information available to it. Therefore, the construction of AIMKG

enhanced with semantic knowledge is essential to recommend

relevant pipelines to users.

7 Conclusion

In this study, we proposed Common Metadata Ontology

(CMO) to construct an Artificial Intelligence pipeline Metadata

Knowledge Graph (AIMKG), a first-of-its-kind knowledge graph

for AI pipelines. AI pipeline metadata from open sources such

as Papers-with-Code, OpenML, and HuggingFace are integrated

to AIMKG, resulting in 1.6 million pipelines with semantic

enhancements. The semantic enhancements incorporated in

AIMKG capture implicit knowledge (Figure 5) and enhance

reasoning capabilities. AIMKG can also store multimodal data

types such as embeddings of task, dataset, model and pipeline

nodes, supporting text, and numeric and vector data types.

Using the computed semantic properties and embeddings, we

introduced a custom heuristic ranking metric to rank relevant

pipelines for recommendations using task, dataset, or model.

The custom heuristic ranking function captured the underlying

semantics of the pipeline entities, resulting in more relevant

recommendations than the MLSchema-based recommender. The

semantic properties also enhance search, as shown in Figure 5.

To enable natural language queries for pipelines, we proposed

a custom graph embedding aggregation model to retrieve and

recommend relevant pipelines. We also demonstrated the potential

of AIMKG in optimizing pipelines by seeding them with relevant

recommendations. Therefore, AIMKG is an atlas for navigating the

rapidly evolving artificial intelligence world.

Currently, not all tasks and datasets in AIMKG have computed

semantic properties such as modalities and categories. To address

this, we plan to leverage reports and manuscripts associated with

pipelines to automatically compute these properties, reducing the

biases associated with manually curated vocabularies. In addition,

we intend to calculate further semantic and statistical properties

for datasets and models, such as dataset image size, color scale,

number of classes, data points per class, and model type. We aim

to integrate metadata from other open-source repositories, such

as Kaggle and the Common Metadata Framework (Koomthanam

et al., 2024), into AIMKG. To enrich recommendations and

ensure completeness for all 1.6 million pipelines, we plan to

utilize fine-tuned language models for extracting information

from research papers. Although community-driven sources such

as Papers-with-Code, OpenML, and Hugging Face are widely

used, they may contain metadata inaccuracies. To improve

accuracy and reliability, we will implement robust metadata

validation techniques (Soedarmadji et al., 2019; Aggour et al.,

2017). In the future, we also envision interfacing AIMKG with

large language models (LLMs), enabling users to query pipeline
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lineage, models, datasets, tasks, and other components through an

interactive interface.
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