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Analysis and prediction of
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Atmospheric ozone chemistry involves various substances and reactions, which

makes it a complex system. We analyzed data recorded by Switzerland’s National

Air Pollution Monitoring Network (NABEL) to showcase the capabilities of

machine learning (ML) for the prediction of ozone concentrations (daily averages)

and to document a general approach that can be followed by anyone facing

similar problems. We evaluated various artificial neural networks and compared

them to linear as well as non-linear models deduced with ML. The main

analyses and the training of the models were performed on atmospheric air

data recorded from 2016 to 2023 at the NABEL station Lugano-Università in

Lugano, TI, Switzerland. As a first step, we used techniques like best subset

selection to determine the measurement parameters that might be relevant for

the prediction of ozone concentrations; in general, the parameters identified by

these methods agree with atmospheric ozone chemistry. Based on these results,

we constructed various models and used them to predict ozone concentrations

in Lugano for the period between January 1, 2024, and March 31, 2024; then,

we compared the output of our models to the actual measurements and

repeated this procedure for two NABEL stations situated in northern Switzerland

(Dübendorf-Empa and Zürich-Kaserne). For these stations, predictions were

made for the aforementioned period and the period between January 1, 2023,

and December 31, 2023. In most of the cases, the lowest mean absolute

errors (MAE) were provided by a non-linear model with 12 components (di�erent

powers and linear combinations of NO2, NOX, SO2, non-methane volatile

organic compounds, temperature and radiation); the MAE of predicted ozone

concentrations in Lugano was as low as 9 µg m−3. For the stations in Zürich

and Dübendorf, the lowest MAEs were around 11 µg m−3 and 13 µg m−3,

respectively. For the tested periods, the accuracy of the best models was

approximately 1 µg m−3. Since the aforementioned values are all lower than the

standard deviations of the observations we conclude that using ML for complex

data analyses can be very helpful and that artificial neural networks do not

necessarily outperform simpler models.
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1 Introduction

Ozone is a major air pollutant, atmospheric oxidant, and

anthropogenic (man-made) greenhouse gas that not only threatens

human health but also affects agricultural ecosystems (Nuvolone

et al., 2018; Yeung et al., 2019; Yan et al., 2022, 2023). Therefore,

understanding its complex chemistry is crucial. In this study,

we demonstrate the potential of machine learning techniques to

predict atmospheric ozone concentrations (target) based on a

set of measurement parameters (predictors), thereby enabling a

comparison of the models with theory.

Specifically, we describe how machine learning techniques

can be applied to identify relevant measurement parameters for

forecasting the target variable and to construct different predictive

models based on these parameters, including artificial neural

networks. Our goal is to present a generalizable approach that can

be applied to any dataset with a similar structure. Data analysis was

conducted using the programming language R (version 4.3.2); for

deep learning, the Python library TensorFlow with its Application

Programming Interface Keras was used (TensorFlow version 2.13.1

and Python version 3.9). Our most important R scripts are available

on GitHub.1

Ozone is particularly interesting because atmospheric ozone

chemistry involves various substances and reactions. In the

stratosphere, ozone is mainly produced by photo-dissociation of

molecular oxygen; sunlight with wavelengths λ below 250 nm

splits molecular oxygen into elemental oxygen (McConnell and Jin,

2008):

O2 + hν → O+O, λ < 250 nm. (1)

In this reaction, hν denotes the photon energy, whereby h stands

for the Planck constant and ν = c/λ denotes the frequency.

Next, through an additional molecule M, each of the resulting

oxygen atoms can recombine with an oxygen molecule to form

ozone (Solomon, 1999):

O+O2 +M → O3 +M. (2)

In the troposphere and the lower stratosphere, O2 cannot be photo-

dissociated; as a result, ozone formation arises from chemical

reactions breaking the O2 bond; the main reaction sequence in

these regions of the atmosphere is (McConnell and Jin, 2008):

CO+OH → CO2 +HO2 (3)

NO+HO2 → NO2 +OH (4)

NO2 + hν → NO+O3, λ < 430 nm (5)

Radicals with a similar structure as HO2 originating from oxidized

hydrocarbon molecules can undergo similar reactions (McConnell

and Jin, 2008). There exist many more reactions that lead to the

formation of ozone as well as reactions that lead to its destruction;

for instance, in the troposphere the reaction:

NO2 +O3 → NO3 +O2 (6)

1 https://github.com/stephanunibe/ozone-machine-learning.git

can take place at night (Finlayson-Pitts and Pitts Jr, 1993).

Hence, NO2, which is involved in the formation of ozone, also

takes part in a reaction that leads to its destruction - this is

just one example out of many demonstrating the complexity

of atmospheric ozone chemistry. Moreover, the formation and

destruction of ozone depends on the abundance of molecules

involved in the corresponding reactions. For instance, volatile

organic compounds (VOC) oxidize NO to NO2. This molecule can,

in turn, react with O2 to form ozone (Reaction 5) or lead to its

destruction (Reaction 6).

Data analysis was performed on data collected by Switzerland’s

National Air Pollution Monitoring Network (NABEL), which

simultaneously measures various greenhouse gases, harmful

substances of special interest and atmospheric pollutants in

ambient air (Ballaman et al., 2020). The NABEL was established

in 1978 to monitor Switzerland’s air quality and is operated

by the Swiss Federal Office for the Environment as well as

by the Swiss Federal Laboratories for Materials Science and

Technology (Empa) (Ballaman et al., 2020). Nowadays, this

network consists of 16 individual measurement stations distributed

all over Switzerland; each of these stations falls into one of the

following location types:

• urban location,

• urban location with traffic,

• suburban location,

• rural location with highway,

• rural location situated below 1, 000 m above sea level (ASL),

• rural location situated above 1, 000 m ASL,

• high mountains.

Moreover, the measurement stations represent different

geographical regions (Ballaman et al., 2020). For data

analysis and model training, we took data recorded

at the urban station Lugano-Università in Lugano, TI,

Switzerland. For testing, data recorded at the stations

Lugano-Università, Zürich-Kaserne (urban location) and

Dübendorf-Empa (suburban location) was used; the latter two

stations are located in Zürich, ZH, Switzerland and Dübendorf,

ZH, Switzerland, respectively.

Each of the evaluated measurement files contains the

measurement dates along with the corresponding daily averages of

the following measurement parameters:

• Ozone (O3) in µg m−3

• Nitrogen dioxide (NO2) in µg m−3

• Sulfur dioxide (SO2) in µg m−3

• Carbon monoxide (CO) in mg m−3

• Particulate matter ≤ 10 µm (PM10) in µg m−3

• Particulate matter ≤ 2.5 µm (PM2.5) in µg m−3

• Elemental carbon (EC) in PM2.5 (Soot) in µg m−3

• Particle number concentration (CPC) in cm−3

• Non-methane volatile organic compounds (NMVOC) in ppm

• Nitrogen oxides (NOX) in µg m−3 eq. NO2

• Temperature (TEMP, T) in ◦C

• Precipitation (PREC) in mm

• Radiation (RAD, I) in Wm−2
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FIGURE 1

Daily averages of ozone concentrations recorded at the NABEL

station in Lugano between January 1, 2016, and December 31, 2023.

We indicate concentrations of the aforementioned parameters

using square brackets (e.g., [NO2]).

Currently, the only station recording all of these parameters

is the station Lugano-Università; therefore, models were trained

with data from this station. Data sets with the complete set of

parameters are available from the year 2016 onwards; the data

were downloaded from the website of the Federal Office for the

Environment (Federal Office for the Environment, 2024) on April

3, 2024.

