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Introduction:As the global prevalence of obesity continues to rise, it has become

a major public health concern requiring more accurate prediction methods.

Traditional regression models often fail to capture the complex interactions

between genetic, environmental, and behavioral factors contributing to obesity.

Methods: This study explores the potential of machine-learning techniques to

improve obesity risk prediction. Various supervised learning algorithms, including

the novel ANN-PSO hybrid model, were applied following comprehensive data

preprocessing and evaluation.

Results: The proposed ANN-PSO model achieved a remarkable accuracy rate

of 92%, outperforming traditional regression methods. SHAP was employed to

analyze feature importance, o�ering deeper insights into the influence of various

factors on obesity risk.

Discussion: The findings highlight the transformative role of advancedmachine-

learning models in public health research, o�ering a pathway for personalized

healthcare interventions. By providing detailed obesity risk profiles, these models

enable healthcare providers to tailor prevention and treatment strategies to

individual needs. The results underscore the need to integrate innovative

machine-learning approaches into global public health e�orts to combat the

growing obesity epidemic.
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1 Introduction

As a complicated and unsolvable public health and medical issue, obesity has spread

around the world and has serious adverse effects on both health and the economy

(Ward et al., 2019). This condition, which manifests as related medical and psychological

conditions, places a significant burden on one’s health and social life. World Health

Organization (WHO) defines obesity as an excess of adiposity, which is a build-up of

body fat that is harmful to one’s health (Word Health Organization, 2023). In order

to operationalize this definition, body mass index (BMI), a widely utilized measure of

body fat, is used to categorize obesity. More specifically, according to WHO guidelines,

individuals are classified as obese if their BMI exceeds 30 kg/m2. Obesity patients endure

persistent discrimination and stigma, which raises the risk of illness and death (Afshin

et al., 2017). In addition to the psychological consequences, obesity imposes substantial
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financial burdens on healthcare systems and entire communities

(Busebee et al., 2023; Ward et al., 2019). The prevalence of

obesity has nearly doubled globally since 1980. According to James

et al. (2001), presently, there exists a population of more than

200 million adult males and ∼300 million adult females who

are afflicted with obesity. Furthermore, estimates indicate that by

2030, obesity will affect roughly one in every two adults in the

US (Ward et al., 2019). Various ailments, including hypertension

(elevated blood pressure), cardiovascular disease, diabetes, stroke,

and different forms of cancer, are linked to this increase in the

prevalence of obesity (Pi-Sunyer, 1999). Obesity is also associated

with psychological effects, joint strain, and hormonal imbalances.

Research has repeatedly shown that people with BMI typically live

shorter lives (Berraho et al., 2010; Flegal et al., 2007). Obesity

greatly increases the risk of severe COVID-19, as it raises the

chances of negative outcomes such as admission to the hospital

or the Intensive Care Unit (ICU) and death (Arulanandam et al.,

2023; Singh et al., 2022; Steenblock et al., 2022). This association

can be attributed to various metabolic effects, inflammation, and

compromised lung function. Regression models have historically

been the main tool researchers use to assess the risk of obesity,

with a preference for linear modeling approaches. However,

the pursuit of novel methodologies has been motivated by the

constraints of conventional regression, such as restrictions on the

quantity of predictors and dependence on specific assumptions

(LeCroy et al., 2021; Wiemken and Kelley, 2020; Zhang et al.,

2009). Recent research has progressively adopted machine-learning

(ML) techniques, realizing the need for more advanced analysis

and providing the adaptability to record intricate, non-linear

interactions (Cheng et al., 2022). The field of machine-learning

is becoming increasingly valuable in the context of preventive

care. It is praised for its capacity to describe, adapt, learn, predict,

and analyze clinical data (Beam and Kohane, 2018). Advances in

Artificial Neural Networks (ANN) andDeep Learning (DP) present

a way to predict health outcomes more accurately. The main aim

of this paper is to carry out a thorough analysis of individuals for

obesity, with a specific emphasis on attaining greater precision in

predicting levels of obesity risk. Once the relevant datasets have

been collected, they undergo thorough preprocessing and feature

engineering to refine and prepare the data. Subsequently, seven

distinct supervised ML algorithms, namely Logistic Regression,

Random Forest (RF), Support Vector Machine (SVM), Light

Gradient Boosting Method (LGBM), Extreme Gradient Boosting

(XGBoost), Categorical Boosting (CATBoost), and Multi-Layer

Perceptron (MLP), were utilized to evaluate essential metrics

such as accuracy, precision, recall, and F1-score. We have

introduced a new hybrid model called ANN-PSO (Artificial Neural

Networks-Particle Swarm Optimization) alongside the traditional

ML algorithms. This novel approach combines the optimization

techniques of Particle SwarmOptimization (PSO) with the learning

abilities of ANN. The incorporation of the ANN-PSO model

enhances the complexity of our analysis, leveraging the synergistic

effects between optimization techniques and neural network-

based learning. The superior performance of this hybrid model

compared to traditional algorithms highlights its potential to

improve accuracy and effectiveness in predicting obesity. The

incorporation of the suggested model brings about a substantial

improvement to our approach, providing a promising opportunity

for further investigation in the domain of predictive analytics

for obesity.

2 Literature review

Various studies have explored the application of ML models

to predict obesity across different populations and age groups.

Diverse methodologies and datasets have been employed, ranging

from Electronic Health Records (EHR) and clinical decision

support systems to publicly available health data. Researchers

have experimented with an array of ML algorithms, including

ensemble methods, decision trees, Bayesian models, and SVM.

Muhamad Adnan et al. (2012) devised a hybrid methodology

that integrates Naïve Bayes (NB) with genetic algorithms to

enhance prediction accuracy and optimize parameters. The genetic

algorithm optimization resulted in the highest level of accuracy.