When we inspected the data recorded at the aforementioned

station, we noticed that with the exception of particulate matter-

related parameters (PM10, PM2.5, EC, and CPC) only a few data

points are missing (typically less than 1% per year). From the

year 2002 onwards, PM10 concentrations are available and the

CPC records started in 2005; EC followed in 2011 and PM2.5 in

2016. Between January 1, 2016, and December 31, 2023, data were

recorded on 2907 days; on less than 17% of the days, values of

certain measurement parameters are not available. Over 60% of

these data points correspond to the continuous period between

November 3, 2021, and September 8, 2022 – almost a full year

– while the remaining data points are rather heterogeneously

distributed across various measurement parameters and years. For

simplicity, we excluded the corresponding data instead of applying

data imputation (2479 entries instead of 2907), as ozone exhibits a

distinct yearly cycle (see Figure 1). Although the impact is expected

to be minimal, it cannot be ruled out that omitting these data could

introduce bias without a more detailed analysis.

As mentioned at the beginning of the introduction, the primary

tool used in this work is machine learning (ML), a rapidly growing

field that encompasses a wide range of techniques and methods. In

recent years, machine learning – particularly deep learning—has

gained significant importance in daily life, industry, and research.

Deep learning is a subset of machine learning, which is in turn

a subset of artificial intelligence (AI) (Chollet, 2021). According

to Chollet (2021), AI is a general field that can be described as

’the effort to automate intellectual tasks normally performed by

humans’. Generally, machine learning algorithms aim at finding

rules in a (large) set of examples by mapping input to target data;

these rules can then be applied to data the algorithm has not

seen (Chollet, 2021). For this purpose, machine learning algorithms

normally need input data, the expected output data (target)

as well as a way of measuring the algorithm’s performance to

adjust the corresponding machine learning algorithm; the latter

step is called “learning” (Chollet, 2021). From a mathematical

point of view, such algorithms are exposed to many examples

to find accurate representations of the input data using a set

of transformations (Chollet, 2021). Hence, learning can also be

understood as an automatic search process for an optimal data

transformation, which produces an output that is as close as

possible to the expected values; this search is performed within

a given space of possibilities and is guided by the measure of

performance (Chollet, 2021).

Machine learning techniques have been developed to address

a multitude of problems across various fields. Yet, their adoption

in climate science has been relatively slow, despite the potential

benefits and the large size of certain data sets (Abbot andMarohasy,

2017). Nevertheless, machine learning has for example been used

for climate change analyses (Bochenek and Ustrnul, 2022), for

weather prediction (Dueben and Bauer, 2018), and the forecasting

of different climatic variables (Abbot and Marohasy, 2017).

A publication resembling our study is that by Mo et al. (2024),

who investigated various machine learning and statistical models

to identify relevant water quality parameters for predicting the

water quality index. Their findings indicate that the most important

predictors are turbidity, dissolved oxygen, and nutrients, with the

highest predictive accuracy achieved using tree-based ensemble

methods, such as random forests and gradient boosting (Mo et al.,

2024). Additionally, Mo et al. (2024) demonstrate that prediction

accuracy may vary depending on both the grade and the season.

Another instructive and data-driven study is that by Song et al.

(2024), who describe their stepwise approach to predicting hourly

PM2.5 concentrations. By considering various factors, including

cyclical trends, Song et al. (2024) first constructed predictors and

applied least squares fitting. From their data, which exhibited

outliers and heteroscedasticity, Song et al. (2024) inferred that

an adjusted robust heteroscedastic autoregressive spatiotemporal

model might be appropriate. This model ultimately proved to

fit their data well and was effective for predicting hourly PM2.5

concentrations (Song et al., 2024).

Furthermore, the utility of machine learning techniques in the

energy sector has been highlighted in several works, including the

study by Sun et al. (2023) on wind speed prediction. Wind speed is

known for its non-stationary and irregular fluctuations, which pose

challenges for accurate forecasting. Sun et al. (2023) demonstrated

that by employing a combined prediction framework, which

integrates grid search for hyperparameter selection and a ranking-

based adaptive cuckoo search algorithm, predictive performance

can be significantly improved.

In the first section of this paper, we outline our methods. Next,

we present and discuss the results. Our conclusions are given in the

last section of our work.

2 Methods

In this section, we outline the methods andmodels that we used

to analyze the data.
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2.1 Model types

Our models can be divided into three categories:

• Linear models. The target variable of a linear model is linear

in the predictor variables. Denoting the target as y, the p

predictors as xi (i ∈ [1, p]) and the corresponding coefficients

as wi, a linear model can be expressed as:

y = w0 +

p
∑

i=1

wi · xi. (7)

• Non-linear models. The predictor variables of non-linear

models can be the arguments of non-linear functions (e.g.,

square root); furthermore, such models may contain

interactions between different predictors (e.g. multiplication

of two predictors). Usually, non-linear models are still

relatively easy to interpret, though.

• Artificial neural networks. Nowadays, there are multiple

types of artificial neural networks (ANN). Our base model

is the multilayer perceptron (MLP), which is composed

of successive layers that are used for learning meaningful,

layered representations from data in a multi-stage way (see

Section 2.2); depending on the number of layers (depth)

the learning process is referred to as “deep learning” or

“shallow learning” (Chollet, 2021). Although there is no

evidence that biological neural networks (BNN) learn in this

way (Chollet, 2021), components of ANNs and BNNs are

similar to some extent. The receptors, the neural net, the

neurons and the effectors of a BNN can be interpreted as the

input layer, the processing layer(s), the processing element

and the output layer of an MLP, respectively (Guresen and

Kayakutlu, 2011). To model the synapses, dendrites, cell body,

axon and threshold value of a BNN, the MLP uses the

weights, summing function, activation function, output and

bias, respectively (Guresen and Kayakutlu, 2011). In principle,

linear and non-linear models can be interpreted as shallow

neural networks consisting of an input layer, a single hidden

layer and an output layer (Biehl, 2023).

2.2 Artificial neural networks

As stated previously, an MLP consists of different layers, which

in turn contain a certain number of units (nodes); the number of

units in the first and the last layer corresponds to the number of

predictors and target variables, respectively. Between the input and

the output layer, there is at least one hidden layer with a non-

specified number of units. A classical MLP is a fully connected

feedforward-only (FFO) neural network (NN), which means that

information processing occurs in one direction only (Almeida,

2020) and that all nodes of a layer are connected to the nodes

of the previous layer. The input of each node corresponds to

the sum of the outputs of the previous layer’s nodes that are in

turn multiplied by individual weights (integers or floating point

numbers); furthermore, a bias term is added to this sum (Almeida,

2020). Before passing the result to the next layer, the value is

processed by a non-linear activation function (see Section 3.2);

one of the most common activation functions in deep learning

is the rectified linear unit (relu) (Chollet, 2021). Basically, the

weights control the transformations that the NN applies to the

data (Chollet, 2021). To determine the weights that provide a

minimal discrepancy between the network’s output(s) and target(s),

the network has to be trained. This training is performed on a

certain fraction of the original data set (training set), whereas

the remainder is used for the evaluation of the model (test set).

At the beginning of the training, random values are assigned

to the weights and then an iterative process (training loop) is

initiated (Chollet, 2021). Each of these iterations consists of a two-

step process (Chollet, 2021): first, a batch of training samples is

fed to the network to assess the network’s performance for the

current weights (forward propagation step). Then, a loss function

implementing a distance score (e.g. mean squared error) is used

to calculate the deviation of the model’s predictions from the

targets (loss); for this purpose, the so-called ’validation set’ is used,

which corresponds to a certain fraction of the training set that was

not used for training. The loss is in turn used as a feedback signal

for the optimizer, which is the central algorithm of a neural network

and determines how the weights should be updated to obtain a

lower loss in the next iteration (backward propagation step); this

optimizer is normally based on gradient descent (Chollet, 2021). An

epoch is defined as an iteration over the entire training data (except

for the validation set), which is in turn divided into batches; after

each batch, the weights of the network are updated (Chollet, 2021).

The minimum batch size is one data point and the maximum size

is the entire training set.

It is worth noting that there exist two types of values

that influence the network’s performance, namely values

that are learned during the aforementioned iterative

process (parameters) and values that are set by the ANN’s

designer (hyperparameters) (Chollet, 2021). Examples of

hyperparameters are the number of hidden layers, the number of

units per layer, the activation functions, the number of epochs and

the batch size.

Besides classical MLPs, which process inputs independently

and implement an unidirectional flow of information through

the network, there also exist more sophisticated networks. For

instance, recurrent neural networks (RNN) keep states by using

loops (Almeida, 2020). Using Keras it is not only possible to

build simple MLPs with fully connected (densely connected) layers

but also to add more complex layers. We explored the following

network types (layers):

• Convolutional Neural Networks (CNN). It is computationally

intensive to train ANNs with a large number of nodes; in

this case, convolution may help. In a convolutional layer,

the number of input values is reduced by employing a

filter (kernel) that sequentially traverses the input values and

compresses the information through convolution; this filter

can be interpreted as a matrix whose entries have to be

learnt (Montesinos López et al., 2022). The dimension of

the resulting output depends on the size of the filter and

on the stride length, which corresponds to the number of
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steps by which the filter is shifted when the input values are

processed (Montesinos López et al., 2022). After convolution,

the output can be compressed further through “pooling”;

two common options are “maximum pooling” and “average

pooling”, which split the values into different subsets and

then compute the maxima and averages of these subsets,

respectively (Montesinos López et al., 2022). CNNs are often

used for image processing (Montesinos López et al., 2022).

Thus, to pass the output to a densely connected layer (or

to the output layer), the multidimensional output of the

convolutional layer is normally converted to a vector; this is

known as “flattening” (Montesinos López et al., 2022).

• Simple Recurrent Neural Network. Recurrent layers use

preceding data for prediction (Boden, 2002). In a simple RNN,

the output of a unit (prediction of next input) is not passed

to the next layer, but weighted and then added to the next

weighted input value (Boden, 2002). In this loop, the weights

and biases are shared across every input and the process

continues until all available data points are used; only then the

result is passed to the next layer (Boden, 2002).

• Long Short-Term Memory (LSTM). The disadvantage of a

simple RNN is that the gradient calculated by the optimizer

may disappear or explode; the reason for this is the data’s long-

term dependence on the network (Wang et al., 2022).Whether

the gradient increases or decreases depends on the weights’

size (Hochreiter and Schmidhuber, 1997). LSTM circumvents

this problem through a gating mechanism that controls the

deletion and preservation of data; LSTM uses three gates,

which are denoted as “input gate”, “forget gate” and “output

gate” (Wang et al., 2022).

• Gated Recurrent Unit (GRU). An alternative to LSTM is GRU,

which also makes use of a gating mechanism to solve the

problem of increasing and decreasing gradients but is less

complex than LSTM; it combines the input gate and the

forget gate of an LSTM into one gate, which is called “update

gate” (Wang et al., 2018). Moreover, due to the simpler

structure of GRU, the training time can be reduced (Wang

et al., 2022).

For debugging and the generation of boilerplates we

sporadically used Microsoft Copilot, which is integrated

into Microsoft Edge and uses OpenAI’s large language model

GPT-4 (Turbo).

Due to overfitting (high variance), excellent performance of

the model on the training set does not necessarily imply good

performance on the test set (Gareth et al., 2013). Two techniques

that may help to select solutions that generalize well are the

following (Salehin and Kang, 2023):

• Regularization. A penalty term can be added to the loss

function that penalizes complex solutions; consequently,

simpler models will be favored. There exist different measures

of complexity; a common one is the ℓ2 complexity that

corresponds to the sum of squared weights. The penalty term

involves a hyperparameter λ through which the penalization

can be controlled.

• Dropout. When implementing dropout, during training

certain nodes are randomly set to zero; the corresponding

values are used during forward and backward propagation. To

obtain values that are comparable to those without dropout,

the non-zero values have to be scaled. The probability for

setting nodes to zero is a hyperparameter.

2.3 Model assessment

As already mentioned, models should always be assessed using

the test and not the training set; the reason is that models can

be created that perfectly fit the training data, which include the

measurement errors (Gareth et al., 2013). CommonML techniques

for the assessment of models are cross-validation (estimation of test

error) and the bootstrap (estimation of parameter accuracy), both

of which are resampling methods (Gareth et al., 2013):

• K-fold cross-validation. To perform k-fold cross-

validation (CV), the observations are randomly split

into k, equally-sized groups (folds) over which one iterates. In

each iteration, k− 1 groups are used for model fitting and the

remaining group for model validation; models are commonly

validated using the mean squared error:

MSE =
1

n
RSS =

1

n

n
∑

i=1

(yi − ŷi)
2. (8)

In Equation (8), RSS denotes the residual sum of squares, n

the number of observations in the training set, yi the i-th

observation (target value), xi the i-th predictor value and ŷi the

corresponding model prediction. In general, there are several

predictors; in this case, xi is not a scalar but a vector. The k-

fold CV estimate corresponds to the average of the k mean

squared errors:

CV =
1

k

k
∑

j=1

MSEj. (9)

Leave-One-Out Cross-Validation (LOOCV) is a special case

of k-fold CV, which uses the total number of observations as

k. Another similar technique is the validation set approach,

which randomly splits the original data set into a training and

a validation set; the former set is used for model fitting and the

latter for model assessment. Using the validation set approach

the model is only assessed on a single set.

• Bootstrap. The bootstrap is a statistical tool for estimating the

uncertainty associated with a statistical learning method or an

estimator. The bootstrap is widely applicable and particularly

useful if the variability cannot be estimated with standard

formulas or if these formulas are difficult to derive. The

bootstrap consists in repeatedly samplingN observations from

the original data set with replacement, whereN corresponds to

the total number of observations; then, the statistic of interest

is calculated for all of the bootstrap data sets that were created

in this way. As a last step, the uncertainty of this statistic

is estimated using a measure of variability like the standard

deviation or the standard error. Hence, one of the advantages

of the bootstrap is that the estimation can be performed on the

original data set without the need for additional data.
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2.4 Data analysis

In this subsection, we outline the methods that we used for data

analysis. Hereafter, we denote the number of potential predictors

for ozone concentrations as p; for the full data set, p is equal to

12 (see Section 1). All explanations of this subsection follow Gareth

et al. (2013).

2.4.1 Best subset selection
Greedy best subset selection is an iterative method that

performs p iterations; it starts with the model containing no

predictors and calculates the residual sum of squares (or the

R2 value); in the next iteration it tests all models containing

one predictor, then all models containing two predictors and

so on. In each iteration, the model with the smallest RSS (or

largest R2) is determined. Eventually, the best of the p models is

selected using training-error-adjusted statistics like the adjusted R2

value, Mallow’s Cp, the Akaike information criterion (AIC) or the

Bayesian information criterion (BIC). All of these statistics involve

the calculation of the training RSS but use different penalty terms;

these terms increase with the number of predictors to adjust for the

corresponding reduction in the training set’s RSS.

Alternatively, the best model can be selected using the

validation set approach or cross-validation. K-fold CV begins with

randomly assigning data points to one of the k folds and then

carries out best subset selection within each of these folds; then, for

each model size, the average of the k test MSEs is computed. After

determining the model size yielding the lowest MSE average, best

subset selection is carried out on the full data set to obtain themodel

of that size. The validation set approach follows a similar procedure.

Please note that we use greedy best subset selection because the

number of predictors is low; for data sets with many predictors,

stepwise techniques can be used instead, which are computationally

more efficient.