Significantly, they identified a vulnerability in the NB algorithm

pertaining to "zero value parameters." Their preliminary tests

showcased the efficacy of their method, correctly identifying 92%

of the samples with zero value parameters. Dugan et al. (2015)

explored the prediction of early childhood obesity using data

from the pediatric clinical decision support system, CHICA. They

utilized six ML techniques: Random Tree, RF, J48, ID3, NB,

and Bayes Net. Among these, the ID3 algorithm emerged as the

most effective, achieving an accuracy of 85% and a sensitivity

of 89% after thorough training and evaluation. Montañez et al.

(2017) applied ML methods to forecast obesity using publicly

accessible genetic profiles. They tested algorithms like SVM,

decision tree, decision rule, and k-NN to predict chronic hepatitis

susceptibility using Single Nucleotide Polymorphisms (SNPs) data.

SVM performed the best, achieving a notable AUC of 90.5%.

Zheng and Ruggiero (2017) created a high school student obesity

prediction model utilizing nine health-related behaviors. They

applied binary LR, an improved decision tree (IDT), weighted K-

NN, and ANN model. The results showed that the IDT reached

80.23% accuracy, the ANN 84.22%, and the k-NN 88.92%. Jindal

et al. (2018) performed a study that aimed to predict obesity by

employing ensemble machine-learning techniques. Their strategy

achieved an impressive accuracy of 89.68% in predicting obesity,

demonstrating its effectiveness. Hammond et al. (2019) used EHR

data and publicly available datasets to predict childhood obesity

with models like LR, RF, and GBoost. Their study focused on

predicting obesity by age five and reported accuracies of 82%

for girls and 76% for boys, with LASSO regression showing

particularly strong performance. Singh and Tawfik (2019) utilized

data from the UK’s Millennium Cohort Study to develop a

ML model predicting the likelihood of adolescents developing

overweight or obesity. Using BMI values from ages 3, 5, 7,

and 11, they achieved a prediction accuracy exceeding 90% for

the target class despite dataset imbalance. Taghiyev et al. (2020)

introduced a hybrid model combining DT and LR techniques to

identify and predict obesity. Their approach involved two stages:

feature selection followed by classification. The study found that

obesity risk in women rises with age, number of pregnancies,

blood pressure, body weight, and blood glucose levels. This

model achieved an accuracy of 91.4%. Fu et al. (2020) devised

a machine-learning framework for forecasting childhood obesity.
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They employed health examination data, lifestyle and dietary

habits, and anthropometric measurements in their analysis. Out

of the 25 features analyzed, the course of BMI Z-score during

the initial year of a child’s life and the mother’s BMI at the

moment of enrolling in the program were found to be important

predictors of childhood obesity. Cervantes and Palacio (2020)

utilized SVM, DT, and k-means techniques to categorize obesity

levels in people aged 18 to 25. Their goal was to optimize

interventions designed to promote a more healthful lifestyle.

Thamrin et al. (2021) examined the data from the Indonesian Basic

Health Research and utilized ML techniques, including NB, LR,

and CART (Classification and Regression Trees). The objective was

to determine the risk factors for obesity, and it was discovered

that LR model yielded the most accurate results. However, the

agreement between the predicted and measured obesity rates

was only moderate. Cheng et al. (2021) conducted experiments

with eleven classification algorithms, such as LR, MLP, NB, and

fuzzy classifier. They achieved a maximum overall accuracy of

70% by employing a random subspace algorithm. Marcos-Pasero

et al. (2021) used RF and GBoost algorithms to forecast BMI,

leveraging 190 variables from a sample of 221 children aged 6–9

years. These techniques effectively capture complex relationships in

high-dimensional data, with RF improving prediction accuracy by

averaging multiple decision trees and assessing variable importance

via out-of-bag (OOB) error. Zare et al. (2021) predicted obesity

in fourth graders using BMI data from kindergarten along with

demographic and socioeconomic factors. Their LR and ANN

models achieved an accuracy of about 87%, with the kindergarten

BMI Z-score emerging as a crucial predictor of future obesity,

highlighting the importance of early BMI data. Pang et al. (2021)

carried out a study on the prediction of childhood obesity using

EHR data. They employed seven different techniques, including

XGBoost, which achieved an accuracy of 66.14%. Their study

highlighted the significance of using authentic EHR data to

support research on interventions for childhood obesity. Rodríguez

et al. (2021) proposed an ML model to predict obesity and

overweight, using 16 features related to physical condition and

diet. Among several algorithms tested, including DT, SVM, k-

NN, Gaussian naive Bayes, MLP, RF, gradient boosting, and

GXBoost, RF showed the best performance with 78% accuracy.

Cheng et al. (2022) used long short-term memory (LSTM)

models to predict BMI in children aged 0–4 using EHR data

from 2 to 8 visits. It found that five visits were sufficient

for accurate predictions, with a combined model achieving an

MAE of 0.98 and R2 of 0.72. The final model identified 24

key variables, improving prediction reliability before age 4. A

summary of previous works on obesity classification is presented

in Table 1.

While previous works on obesity prediction have strengths

like the use of diverse algorithms and large datasets, they often

suffer from low accuracy, overfitting, and a lack of adaptability

to new data. This study tries to address these weaknesses by

applying the ANN-PSO model, which optimizes neural network

hyperparameters through Particle Swarm Optimization. This

approach enhances both accuracy and robustness, effectively

filling the gaps left by traditional machine-learning models in

obesity prediction.

3 Materials and methods

The primary objective of this study is to employ machine-

learning methods to assess an individual’s degree of obesity by

examining their dietary patterns and physical state. The study

categorizes individuals into seven distinct categories based on their

BMI, given by Equation 1, which is a key determinant. These

categories include underweight, normal weight, overweight level I,

overweight level II, obese type I, obese type II, and obese type III.