2.4.2 Shrinkage methods
If certain features of the data set are not related to the

target, shrinkage methods can be used to regularize (constrain) the

coefficient estimates. During data inspection, we noticed that not

all measurement parameters correlate with ozone (see Figure 2)

and therefore assumed that certain features might be irrelevant.

For this work we explored two shrinkage methods, namely ridge

regression and the lasso; while least squares minimizes the RSS to

obtain coefficient estimates, these methods minimize the sum of

the RSS and a so-called “shrinkage penalty”. The shrinkage penalty

used by ridge regression is the sum of the squared coefficient

estimates (without intercept) multiplied by a tuning parameter λ ≥

0 (ℓ2 norm); in contrast, the lasso uses the sum of the absolute

values of the coefficients multiplied by λ (ℓ1 norm). The larger the

tuning parameter, the larger the shrinkage penalty and the larger

the resulting RSS; consequently, solutions with small coefficients

will be favored. The main difference between ridge regression and

the lasso is that only the latter method can be used for variable

selection; ridge regression always provides non-zero coefficients

for all predictors, whereas the lasso may shrink certain coefficients

to zero.

2.4.3 Dimension reduction methods
Principal Component Regression (PCR) is a method that

can help to reduce the number of dimensions; this method

involves computing principal components (linear combinations

of predictors) and creating a new linear regression model (least

squares fitting) using these components. Unlike the lasso it is

not a feature selection method since the principal components

are linear combinations of all predictors; thus, the number of

predictors is not reduced. In principle, the first component carries

the most information because it points in the direction along

which the observations show the largest variation; the second

principal component is perpendicular to the first component and

tries to capture as much of the remaining information as possible.

Given that the number of predictors is larger than two, further

principal components can be constructed accordingly. Under the

assumption that the directions along which the predictors vary the

most are indeed associated with the target variable, a few principal

components might be sufficient to construct a model that explains

most of the observed variability. A common method to select the

number of principal components is cross-validation.

An alternative to PCR is Partial Least Squares (PLS); the main

difference is that PLS includes the target variable to supervise

the identification of principal components. As a first step, PLS

standardizes the predictors and uses simple linear regression to

compute the coefficients of the first principal component. Before

calculating the second principal component, each variable is

adjusted for the first principal component by taking the residuals

that are obtained when each variable is regressed on the first

principal component; then, the second principal component is

calculated in the same way as the first one. To obtain the remaining

components this procedure has to be repeated. The minimal

number of principal components that should be included in the

model can then be determined using cross-validation.

3 Results

The data recorded in 2023 suggest that ozone correlates with

different measurement parameters like radiation, temperature

and nitrous oxides (see Figure 2); the corresponding R2

values (coefficients of determination) are 0.72, 0.6 and 0.43,

respectively. For the prediction of ozone, other potentially relevant

parameters are CO, CPC, EC and SO2; these parameters yield R2

values between 0.13 and 0.32. Correlations between ozone and the

other parameters result in R2 values below 0.009 (precipitation,

PM2.5 and PM10). Please note that inspecting all correlations in

data sets with many more parameters is hardly possible; the larger

and more complex the data set, the more difficult to study the data

without machine learning or similar approaches.

Due to the observed correlations between ozone and various

measurement parameters, the question arises which model

describes the relationship best. We used daily averages recorded

at the NABEL station in Lugano between January 1, 2016,

and December 31, 2023, along with the machine-learning-based

methods presented in Section 2 to evaluate different models and

to perform variable selection; we only considered days on which

all parameters were recorded (approximately 83% of 2907 entries).
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FIGURE 2

Correlations of daily averages of all measurement parameters recorded at the NABEL station in Lugano between January 1, 2023, and December 31,

2023. The parameters are abbreviated as indicated in Section 1.

For the sake of simplicity, in this section, we drop the units of all

metrics (e.g. MSE and RSS).

It is worth mentioning that the ozone concentrations recorded

on subsequent days are similar (see Figure 1); thus, the error terms

might be correlated and the true standard errors could be higher

than the estimates provided by linear regression models (Gareth

et al., 2013).

In what follows, we first analyze the data to construct linear and

non-linear models; then, we focus on artificial neural networks.

3.1 Linear and non-linear models

The results of various ML techniques are reported in the

first part of this subsection; we subsequently use these results to

build different linear and non-linear models for the prediction of

atmospheric ozone concentrations.

3.1.1 Best subset selection
As a first step, we used greedy best subset selection to determine

the predictors that should be included in a linear model; according

to the adjusted R2 value, the best model involves all predictors

except for EC (adjusted R2 = 0.805); however, the model using

only radiation and temperature as predictors is within one standard

error (SE = 0.01). When assessing the models with Cp, the best

model turns out to be the one including all predictors except for

EC, CPC and PM10 (Cp = 10); the four-variable model using

NO2, NOX, temperature and radiation as predictors is within one

standard error (SE = 138), though. According to BIC, the best

model does not involve CO, PM2.5, EC and CPC (BIC = -3988);

the BIC of the best model is less than one standard error (SE = 103)

apart from the BIC of the four-variable model.

Just like Cp, 5-fold CV indicates that the nine-predictor model

is most appropriate (MSE = 347); within one standard error (SE =

19) there is again the four-predictor model. In contrast, 10-fold CV

selects the model with eight predictors; the minimal MSE is 347,

the corresponding SE is 19 and the eight-variable model contains

all predictors except for PM2.5, EC and CPC.

In general, the different approaches suggest that the best linear

models involve eight to nine predictors and that a four-variable

model is usually within one SE. The most important predictors

seem to be NO2, NOX, temperature and radiation; apparently,

the least important features are CO and particular-matter-related

parameters (PM2.5, PM10, EC and CPC). As expected, the best

one-variable model includes radiation.

3.1.2 Shrinkage methods
Applying ridge regression to the standardized data set yields

λ = 3.5 and an MSE around 358; we obtained these values when

testing 1,000 λ values in the range between 1 · 10−2 and 1 · 1010

using 5-fold as well as 10-fold CV (50/50 training-validation split).

The features getting the largest coefficient estimates are NMVOC
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and CO (order of 10) as well as EC, SO2 and temperature (order

of 1); all of the other coefficient estimates are at least one order of

magnitude lower.

When testing the same range of λ values using the lasso

and performing 10-fold cross-validation (50/50 training-validation

split), one obtains an MSE of roughly 346. The λ value is merely

around 0.08 and the lasso only shrinks the PM2.5 coefficient to zero.

The largest coefficients are again those associated with NMVOC

and CO (order of 10); the coefficients of EC, SO2 and temperature

are on the order of 1. Similar results are obtained using 5-fold CV.

All in all, the results of ridge regression and the lasso do

not agree with the results of best subset selection. Moreover,

both methods assign relatively low weights to radiation (usually

on the order of 0.1), which shows the strongest correlation with

ozone. The mean squared errors of the models obtained with best

subset selection (CV) and with the two shrinkage methods are

comparable, though. In addition, it is worth noting that the lasso

shrinks the coefficient of PM2.5 to zero, even though the coefficient

estimates of CPC and precipitation provided by ridge regression are

closer to zero.

3.1.3 Dimension reduction methods
Performing PCR with 10-fold CV indicates that 11 principal

components should be included in the model (around 81%

of variance explained); the test MSE of this model is roughly

344. Calculating the test errors of models with fewer principal

components shows that none of the smaller models is within 1 SE.

However, we noticed that models with less than five principal

components lead to distinctly higher mean squared errors. The

five-component model’s test MSE is around 383 (78% of variance

explained) and including only the first principal component results

in a test MSE of around 900 (45% of variance explained); hence, the

latter model lacks a considerable amount of information.