BMI =
weight (kg)

height (m)2
(1)

This classification confirms the criteria set forth by the WHO

guidelines, as delineated in Table 2. The primary objective is to

create a prognostic model that precisely classifies individuals into

the designated obesity categories. This model has the capacity

to make a significant contribution to the early detection and

prevention of obesity, establishing the basis for personalized

treatment plans that are specifically designed to meet the individual

needs of each patient. To ensure a robust evaluation of the

predictive models, the dataset was strategically split, with 70%

allocated for training purposes, 15% for validation, and the

remaining data reserved for testing. The training dataset was

subsequently partitioned into ten equivalent subsets for the purpose

of 10-fold cross-validation, further enhancing the reliability of the

model training and providing a comprehensive assessment of their

performance on unseen data. The study employed a diverse set of

ML algorithms, including LR, SVM, RF, MLP, LGBM, XGBoost,

and CATBoost. The inclusion of this varied array of algorithms

enables a comprehensive exploration of the dataset, capturing

diverse patterns and nuances. Each algorithm contributes unique

strengths, collectively enhancing the study’s capacity to predict

and classify obesity levels based on dietary habits and physical

conditions. In addition to leveraging traditional ML algorithms, the

study incorporated a hybrid algorithm known as ANN-PSO. This

innovative approach combines Particle Swarm Optimization with

Artificial Neural Networks to enhance the optimization process.

Following the deployment of ANN-PSO, the study conducted a

meticulous comparison, pitting the performance of the hybrid

metaheuristic algorithm against various ML models. The primary

metric for this comparative analysis was accuracy, providing a

comprehensive evaluation of the predictive capabilities of both

ANN-PSO and the seven ML models. This approach underscores

a holistic exploration, considering both traditional ML methods

and advanced hybrid metaheuristic solutions for predicting obesity

based on dietary habits and physical conditions.

3.1 Overview of datasets

The dataset contains estimated obesity rates for people from

Colombia, Peru, and Mexico who are between the ages of 14 and

61. These people’s physical and dietary characteristics vary widely.

Data collection was carried out using an online survey platform,

where participants who chose to remain anonymous answered a

range of questions. Through this process, a total of 17 attributes

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2024.1469981
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Helforoush and Sayyad 10.3389/fdata.2024.1469981

TABLE 1 Background works summary.

References Machine-learning methods Dataset Features Accuracy

Muhamad Adnan et al. (2012) Naïve Bayes with genetic algorithms 180 19 0.92

Dugan et al. (2015) Random Tree, Random Forest, J48, ID3,

Naive Bayes (NB),

7519 167 0.85

Montañez et al. (2017) SVM, decision tree, decision rule, MLP,

and k-NN

6622 13 0.905

Zheng and Ruggiero (2017) K-NN 5227 9 0.8882

Jindal et al. (2018) RF Ensemble method 600 5 0.8968

Hammond et al. (2019) LR, RF, and GBoost 3449 150 0.82

Singh and Tawfik (2019) MLP 11110 4 0.91

Taghiyev et al. (2020) DT + LR 500 26 0.914

Fu et al. (2020) LightGBM 8269 25 0.74

Cervantes and Palacio (2020) DT + k-means 178 17 0.98

Thamrin et al. (2021) Naïve Bayes, LR, and CART 618,89 21 0.72

Cheng et al. (2021) LR, MLP, naïve Bayes, and fuzzy

classifier

7162 5 0.7

Marcos-Pasero et al. (2021) RF and GBoost 221 190 0.55

Zare et al. (2021) LR, RF, NN 2147 18 0.87

Pang et al. (2021) XGBoost 27203 54 0.66

Rodríguez et al. (2021) RF 211 16 0.78

Cheng et al. (2022) LSTM 269 24 0.72

TABLE 2 BMI classification based on the WHO.

Class BMI range

Underweight Less than 18.5

Normal 18.5–24.9

Overweight 25.0–29.9

Obesity I 30.0–34.9

Obesity II 35.0–39.9

Obesity III Higher than 40

were obtained for analysis. In the data integration phase of this

research project, two datasets, one with 2,111 records and the

other with 20,758 records, were seamlessly merged, each possessing

identical features. The decision to combine datasets with matching

features was deliberate, aiming to create a consolidated dataset that

maximizes the richness of the information available. Both datasets

shared common variables, facilitating a straightforward merging

process (Palechor and Manotas, 2019; Reade and Chow, 2024),

offering a holistic perspective and contributing to the robustness

and generalizability of the study’s findings. The consolidated

dataset serves as a comprehensive repository for evaluating

obesity levels in individuals, considering both dietary habits and

physical conditions. It includes a mix of numeric, binary, and

categorical variables. The dataset’s focal point is a crucial target

variable, providing detailed classifications into distinct obesity

levels, ranging from Underweight to various Obesity Types (I, II,

and III). Figure 1 presents the distribution of participants across

seven distinct obesity risk categories, illustrating the frequencies of

each category as determined by the dependent variable. This diverse

dataset enables a thorough exploration of the complex interplay

between different factors and the nuanced categorization of obesity

levels. Table 3 offers a detailed overview of the data variables,

including their names, types, and precise definitions. The dataset

includes eating habit attributes like high-calorie food and vegetable

consumption, number of daily main meals, food consumption

between meals, daily water intake, and alcohol consumption. It

also covers aspects of physical condition like tracking calories, how

often people exercise, how long they spend on technology, and how

they get around.

3.1.1 Feature engineering
The correlation matrix of the dataset, as it is shown in

Figure 2, reveals significant relationships between various features

and obesity levels. Notably, weight (0.92) and height (0.15) show

positive correlations with obesity, underscoring their direct impact

on BMI, a critical indicator of obesity. Family history (0.52) and age

(0.35) also exhibit moderate correlations, reflecting the genetic and

age-related factors influencing obesity. Negative correlations are

observed with CAEC (–0.36), suggesting that certain dietary habits

inversely affect obesity levels. In the process of feature engineering

and data preprocessing for this study, several meticulous steps

were undertaken to enhance the quality and relevance of the

dataset for obesity prediction. Initial steps involved the removal

of null values, outliers, and duplicates, ensuring data integrity.
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TABLE 3 Dataset overview.