According to PLS with 10-fold CV, a nine-component model

is suitable; the variance explained and the test MSE are around

81% and 346, respectively. In fact, the 10-component model yields a

slightly lower test MSE, namely around 345. The seven-component

model is within 1 SE of the 10-componentmodel and yields anMSE

of approximately 352 (roughly 81% of variance explained).

In our case, PLS seems to be slightly superior to PCR because

similar mean squared errors were attained with fewer principal

components; this holds for the training as well as for the test data.

We did not pursue dimension reduction methods further since the

mean squared errors are not distinctly lower than those provided

by the previously discussed methods; in addition, the number of

predictors cannot be reduced using these methods.

3.1.4 Model selection
Based on the results of the previous subsections, we built

different models for predicting atmospheric ozone concentrations;

we also included some basic models to compare their performance

to the most complex ones. Whenever the validation set approach

was used, 50% of the data were used for validation.

• Model 1:

[O3] = (0.347 · I + 34.4) µg m−3

The results of Section 3.1.1 suggest that the best simple

linear regression model with one predictor includes radiation.

Fitting the entire data set yields a slope of a1 = 0.347 ±

0.005 µg W−1 m−1 and an intercept of a0 = 34.4 ±

0.9 µg m−3; the uncertainties correspond to standard errors.

The corresponding p-values of the t-statistic are smaller than

2 · 10−6 and the value of the F-statistic is 5146, which is much

larger than 1; these values, as well as the relatively high R2

value (0.68), indicate that the predictor is associated with the

response. The median of the residuals is−2 µg m−3 (first and

third quartile values around −17 µg m−3 and 15 µg m−3,

respectively). When compared to the ozone concentration

average and its standard deviation (91 ± 42 µg m−3), the

median of the residuals is small; the residual standard error

is considerable, though, namely approximately 24 µg m−3.

LOOCV, 5-fold and 10-fold CV show that the MSE of the

model is roughly 575. We obtained an MSE of around 563

using the validation set approach.

• Model 2:

[O3] = (−210 · I3 − 203 · I2 + 1, 720 · I+ 90.6) µg m−3

Plotting ozone against radiation reveals that a linear

function might be an oversimplification of their actual

relationship. Thus, we tested a fourth-order polynomial fit; the

p-values of all coefficients up to the third order turned out

to be lower than 2 · 10−6. Using 10-fold CV for the second-

, third- and fourth-order polynomials showed that the mean

squared errors are around 559, 542 and 541, respectively.

Similarly, the validation set approach provided mean squared

errors of roughly 549, 530 and 529, respectively. From this

we concluded that the third- and fourth-order polynomials

provide similar results and that both models are superior

to Model 1; for simplicity, we opted for the third-order

model (see first line). For this model, the standard error of the

intercept is 0.5 and roughly 23 for the other coefficients. When

comparing Model 1 to the third-order polynomial model

using a hypothesis test (null hypothesis: no model is superior),

the corresponding F-statistic turns out to be around 79 and

the associated p-value is below 2.2 · 10−6. The F-statistic is not

very large but the p-value is almost zero; hence, the hypothesis

test implies that the higher-order model might be superior.

This finding is consistent with the outcomes of CV and the

validation set approach.

• Model 3:

[O3] = (1.4 · [NO2]+3.4 · [SO2]+46 · [NMVOC]−0.97 ·

[NOX]+ 2.7 · T+ 0.202 · I+ 11) µg m−3

In general, greedy best subset selection implies that

the best models do not involve particulate-matter-related

parameters (PM2.5, PM10, EC, and CPC); thus, we tested a

linear model excluding them. Fitting this model to the data

shows that the highest p-values are those associated with CO

and precipitation. Computing the mean squared errors using

10-fold CV and the validation set approach results in values

around 349 and 343, respectively; when CO and precipitation

are excluded from the model the latter value increases to 344.

Using NO2, NOX, temperature and radiation as predictors

and calculating the MSE with the validation set approach

yields roughly 353; hence, the mean squared error of this

model is notably higher than the mean squared errors of
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the former two models. Comparing the models using 10-fold

CV leads to the same conclusions. Adding precipitation and

CO to the model did not substantially improve the results.

Therefore, we dropped these parameters and only used NO2,

NOX, temperature, radiation, SO2 and NMVOC as predictors;

the standard errors of their coefficients are 0.1, 0.6, 10, 0.04,

0.1, and 0.006, respectively. The bootstrap (1,000 samples)

provided similar values, namely 0.13, 0.5, 10, 0.07, 0.1, and

0.006, respectively. Since NO2 and NOX are correlated, we

also tested models that only include one of these variables; the

same was done for temperature and radiation. However, the

validation set approach showed that the mean squared errors

of all of these models are comparatively high and lie in the

range between 370 and 496.

• Model 4:

[O3] = (−1.8 · 10−4 · [NO2]
3 − 1.41 · [NOX]+ 1.8 · 10−2 ·

[NOX]
2 − 4.4 · 10−5 · [NOX]

3 + 3.0 · 10−3 · T3 + 1.4 · 10−1 ·

[NO2] · T+ 1.7 · 10−2 · [NO2] · I− 22 · [SO2] · [NMVOC]+

6.9 · 10−1 · [SO2] ·T+ 3.7 · 10−1 · [NMVOC] · I− 1.16 · 10−1 ·

[NOX] · T− 7.3 · 10−3 · [NOX] · I+ 71) µg m−3

Based onModel 3, we tested a model that involves all of its

predictors but added all terms up to third order; furthermore,

we allowed for interactions between these predictors by adding

all possible products of first-order terms. Greedy best subset

selection along with Cp shows that the best model contains

21 terms (NO2, NO
2
2, all orders of NOX, SO2, NMVOC,

T, T2, I2, I3, all interactions between temperature and the

other predictors, all interactions between radiation and the

other predictors as well as the interaction between NOX

and NMVOC); it is striking that most interaction terms

either involve temperature or radiation. From a chemical

perspective, this seems reasonable because temperature and

radiation control certain reactions. According to best subset

selection, the model with the lowest number of components

deviating by less than one SE (roughly 114) from the 21-

component model is the 12-component model; using 10-fold

CV shows that the mean squared errors of the two models are

around 233 and 238, respectively. The validation set approach

yields an MSE of around 228 for the more complex model

and 234 for the simpler one. Due to similar performance

with almost half the number of terms, we selected the 12-

component model; fitting this model to the data recorded

between January 1, 2016, and December 31, 2023, in Lugano

provides the coefficients shown at the beginning of the

paragraph. Just as for Models 1 to 3, the coefficients were

rounded according to the standard errors of the corresponding

fit estimates.

3.2 Neural networks

Besides linear and non-linear models we also trained different

types of artificial neural networks, which are listed in Table 1;

as indicated in Section 2.2, the networks were built using Keras’

sequential models, which have a layered structure. Hereafter, we

denote a network with at least one recurrent layer as RNN and

networks with at least one convolutional layer as CNN. As stated

TABLE 1 Mean squared errors (MSE) of various neural networks for the

prediction of ozone concentrations.

Model Model type Predictors MSE [µg2 m−6]

5 Feedforward-only

neural network

12 167

6 Feedforward-only

neural network

12 168

7 Feedforward-only

neural network

6 223

8 Recurrent neural

network

12 173

9 Recurrent neural

network

12 174

10 Recurrent neural

network

6 226

11 Convolutional neural

network

12 190

12 Convolutional neural

network

12 192

The networks were trained with data recorded at the NABEL station in Lugano from January

1, 2016, to December 31, 2023; the MSEs were obtained with the set of hyperparameters that

performed best on the training set and were computed using 20% of the data, which were not

used during training.

at the beginning of this chapter, the data were recorded at the

University of Lugano between January 1, 2016, and December 31,

2023; 80% of these data were used for training and the remaining

20% for testing. The test error was assessed using the MSE and

during training, 10% of the training set was used for validation.