Features Values

Gender Male = 0, Female = 1

Age Numeric

Height Numeric

Weight Numeric

Family with overweight No = 0/Yes = 1

FAVC (Frequent consumption

of high caloric food)

0 = Yes/1 = No

FCVC (Frequent

consumption of vegetables)

1,2 or 3

NCP (Number of main meals) 1, 2, 3 or 4

CAEC (Consumption of food

between meals)

No = 1, Sometimes = 2, Frequently = 3 or

Always = 4

Smoke No = 0/Yes = 1

CH2O (Consumption of

water daily)

1, 2 or 3

SCC (Calories consumption

monitoring)

No = 0/Yes = 1

FAF (Physical activity

frequency)

0, 1, 2 or 3

TUE (Time using technology

devices)

0, 1 or 2

CALC (Consumption of

alcohol)

No = 1, Sometimes = 2, Frequently = 3 or

Always = 4

MTRANS (Transportation

used)

Automobile, motorbike, and public

transportation and walking

Obesity level Insufficient Weight = 1, Normal Weight = 2,

Overweight Level I = 3, Overweight Level

II = 4, Obesity Type I = 5, Obesity Type II = 6,

Obesity Type III = 7

Subsequently, to enhance the robustness of our analysis and avoid

trivial dependencies, we removed height from the dataset. This

decision was based on the observation that height, along with

weight, can directly influence the calculation of BMI, which in

turn affects the dependent variable. Given that BMI is a simplistic

measure and can misclassify individuals due to factors such as

muscle mass, fat distribution, or metabolic health, our goal was

to develop a model that does not rely on BMI for prediction. By

excluding height, we aimed to focus on other features within the

dataset—such as dietary habits, physical activity, genetic markers,

and demographic factors—that provide a more comprehensive

understanding of obesity. This approach ensures that our model’s

predictions are not biased by variables that could trivially affect

the outcomes and allows us to explore patterns beyond the direct

influence of BMI. Further enriching the dataset, a new feature,

"Meal Habits," was created by combining FCVC andNCP, capturing

the joint influence of these variables on overall meal habits.

Meal Habits = FCVC×NCP (2)

Additionally, the interplay between physical activity and

sedentary behavior was addressed by introducing the "Activity

Balance" feature, combining FAF and TUE. This feature reflects the

balance between engagement in physical activity and time spent on

technology, providing insights into participants’ lifestyles.

Activity Balance = FAF− ScaleTUE (3)

Where Scale (TUE) represents a scaled version of the ’TUE’

variable, ensuring compatibility with the FAF values. Also,

recognizing the influence of age on technology usage, a "Tech

Usage Score" was derived by weighting TUE based on age. This

score quantifies the average amount of time a person spends using

technology per unit of their age, providing a normalized measure

for further analysis.

Tech Usage Score =
ScaleTUE

age
(4)

The transportation mode feature (MTRANS) was thoughtfully

modified to categorize modes based on physical activity, aligning

with the research focus on obesity prediction. Lastly, recognizing

the imbalance within the obesity level as a target feature, as shown

in Figure 1, the Synthetic Minority Over-sampling Technique

(SMOTE) was employed to intelligently generate synthetic

instances of the minority class, mitigate class imbalance, and

promote a more representative distribution (Chawla et al.,

2002). These comprehensive feature engineering and data

preprocessing steps contribute to a refined and balanced dataset,

setting the foundation for robust obesity prediction models in

this research.

3.2 Machine-learning supervised
algorithms

3.2.1 Logistic regression
Logistic regression is a widely used supervised machine-

learning classifier that estimates the probability of an event

occurring based on a dataset of independent variables. For

multiclass scenarios, multinomial logistic regression is employed.

The algorithm works by fitting a logistic function to the data to

determine the likelihood of different classes. Multinomial logistic

regression’s ability to handle multiclass problems makes it a

valuable tool in various applications requiring classification tasks

(LaValley, 2008). Unlike binary LR (Kanade, 2022b; Sperandei,

2014), which uses the sigmoid function, multinomial logistic

regression generalizes the logistic function to accommodate

multiple classes.

3.2.2 Support Vector Machine
One of the best types of supervised ML algorithms is

the Support Vector Machine, which is particularly effective in

solving intricate problems related to classification, regression, and

outlier detection. It accomplishes this by establishing optimal

decision boundaries among data points according to their labels
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FIGURE 1

Dataset class distribution.

or outputs. SVMs aim to identify hyperplanes that distinctly

segregate data points, maximizing the margin between support

vectors to enhance classification accuracy (Kanade, 2022a). By

transforming input data into higher-dimensional feature spaces

using kernel functions, SVMs can effectively handle both linear

and non-linearly separable data. SVMs’ effectiveness lies in

their ability to find optimal hyperplanes that maximize margins

between different classes while minimizing classification errors,

making them valuable in diverse applications across industries

like healthcare, natural language processing, signal processing,

speech, and image recognition fields (Kanade, 2022a; Suthaharan,

2016).

3.2.3 Random Forest
The Random Forest algorithm is a powerful method that

enhances the accuracy of classification and regression tasks. It

works by creating many decision trees during training. Each

tree uses a random selection of features and data and then

combines their predictions for more reliable results (Rigatti, 2017;

Schonlau and Zou, 2020). The ultimate forecast is established

by consolidating the forecasts of individual trees, either by

means of voting for classification or averaging for regression.

RF mitigates overfitting by introducing randomness in the

feature selection process and promoting diversity among the

constituent trees. This algorithm is known for its remarkable

performance, scalability, and ability to manage large datasets

with many dimensions. Its versatility, resilience to noise (Kursa,

2014), and capability to capture complex relationships in data

make RF a popular choice in various ML applications across

different domains.

3.2.4 XGBoost
XGBoost, short for Extreme Gradient Boosting, is a well-

known library that implements distributed gradient boosting

decision trees (GBDT). It is widely recognized for its exceptional

efficiency, flexibility, and portability (Chen and Guestrin,

2016). GBDT is an ensemble learning algorithm employing

decision trees, much like the RF, suitable for both classification

and regression tasks. However, the key divergence lies in the

methodology employed for building and combining these

trees (Ramraj et al., 2016). Operating under a parallel tree-

boosting framework, XGBoost excels in swiftly and accurately

addressing various data science challenges. One of its standout

features lies in the algorithm’s ability to apply regularization

through both L1 and L2 penalties, crucial for preventing

overfitting and enhancing model generalization (Choudhuri,

2022).

3.2.5 LGBM
In traditional implementations of GBDT, the amount of

computing effort grows in direct proportion to the number

of features and the size of the sample dataset. LightGBM

employs a novel technique called "gradient-based one-side

sampling", facilitating faster training by focusing on instances

with larger gradients (Ke et al., 2017). Additionally, LGBM

adopts a histogram-based learning approach, enhancing

computational efficiency by discretizing continuous features.

These optimizations contribute to LGBM’s reputation

for being one of the fastest and most efficient gradient-

boosting frameworks, making it a favored choice for various

ML applications.
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FIGURE 2

Dataset correlation matrix.

3.2.6 CATBoost
Categorical Boosting stands out as a formidable gradient-

boosting algorithm meticulously crafted for ML endeavors. Its

exceptional strength lies in its adeptness at handling input

spaces that incorporate categorical features, making it particularly

well-suited for tasks where such features play a crucial role

in the learning process (de la Bourdonnaye and Daniel, 2022;

Dorogush et al., 2017, 2018). The algorithm implements innovative

techniques like ordered boosting, oblivious trees, and a specialized

algorithm for dealing with numerical and categorical features

simultaneously. One of its notable strengths lies in its efficient

handling of categorical features. CATBoost algorithm stands out

from others as it eliminates the need for preprocessing or one-hot

encoding when dealing with categorical variables. This simplifies

the training process and minimizes the chances of data leakage.

3.2.7 Multi-layer perception
The MLP, a commonly used type of ANN in machine-learning,

comprises multiple layers: an input layer, one or more hidden

layers, and an output layer (Dirik, 2023; Disse et al., 2018).

The hidden layers introduce complexity, enabling the network

to learn intricate patterns from input data. Each node in these

layers, excluding the input layer, utilizes nonlinear activation

functions, introducing non-linearity into the model. One of

the key strengths of MLP lies in its application of supervised

learning. Backpropagation, a technique integral to MLP training,

involves continuously fine-tuning weights and biases to reduce

the gap between predicted and observed outputs. This iterative

learning process allows MLP to effectively capture and represent

complex relationships in data, making it a versatile tool in various

ML applications.

3.3 Hybrid ANN-PSO approach

The use of backpropagation as the primary learning algorithm

in ANN models does not always ensure optimal solutions, as it

can get stuck in sub-optimal weight configurations, hindering the

achievement of favorable outcomes. Challenges in simple ANNs

include identifying the suitable network architecture for a specific

problem, slow learning processes requiring numerous iterations for

convergence, rapid forgetting when encountering infrequently seen

examples, and the lack of foundational first principal knowledge
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FIGURE 3

ANN-PSO model flowchart.

(Ungar et al., 1990). Particle Swarm Optimization is a population-

based algorithm that is renowned for its distinct proficiency in

locating optimized solutions and can play a pivotal role in achieving

optimal network topology and weights. Consequently, this paper

employs PSO as the training algorithm, aiming to determine a set

of weights with minimum cost function value, specifically the mean

square error (MSE), and consequently increases the performance of

the model.

3.3.1 Particle swarm optimization
PSO operates on the principles of cultural adaptation, drawing

inspiration from behaviors observed in bird flocks (Eberhart and

Kennedy, 1995). Each particle in the swarm assesses its neighbors,

TABLE 4 Hyperparameter values for grid and random search.

Model Hyperparameter Considered values

Logistic regression Penalty l1, l2

C [1, 10]

Max Iterations [100, 1000]

SVM C 1–10

Kernel Linear, poly, RBF (radial

basis function), sigmoid

Gamma Scale, auto

LGBM Random State 42, 101, 202

Learning Rate [0.001, 0.1]

n_estimators [100, 1000]

lambda_l1 [0.001, 0.05]

lambda_l2 [0.001, 0.05]

max_depth [1, 20]

colsample_bytree [0.1, 1]

subsample [0.1, 1]

XGBoost Learning Rate [0.001, 1]

n_estimators [100, 1000]

max_depth [1, 20]

min_child_weight [10, 30]

gamma [1e-8, 1]

colsample_bytree [0, 1]

subsample [0, 1]

reg_alpha [1e-8, 10]

reg_lambda [1e-8, 10]

CATBoost Learning Rate [0.001, 0.1]

Depth [1, 20]

l2_leaf_reg [0.001, 1]

Bootstrap Type Bayesian, Bernoulli,

Poisson

Random Strength [1e-8, 1e-4]

n_estimators [100, 1000]

MLP Hidden Layers [3, 5]

Dense Layer Neurons 32, 64, 128, 256, 512

Activation Function ReLU, Sigmoid, Tanh

Kernel Initializer HeNormal, GlorotUniform

Optimizer Adam, SGD, RMSProp

Learning Rate [0.0001, 0.1]

PSO Wmax [0.6, 0.9]

Wmin [0.1, 0.5]

Cognitive Coefficient 1, 1.5, 2

compares itself to others, and emulates superior particles, fostering

a collaborative approach. Unlike competitive heuristic algorithms,

such as genetic algorithms (Goldberg and Richardson, 1987) or ant
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TABLE 5 Best parameters for di�erent algorithms.