For each neural network type, we evaluated several models,

which were obtained by varying one hyperparameter at a time

(number of epochs, batch size, units per layer, activation function,

optimizer and regularization method). The activation functions we

tested are:

• Hyperbolic tangent: tanh(x) = ex−e−x

ex+e−x

• Sigmoid: sigmoid(x) = 1
1+e−x

• Rectified linear unit: relu(x) = max(0, x)

• Leaky rectified linear unit: Defining α as a small positive

constant, the leaky rectified linear unit is given by

lrelu(x) =

{

x, if x > 0

α · x, otherwise
(10)

• Swish: swish(x) = x · sigmoid(α · x), where α is a constant

• Mish: mish(x) = x · tanh
(

ln(1+ ex)
)

• Softmax: softmax(xi) = exi ·
(

∑N
j=1 e

xj
)−1

, where x is an

N-dimensional vector and i ∈ [1,N]

• Exponential linear unit: Defining α as a positive constant, the

exponential linear unit is given by

elu(x) =

{

x, if x > 0

α · (ex − 1) , otherwise
(11)

The optimizers we used for our studies are
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• RMSprop. The RMSprop (rms) optimizer uses plain

momentum instead of Nesterov momentum and divides the

gradient by the root of the moving average of the square of

gradients (Keras., 2024d).

• Adam. This optimizer is based on a stochastic gradient descent

method that uses adaptive estimation of moments up to

second order. In principle, the adam optimizer is RMSprop

with momentum (Keras., 2024b) (Keras., 2024c).

• Nadam. Basically, the Nadam optimizer is Adam with

Nesterov momentum (Keras., 2024c).

• Adadelta. The Adadelta optimizer is also based on stochastic

gradient descent and uses an adaptive learning rate per

dimension (Keras., 2024a).

Regarding RNNs, we tested simple RNN, LSTM and GRU

layers. For each NN type (FFO NN, RNN and CNN), we selected

the set of hyperparameters that provided the lowest MSE during

our tests. Actually, selecting models based on single runs should be

avoided because it is not possible to test all possible models and

combinations of hyperparameters; in addition, if the same model

is trained multiple times, different weights are obtained, which

eventually results in different test errors. To estimate the variability

of the test error, we trained the three selected models 10 times

with a fixed set of hyperparameters; for each model type, we saved

the weights of different models that yielded low mean squared

errors (see models in Table 1). From the training repetitions, we

learned that the standard deviations of the models’ mean squared

errors are in the range of 7 to 15. The best FFO NN, RNN and

CNN provided test MSEs around 167, 173, and 190, respectively;

we denote the corresponding models as Model 5, Model 8 and

Model 11, respectively (see Table 1).

Since Lugano is the only station at which all 12 measurement

parameters are recorded, we also trained FFO NNs and RNNs with

six instead of 12 predictors (inputs), namely those that are part of

Model 3 (NO2, NOX, SO2, NMVOC, temperature and radiation).

The best FFO NNs and RNNs (Model 7 and Model 10), yielded

mean squared errors around 223 ± 4 and 226 ± 10, respectively;

the uncertainties correspond to the standard deviations of the 10

training repetitions.

3.3 Evaluation of model performance

To compare our models and to evaluate their performance,

we predicted daily averages of ozone concentrations for the period

between January 1, 2024, and March 31, 2024, using data recorded

at the NABEL station in Lugano; the corresponding test errors are

shown in Table 2.

To assess our models on data gathered at locations other than

Lugano, we used records of the NABEL stations Zürich-Kaserne

and Dübendorf-Empa located in northern Switzerland; we selected

these two stations because they record all measurement parameters

except for CPC. In Table 3, we present performance tests that were

carried out for the period between January 1, 2023, and December

31, 2023, as well as between January 1, 2024, and March 31,

2024; regarding neural networks, only those with six predictors

are reported because Lugano is the only station at which all 12

predictors are recorded.

3.4 Uncertainty of weight and biases of
neural networks

To the best of our knowledge, at the time of writing, Keras did

not provide estimates for the precision of a neural network’s weights

and biases. One approach to obtain such estimates is through the

bootstrap method.

To test this procedure and obtain a sense of the uncertainty in

the weights and biases of our multilayer perceptrons, we trained

such a model 10 times using data gathered at the NABEL station

in Lugano from January 1, 2016, to December 31, 2023. We then

computed the averages and standard deviations of the weights and

biases from the 10 runs. Since a network with 32 units in the first

layer and 64 units in the subsequent layers generally provided the

best results (see Sect. 4), we adopted this configuration for this

study. We also used 80 epochs and a batch size of 8. Since such a

network contains 10913 weights and biases (including output layer

with a single node), in Table 4, we summarize the results by layer

rather than listing estimates for individual weights and biases.

4 Discussion

In this section, we first address the interpretability of our

models in the context of atmospheric ozone chemistry, followed by

a discussion of the ozone concentration predictions for Lugano and

two stations in northern Switzerland based on our models. In the

last subsections, we provide further insights into neural networks

and non-linear models.

4.1 Atmospheric ozone chemistry

From a chemical perspective, our models presented in

Section 3.3 emphasize the crucial role of radiation in ozone

formation, as shown in Reactions 1, 5, both of which are

photo-dissociation processes. As expected, temperature is also

typically included in the models, since the Earth’s atmosphere

is heated by the sun, leading to a correlation between radiation

and temperature. Furthermore, Reactions 5, 6 indicate that

incorporating NO2 and NOX into the models is reasonable.

Moreover, when nitrogen oxide concentrations are sufficient,

NMVOCs serve as important ozone precursors (Zhang et al.,

2024). This could be reflected in the high coefficient of NMVOCs

in Model 3. In the same model, the coefficient for SO2 is

also notably high. Since SO2 absorbs light in the wavelength

range of 180 nm to 390 nm, it influences the aforementioned

photochemical reactions and leads to ozone depletion (Huff,

1996). Although it is beyond the scope of this work, further

investigation is required to understand why the models assign

such significance to NMVOCs and SO2, as both indirectly affect

ozone concentrations.

According to Reaction 3, carbon monoxide might be relevant

for ozone prediction, but it was generally excluded from the
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TABLE 2 Averages, mean squared errors (MSE), and mean absolute errors (MAE) of ozone concentrations predicted by di�erent linear and non-linear

models as well as by various artificial neural networks (NN); the models were numbered as in the main text and were trained using data recorded

between January 1, 2016, and December 31, 2023, at the NABEL station in Lugano (2,479 records).

Model Type Predictors/components MSE [µg2 m−6] MAE [µg m−3] Average [µg m−3]

1 Linear 1 342 15 66

2 Non-linear 3 367 16 66

3 Linear 6 202 11 58

4 Non-linear 12 144 9 61

5 Feedforward-only NN 12 150 10 66

6 Feedforward-only NN 12 145 10 67

7 Feedforward-only NN 6 455 18 62

8 Recurrent NN 12 182 11 65

9 Recurrent NN 12 163 9 63

10 Recurrent NN 6 7802 78 139

11 Convolutional NN 12 167 11 61

12 Convolutional NN 12 182 11 64

All displayed values were calculated on the test set recorded between January 1, 2024, and March 31, 2024, at the same station; the average of the observed ozone concentrations during this

period is 65± 21 µg m−3 (1σ ). In the third column, we listed the number of predictors (inputs) of NNs and the number of components (excluding the intercept) of linear as well as non-linear

models.

TABLE 3 Averages (AV), mean squared errors (MSE), and mean absolute errors (MAE) of ozone concentrations predicted by di�erent linear and

non-linear models as well as by various artificial neural networks (NN); the models were numbered as in the main text and were trained using data

recorded between January 1, 2016, and December 31, 2023, at the NABEL station in Lugano (2,479 records).