Algorithm Best parameters

LR Penalty = l2; C = 1; Max iteration = 200

SVM C = 1; Kernel = radial basis function;

gamma = scale

LGBM random_state = 42;

learning_rate = 0.01197;

n_estimators = 509;

lambda_l1 = 0.00972;

lambda_l2 = 0.03854; max_depth = 11;

colsample_bytree = 0.73643;

subsample = 0.95299

XGBoost learning_rate = 0.09703;

n_estimators = 392; max_depth = 10;

min_child_weight = 23.04133;

gamma = 0.00038;

colsample_bytree = 0.36017;

subsample = 0.64307;

reg_alpha = 0.03715;

reg_lambda = 3.3051e-08

CATBoost learning_rate = 0.07739; depth = 5;

l2_leaf_reg = 0.100297;

bootstrap_type = Bayesian;

random_strength = 3.2419e-08;

n_estimators = 501

MLP Hidden_layer = (128-64-32);

Activation_Function = ReLu;

Kernel_Initializer = HeNormal;

Optimizer = Adam;

Learning_Rate = 0.001

PSO cognitive_coefficient = 2;

social_coefficient = 2;

maximum_inertia_weight

(Wmax) = 0.9;

minimum_inertia_weight

(Wmin) = 0.2; number_of_particles = 40

colony optimization (Dorigo et al., 2006), PSO aims to converge

toward the global optimum of a multidimensional and potentially

nonlinear function. In PSO, swarms of particles represent potential

solutions, moving through the search space to find the global

optimum. Each particle maintains its best position (Pbest) and

contributes to the swarm’s global best position (Gbest). The

optimization process relies on the collaboration between particles,

with their velocities updated based on individual and global

best positions, employing both social and cognitive components

randomly. The algorithm can initialize particle populations with

either random or heuristic positions, terminating after a defined

number of iterations (Shi and Eberhart, 1998). During each

iteration, each particle adjusts its speed and position based on the

following formulas:

vk+1
i = ωvki + c1r1

(

Pbest,i − xki

)

+ c2r2

(

Gbest − xki

)

(5)

xk+1
i = xki + vk+1

i (6)

The position of each particle is expressed as a vector in

a multidimensional space, where each dimension of the vector

corresponds to a specific coordinate xi. Likewise, the speed

of every particle, represented as v, is described as a vector

with xi components. The variable k represents the number

of iterations performed during the optimization process. The

constants c1 and c2 determine the rate at which the particles’

velocities change, affecting the amount of learning that occurs

in each iteration. Furthermore, r1 and r2 denote random

variables that follow a uniform distribution between 0 and

1. These variables contribute to the stochastic nature of the

optimization process and improve its ability to explore different

possibilities. The PSO algorithm adjusts the inertia weight using the

following formula:

ω
k
= ωmax −

(

ωmax − ωmin

kmax

)

× k (7)

where ω
k represents the inertia weight used in each iteration, kmax

represents the maximum number of iterations, and ωmax and ωmin

represent the maximum and minimum values of the inertia weight,

respectively.

The hybrid ANN-PSO model combines the strengths of ANN,

which are powerful for learning complex patterns from data,

with PSO, known for efficiently finding optimal solutions in

large search spaces. This combination synergistically enhances

the model’s ability to handle complex optimization tasks. This

powerful ML technique begins by initializing a neural network

with random weights. It then utilizes the PSO algorithm to

determine the optimal set of weights for the neural network.

The ANN is responsible for performing learning and processing

tasks, while the PSO algorithm is employed to discover the

optimal weights that improve the performance of the neural

network. The integration of this optimization algorithm in the

ANN-PSO model enhances the speed at which superior solutions

are found, surpassing the reliance solely on ANN learning.

This integrated model combines the individual strengths of both

algorithms, resulting in enhanced optimization and training results.

Figure 3 illustrates the schematic representation of the proposed

hybrid model.

3.4 Hyper parameter tuning

In the pursuit of optimizing predictive performance,

hyperparameter tuning played a pivotal role in this research,

which involved the exploration of all ML algorithms applied in this

research. Hyperparameter tuning is a critical step in fine-tuning

the configuration of these models to achieve optimal results.

By systematically adjusting parameters such as learning rates,

regularization terms, and tree depths, we aimed to identify the most

effective combinations for each algorithm. The process involved a

comprehensive search across the hyperparameter space, utilizing

techniques like grid search or randomized search, to enhance

the models’ predictive accuracy and generalization across diverse

datasets. The considered hyperparameter values for each model,

which were explored during the grid and random search processes,

are detailed in Table 4. This table provides an overview of the range

of hyperparameters tested, offering insight into the tuning process

that led to the selection of the optimal parameters presented

in Table 5.
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TABLE 6 Results from di�erent machine-learning models.

Model Categories Insu�cient
weight

Normal
weight

Overweight
level I

Overweight
level II

Obesity
type I

Obesity
type II

Obesity
type III

LR Precision 0.91 0.72 0.65 0.63 0.78 0.97 1

Recall 0.84 0.76 0.71 0.62 0.77 0.93 0.99

F-1 score 0.88 0.74 0.68 0.62 0.78 0.95 1

Accuracy 0.8072

SVM Precision 0.9 0.77 0.72 0.76 0.79 0.97 0.99

Recall 0.89 0.78 0.75 0.7 0.86 0.94 1

F-1 score 0.89 0.78 0.74 0.73 0.82 0.96 0.99

Accuracy 0.844

RF Precision 0.94 0.85 0.79 0.085 0.88 0.97 1

Recall 0.93 0.84 0.83 0.79 0.91 0.97 1

F-1 score 0.93 0.85 0.81 0.82 0.9 0.97 1

Accuracy 0.8968

LGBM Precision 0.92 0.85 0.81 0.79 0.89 0.97 1

Recall 0.94 0.83 0.77 0.84 0.89 0.98 1

F-1 score 0.93 0.84 0.79 0.82 0.89 0.97 1

Accuracy 0.8916

XGBoost Precision 0.93 0.84 0.81 0.8 0.88 0.97 1

Recall 0.94 0.83 0.78 0.83 0.88 0.98 1

F-1 score 0.93 0.84 0.8 0.82 0.88 0.97 1

Accuracy 0.8903

CATBoost Precision 0.93 0.84 0.82 0.81 0.9 0.97 1

Recall 0.94 0.84 0.79 0.85 0.88 0.98 1

F-1 score 0.93 0.84 0.8 0.83 0.89 0.97 1

Accuracy 0.8948

MLP Precision 0.91 0.79 0.75 0.73 0.88 0.95 1

Recall 0.88 0.8 0.76 0.76 0.84 0.97 1

F-1 score 0.9 0.79 0.75 0.75 0.86 0.96 1

Accuracy 0.858

ANN-PSO Precision 0.95 0.88 0.86 0.84 0.92 0.98 1

Recall 0.94 0.88 0.84 0.87 0.91 0.98 1

F-1 score 0.95 0.88 0.85 0.86 0.91 0.98 1

Accuracy 0.9179
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FIGURE 4

Confusion matrix, LGBM model.

4 Results and discussion

4.1 Performance indicators

The proposed model’s effectiveness in classifying obesity was

assessed using four metrics: Accuracy, Precision, Recall, and F1

Score. Accuracy is an important measure that quantifies the

percentage of correctly predicted samples out of the total. True

positives (tp) refer to instances where the model accurately predicts

positive categories, while false positives (fp) refer to instances

where the model inaccurately predicts positive categories. On the

other hand, true negatives (tn) refer to cases where the model

correctly predicts negative categories, whereas false negatives (fn)

occur when the model incorrectly predicts negative categories.

Precision is a measure of the model’s ability to correctly identify

positive cases (tp) among all predicted positives in its predictions

(tp and fp). A higher precision value indicates more accurate

detection of positive cases and better overall performance. Recall

assesses how well the model identifies tp instances among all actual

positives (tp and fn). A high recall indicates the model effectively

captures a significant proportion of positive cases, minimizing

the likelihood of overlooking fn. Simultaneously, a significant F1-

Score indicates that the model achieves a harmonious equilibrium

between precision and recall, suggesting a comprehensive and

balanced performance.

4.2 Experimental results

Machine-learning models, encompassing LR, SVM, RF, LGBM,

XGBoost, CATBoost, and MLP were deployed to predict obesity

across seven categories. The accuracy results, outlined in

Table 6, demonstrate varied performances among these models.

Notably, RF, LGBM, XGBoost, CATBoost, and MLP exhibit

high accuracies ranging from 85 to 89%, showcasing substantial

predictive capabilities in discerning between different obesity

classes. However, the standout performer is the proposed hybrid

model, ANN-PSO, achieving an impressive accuracy of 91.79%.

The proposed hybrid model surpasses individual algorithms,

highlighting its exceptional ability to predict different obesity

classes. Beyond accuracy, Table 6 presents a detailed classification

report, incorporating overall accuracy, precision, recall, and F-1

score for each model and obesity category.

The superior performance of the ANN-PSO model in

predicting different levels of obesity across the seven classes can be

attributed to the synergistic combination of neural networks and

a metaheuristic algorithm like PSO. While ANNs are powerful in

learning complex patterns and representations from data, the PSO

algorithm further optimized the network weights and architecture,

leading to improved generalization and predictive capabilities. A

closer examination of the class-wise performance metrics reveals

the robustness of the proposed model. It exhibited consistently
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FIGURE 5

Confusion matrix, XGBoost model.

high precision, recall, and F1 scores across all classes, including

the more challenging "Overweight Type I," "Overweight Type II,"

and "Obesity Type I" categories. This is a significant advantage over

the other models, which tended to perform well in the majority

classes but struggled with the minority, severe obesity classes.

In addition to quantitative metrics, Figures 4–6 depict confusion

matrices for the top threemodels: LGBM, XGBoost, and CATBoost,

respectively, providing a visual representation of their classification

performance across obesity categories. Figure 7 enhances this

analysis by presenting the confusion matrix for the ANN-PSO

hybrid model. These matrices offer insights into tp, tn, fp, and

fn, contributing to a nuanced assessment of model behavior. The

inclusion of both quantitative metrics and visual representations

ensures a comprehensive evaluation of each model’s performance

in the context of obesity classification. The ANN-PSO model’s

confusionmatrix stands out with high diagonal values, representing

the correctly classified instances for each class. Notably, even for

the minority classes like "Overweight level I" and "Overweight level

II," the proposed model demonstrates a high tp rate, with minimal

misclassifications into other classes. In contrast, the confusion

matrices for the LGBM, XGBoost, and CATBoost models reveal

higher off-diagonal values, particularly for the Overweight classes.

This indicates a higher tendency to misclassify instances from

these minority classes into other ones, which can have significant

implications for obesity risk assessment and treatment planning.