Model Year Z, MSE [µg2 m−6] Z, MAE [µg m−3] Z, AV [µg m−3] D, MSE [µg2 m−6] D, MAE [µg m−3] D, AV [µg m−3]

1 2024 442 18 62 508 18 57

2 2024 492 19 61 534 19 55

3 2024 465 18 53 373 16 52

4 2024 188 11 63 300 13 60

7 2024 243 12 70 314 14 64

10 2024 239 12 68 353 15 69

1 2023 446 17 89 510 20 55

2 2023 492 18 89 544 20 54

3 2023 456 18 87 454 18 49

4 2023 329 14 93 324 14 58

7 2023 342 14 96 346 14 61

10 2023 346 14 95 303 13 63

All displayed values were calculated on test sets recorded at the NABEL stations Zürich-Kaserne (Z) and Dübendorf-Empa (D) between January 1, 2023, and December 31, 2023, as well as

between January 1, 2024, and March 31, 2024. The averages of the observed ozone concentrations in Zürich in 2023 and 2024 are 88± 29 µg m−3 and 65± 20 µg m−3 , respectively; the averages

recorded at the station in Dübendorf are 63± 21 µg m−3 and 60± 19 µg m−3 , respectively. The uncertainties of the measured averages correspond to 1σ .

models. However, CO is part of a reaction chain that ultimately

produces NO2, which is commonly included in the models and

is eventually photo-dissociated to form ozone. We assume that

the information provided by CO is already captured by NO2.

Similarly, particulate matter parameters were excluded from the

models, even though PM2.5 can influence ozone concentrations

through heterogeneous reactions and aerosol-photolysis feedback

mechanisms (Qu et al., 2023). We believe, however, that the

effect of PM2.5 on ozone is too small to be reflected in

the models.

4.2 Lugano

The results shown in Table 2 suggest that the most precise

models for predicting ozone concentrations in Lugano are the

non-linear model with 12 components (Model 4) and the RNN

with 12 predictors (Model 9); the former model yields the lowest

MSE and MAE, which are approximately 144 µg2 m−6 and

9 µg m−3, respectively. Between January 1, 2024, and March

31, 2024, an average ozone concentration of 65 µg m−3 was

recorded; the standard deviation and standard error are roughly
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TABLE 4 Values (Val.) and standard deviations (Sd.) of weights and biases of a multilayer perceptron with five layers (including the output layer)

determined from 10 bootstrap estimates.

Parameter Count Val. mean, median Val. min, max Sd. mean, median Sd. min, max

Weights 1st layer 384 0.02, 0.05 -1.20, 1.31 0.13, 0.10 0.02, 0.49

Biases 1st layer 32 0.11, 0.09 -0.44, 0.65 0.078, 0.059 0.008, 0.226

Weights 2nd layer 2,048 -0.02, -0.03 -1.36, 1.44 0.13, 0.11 0.02, 0.63

Biases 2nd layer 64 -0.04, -0.05 -0.69, 0.78 0.11, 0.08 0.02, 0.35

Weights 3rd layer 4,096 -0.01, -0.01 -2.03, 1.44 0.116, 0.088 0.003, 0.802

Biases 3rd layer 64 0.03, 0.04 -0.3, 0.3 0.06, 0.05 0.01, 0.16

Weights 4th layer 4,096 0.01, 0.01 -1.02, 1.17 0.071, 0.054 0.007, 0.565

Biases 4th layer 64 0.03, 0.08 -0.44, 0.38 0.08, 0.08 0.02, 0.17

Weights 5th layer 64 -0.4, 0.1 -2.0, 0.9 0.22, 0.13 0.01, 0.87

Biases 5th layer 1 0.4, 0.4 0.4, 0.4 0.08, 0.08 0.08, 0.08

The network employed the swish, tanh, relu, and mish activation functions, with 32, 64, 64, and 64 units in the corresponding layers, respectively. Training was conducted using data collected

at the NABEL station in Lugano from January 1, 2016, to December 31, 2023. For each of the 10 runs, the training utilized 80 epochs and a batch size of 8. The second column shows the number

of weights (or biases) for each corresponding layer.

21 µg m−3 and 2 µg m−3, respectively. Since ozone concentrations

evolve (see Figure 1), we also calculated the standard deviation

after applying a trend correction to the data and obtained

approximately 15 µg m−3; the MAE of the best model is

approximately 60% of this value. In contrast, the mean absolute

errors of the two models with only one predictor (Model 1 and

Model 2) are roughly equal to the standard deviation of the trend-

corrected ozone observations. For the trend correction, we used a

second-order polynomial fit and defined the ozone concentration

recorded on the first day as the point of reference.

Furthermore, it is striking that both feedforward-only neural

networks with 12 predictors provide similar mean squared errors

as the non-linear model with 12 components (Model 4), namely

145 µg2 m−6 (Model 6) and 150 µg2 m−6 (Model 5). In contrast,

the more complex CNN models performed worse than the

FFO NNs but better than various linear and non-linear models.

Model 9 (RNN with 12 predictors) also yielded an MAE around

9 µg m−3, but a slightly higher MSE than the best non-linear

model (Model 4), namely 163 µg2 m−6 instead of 144 µg2 m−6.

Although recurrent neural networks are popular for the analysis of

time-series (Wang et al., 2022), predictions of ozone concentrations

in Lugano made with Model 10 (RNN with six predictors) are not

reasonable (test MSE around 7, 802 µg2 m−6). In general, neural

networks with six predictors performed worse than those with 12

predictors, which might be an indication that the former models

lack information; this hypothesis cannot be verified, though, since it

is not feasible to test all neural networks with six and 12 predictors.

The ozone concentration average predicted by all of the

models is close to the measured value except for Model 10. The

averages provided by Models 1, 2, 5, and 8 yielded averages

that closely matched the observations, up to approximately

1 µg m−3. The best result was achieved by Model 8 (RNN

model with 12 predictors), which simultaneously yielded a low

MAE. The average concentration predicted by Model 4 (non-

linear model with 12 components), which turned out to be the

most precise model, deviates by roughly 4 µg m−3 from the

measured average.

4.3 Zürich and Dübendorf

Just as in the case of Lugano, the model that yields the

lowest MSE and MAE for ozone concentration predictions in

Zürich and Dübendorf is generally Model 4 (non-linear model

with 12 components). The only exception is the data recorded

in 2023 in Dübendorf, in which case the RNN model with six

predictors (Model 10) performed best. This is surprising because

the test error of this model is very high for the predictions related to

Lugano in 2024, although themodel was trained with data from this

station. In addition, there is a tendency toward higher test errors

when compared to the data recorded in Lugano. From this we

conclude that our models might incorporate regional information;

if so, they are only meaningful for local predictions. However,

verifying this hypothesis would require to extend our study to

further NABEL stations, which is outside of the scope of this work.

Moreover, it might be worthwhile to assess the models’ predictions

for extended periods in the future.

For the test data recorded in 2024 at the stations in

Zürich and Dübendorf, the best models provided an MAE of

11 µg m−3 (Model 4) and 13 µg m−3 (Model 4), respectively;

for the year 2023 the corresponding mean absolute errors are

14 µg m−3 (Model 4) and 13 µg m−3 (Model 10), respectively.

The ozone concentrations recorded in Zürich in 2023 and 2024

were 88 ± 29 µg m−3 and 65 ± 20 µg m−3, respectively; during

the same periods, the ozone concentrations in Dübendorf were

63 ± 21 µg m−3 and 60 ± 19 µg m−3, respectively. After applying

a trend correction to the ozone concentrations recorded in

Zürich and Dübendorf during the first three months of 2024, we

obtained standard deviations around 16 µg m−3 and 17 µg m−3,

respectively. Hence, the mean absolute errors of the best models

remain lower than the corresponding standard deviations, although

the differences are slightly smaller than those observed for the data

collected in Lugano.