In addition to the classification report and confusion matrix,

further insights into the performance of the ANN-PSO model are

provided through the presentation of ROC (Receiver Operating

Characteristic) and Precision-Recall curves in Figure 8. The ROC

curve shows how well a classification model distinguishes between

positive instances it correctly identifies (tp rate) and negative

instances it incorrectly identifies as positive (fp rate) across various

threshold settings. A curve that closely hugs the upper-left corner

signifies superior performance, where the model achieves high

sensitivity while maintaining low fp rates. The overall ability of the

model to tell the difference is measured by the area under the curve

(AUC) of ROC. A higher AUC indicates better performance in

distinguishing between classes, making it a key metric in evaluating

the effectiveness of classification models. In the context of the

ANN-PSO model, a higher AUC-ROC in Figure 8 suggests robust

discrimination power across obesity categories. Simultaneously,

the Precision-Recall curve illustrates how a classification model

balances its precision against recall across varying thresholds used

for classification. A curve that closely follows the upper-right

corner indicates high precision and recall. The area under the

Precision-Recall curve (AUC-PR) is a valuable metric, emphasizing

the model’s ability to correctly identify positive instances while

minimizing false positives. For the ANN-PSO model, a larger

AUC-PR in Figure 8 signifies effective performance in handling

imbalanced classes and accurately predicting instances of obesity.
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FIGURE 6

Confusion matrix, CATBoost model.

To further understand the dynamics of the proposed model in

predicting obesity, a feature importance plot, illustrated in Figure 9,

was generated using SHAP (SHapley Additive exPlanations).

SHAP is a powerful game theory-based approach used to explain

the output of ML models (Lundberg and Lee, 2017). SHAP

provides a unified measure of feature importance that is both

consistent and locally accurate. It helps interpret complex models

by assigning each feature an importance value for a particular

prediction, indicating how much each feature contributes,

positively or negatively, to the model’s output. This allows for

both global interpretability (overall feature importance) and local

interpretability (feature importance for individual predictions). By

using SHAP, we are shedding light on the contribution of each input

variable to the model’s decision-making process. Understanding

feature importance not only contributes to model interpretability

but also provides actionable insights for decision-makers seeking

to comprehend the factors influencing obesity predictions in the

ANN-PSO model. It reveals the relevance and impact of each

feature on the target parameter (obesity in this case). Features

with higher importance play a more significant role in influencing

the model’s predictions. This information is invaluable for both

interpretability and potential feature engineering. While the results

achieved by the proposed model are impressive, employing SHAP

adds an extra layer of understanding and confidence in the model’s

predictions. Figure 9 provides several key insights through the

feature importance plot. Weight emerges as the dominant feature

for classifying obesity levels, showing significant importance across

all obesity classes, particularly for higher obesity levels. This result

is reasonable and expected, as weight is widely recognized as

a crucial parameter in assessing obesity. Gender is the second

most important feature, suggesting distinct obesity classification

patterns betweenmales and females. FAVC (Frequent consumption

of high caloric food) and Age also play crucial roles in the

model’s predictions. Other notable features include CH2O (Water

consumption), FAF (Physical activity frequency), Meal Habits,

CALC (Consumption of alcohol), and NCP (Number of main

meals), all contributing moderately to the model’s predictions.

Interestingly, factors like SMOKE, SCC, and FCVC appear to

have minimal impact across all obesity classes. This plot also

reveals varying feature importance across different obesity classes,

potentially indicating complex interactions between features.

5 Conclusion

In this comprehensive exploration of machine-learning

methods for predicting obesity, several algorithms were evaluated,

including LR, SVM, RF, XGBoost, LGBM, CATBoost, and MLP.

The models were assessed across seven distinct obesity levels, with

RF, XGBoost, LGBM, and CATBoost demonstrating substantial
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FIGURE 7

Confusion matrix of ANN-PSO model.

FIGURE 8

ANN-PSO model, ROC, and Precision-Recall.
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FIGURE 9

SHAP feature importance for all classes.

predictive capabilities and high accuracies. However, the proposed

hybrid ANN-PSO model outperformed the individual algorithms,

achieving the highest accuracy of 92%. Also other performance

metrics such as precision, recall, and F1 score were also evaluated,

demonstrating the model’s superior performance. Additionally,

confusion matrices were utilized to understand the classification

performance further, and SHAP feature importance analysis

was conducted to determine which features had the most

significant impact on different obesity classes. The proposed

model showcased remarkable robustness, especially in predicting

the underrepresented severe obesity categories, and minimized

misclassifications, as evidenced by the confusion matrices. This

research underscores the potential of hybrid models in enhancing

predictive accuracy and managing complex classification tasks with

class imbalance. The combination of ANN and PSO techniques

proved to be a highly effective strategy, leveraging the strengths

of both approaches to achieve superior performance. These

findings hold promise for personalized healthcare interventions,

showing how important advanced ML methods are for dealing

with tough health problems. Accurate obesity classification is

crucial for effective risk assessment, treatment planning, and

preventive measures, and the proposed model has demonstrated

its capability in this regard. This study paves the way for more

robust ML solutions in healthcare, ultimately improving patient

outcomes. Future work can explore the application of this hybrid

approach to other complex classification tasks in healthcare

and investigate the impact of different optimization algorithms

and network architectures on performance. Additionally,

different metaheuristic algorithms, such as Gray Wolf

Optimization or Genetic Algorithm, can be investigated to

further enhance the predictive accuracy and robustness of obesity

prediction models.

6 Limitations

The proposed hybrid ANN-PSO model for obesity

classification faces several limitations. While removing height

from the dataset was a strategic decision to avoid the triviality

associated with BMI, this approach may inadvertently exclude

valuable information that could enhance the model’s accuracy.

By focusing on features such as weight, dietary habits, physical

activity, genetic markers, and demographic factors, the model aims

to address the oversimplification of using BMI alone. However,
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this adjustment may lead to a potentially diminish the model’s

overall predictive performance. Additionally, the reliance on PSO

for hyperparameter tuning can sometimes result in suboptimal

convergence, and the high computational cost of training themodel

may limit its feasibility for real-time applications. Furthermore, the

model’s generalizability to diverse populations without retraining

remains a concern, which could impact its broader applicability

and effectiveness.
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