Based on the data recorded in 2024 at the stations in Zürich

and Dübendorf, the most accurate model is Model 4; the deviations

of the predicted averages from the measured values are in the
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range between 0 µg m−3 and 2 µg m−3. In contrast, for the data

gathered in 2023, Models 1 to 3 provided the best results for Zürich

and Model 10 the best result for Dübendorf; the discrepancies

between the average concentrations predicted by these models and

the measured values are around 0 µg m−3 to 1 µg m−3.

In summary, our results suggest that Model 4 (non-

linear model with 12 components) and Model 10 (RNN with

six predictors) are probably the most appropriate models for

predicting ozone concentrations in Zürich and Dübendorf.

4.4 Parameter uncertainty of neural
networks

The standard deviations of the weights and biases in our

multilayer perceptrons are assumed to be less than 10% of the

corresponding averages. This assumption is based on bootstrap

estimates, which are summarized in Table 4. Additionally, the

table also reveals that the largest uncertainties were observed in

the weights of the second and third layers, with the ratios of

standard deviation to mean values just under 9%. Additionally, by

comparing the differences between the means and medians to the

range between the corresponding minima and maxima, we infer

that the values and standard deviations of the weights and biases are

relatively homogeneous. The largest discrepancies occurred in the

weights of the fifth layer, where the differences were around 17%

for the values and 11% for the standard deviations. However, the

values appear to be more uniformly distributed than their standard

deviations. On average, the aforementionedmetric is around 3% for

the values and approximately 5% for the standard deviation when

averaged across all layers and parameters.

4.5 Comparison of neural networks to
non-linear models

As mentioned in Section 3.4, the large number of nodes

in a neural network makes it difficult to analyze and interpret

such models. Thus, to investigate why certain non-linear models

outperformed our complex neural networks, we compared the

residuals of predictions from different models made for Lugano

between January 1, 2024, and October 31, 2024, rather than basing

the analysis on the model parameters.

From Figure 3, which contrasts Model 4 (non-linear model

with 12 predictors) with Model 8 (recurrent neural network), it

can be observed that the residuals of both models increase with

time. In particular, the slopes of the linear fits to the residuals are

nearly identical, suggesting that the deterioration in both models is

comparable. Although both models capture the significant decrease

in ozone in the second half of the year, they apparently fail to

fully account for it. Similar observations were made for most of

our models. However, when examining the behavior of the two

models depicted in Figure 3, it can be seen that the offsets of the

residuals are noticeably different. From this, we conclude that the

main difference in the performance of the two models arises from

a general issue, rather than from a problem concerning a specific

period of the year.

FIGURE 3

Ozone concentrations and residuals (absolute di�erences between

predictions and targets). Predictions were made for the period

between January 1, 2024, and October 31, 2024 for the NABEL

station in Lugano using (A) Model 8 (recurrent neural network) and

(B) Model 4 (non-linear model with 12 predictors). For model

training, data recorded between January 1, 2016, and December 31,

2023, at the same station were used. The 50-day averages of the

residuals were calculated using the 50 preceding the time at which

they are plotted.

5 Conclusions

A comparison of the analyses reported in Section 3 with the

fundamentals of ozone chemistry outlined in the introduction

shows that the machine learning methods generally selected

prominent parameters involved in ozone chemistry, such as

radiation, temperature, NO2, and NOX. However, since most

of the parameters recorded by the NABEL are relevant to

atmospheric ozone chemistry, further work is needed to validate the

significance of the selected parameters and their coefficients, assess

the meaningfulness of the models and understand the insights

they can provide. We suggest particularly focusing on parameters

that indirectly affect ozone, such as NMVOCs, SO2, CO and

particulate matter, whose contributions to ozone formation are less

straightforward compared to those of the key parameters directly

involved in ozone photochemistry.

Although two RNNs provided low mean absolute errors and

led to accurate predictions for ozone concentrations in Lugano, in

general, the neural networks did not outperform the best non-linear

models. Moreover, the latter models are easily interpretable, which
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is usually not the case for neural networks with a large number

of nodes. Further drawbacks of neural networks are that training

is time-consuming as well as computationally intensive; moreover,

testing all combinations of hyperparameters is hardly possible and

it is difficult to determine whether the performance of the models is

close to optimum or not. While we manually tested different model

types and hyperparameters, other groups use software packages

that automate this task to a certain extent (Abbot and Marohasy,

2017).

For constructing linear and non-linear models, best subset

selection turned out to be very helpful because it seemed to

successfully drop the least important variables; the more features

a data set has, the more difficult it gets to manually construct

adequate models.

For the test periods, all of our neural networks and non-linear

models with 12 components (Models 4, 5, 6, 8, 9, 11, and 12) yielded

ozone concentrations whose mean absolute errors are lower than

the standard deviations of the observations; while the standard

deviation of ozone concentrations recorded in Lugano between

January 1, 2024, and March 31, 2024, is around 15 µg m−3 (trend-

corrected), the mean absolute errors of the aforementioned models

are in the range between 9 µg m−3 and 11 µg2 m−6. This

statement also holds for data gathered at the NABEL stations

in Dübendorf and Zürich between January 1, 2024, and March

31, 2024, as well as between January 1, 2016, and December 31,

2023; when compared to Lugano, the mean absolute errors are

typically higher, though. For Zürich and Dübendorf the mean

absolute errors calculated on the test sets lie in the range between

11 µg m−3 and 14 µg m−3. Regarding accuracy, several models

predicted concentrations whose averages are within 1 µg m−3 of

the measured values; the most precise models are not always the

most accurate, though.

Since the errors for the northern stations appear to be higher

than those for Lugano, whose data were used for training, our

models may incorporate regional information. While our work

provides a basic approach for machine-learning-based prediction

of atmospheric ozone concentrations, it would benefit from a more

detailed study to identify the regions for which the models are most

suitable. Additionally, it is important to determine how the models

should be adjusted to make accurate predictions across all regions

and for any time of the year, as predictions were generally more

effective for the first half. Since most of the NABEL stations only

record a subset of the parameters available at Lugano, expanding

our approach to all stations, followed by a comparison of the

models, may not be reasonable, as some relevant predictors would

be unavailable. A potentially useful technique in this context is

transfer learning, which allows a neural network to be adapted

to a slightly different problem (Memmert, 2024). Often, most

of the network’s layers are left unchanged, while a few are re-

trained (Weiss et al., 2016). However, in our case, the input layer

would have to be adapted as well, since the number of inputs is not

the same for all the stations.

Furthermore, it should be assessed whether omitting rows with

incomplete data introduces bias, and whether more sophisticated

data imputationmethods could yield better results. This is a delicate

issue, as both missing data and data imputation can result in

biases (White et al., 2010; Cummings, 2013). To investigate whether

excluding data had such an effect, we recommend omitting a

comparable amount of data at different points in the dataset and

evaluating whether the results show notable changes.

Although it was not the goal of this study, a comparison

of our models with future ozone concentration predictions that

incorporate measured ozone concentrations as predictors could

be valuable, as atmospheric ozone exhibits a distinct yearly

cycle (see Figure 1). For this purpose, recurrent neural networks,

commonly used for time-series analysis (Wang et al., 2022), could

be particularly useful.

Finally, it would be worthwhile to explore the approach

proposed by Dong et al. (2024), who demonstrated that

the forecasting accuracy of dissolved oxygen levels could be

improved by combining eight artificial neural networks and one

statistical model, using Yeung’s double-slit experiment optimizer to

determine the weights of the individual models.
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