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E�cient out-of-distribution
detection via layer-adaptive
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Introduction:Multi-layer aggregation is key to the success of out-of-distribution

(OOD) detection in deep neural networks. Moreover, in real-time systems, the

e�ciency of OOD detection is equally important as its e�ectiveness.

Methods: We propose a novel early stopping OOD detection framework for

deep neural networks. By attaching multiple OOD detectors to the intermediate

layers, this framework can detect OODs early to save computational cost.

Additionally, through a layer-adaptive scoring function, it can adaptively select

the optimal layer for each OOD based on its complexity, thereby improving OOD

detection accuracy.

Results: Extensive experiments demonstrate that our proposed framework is

robust against OODs of varying complexity. Adopting the early stopping strategy

can increaseOODdetection e�ciency by up to 99.1%whilemaintaining superior

accuracy.

Discussion: OODs of varying complexity are better detected at di�erent layers.

Leveraging the intrinsic characteristics of inputs encoded in the intermediate

latent space is important for achieving high OOD detection accuracy. Our

proposed framework, incorporating early stopping, significantly enhances OOD

detection e�ciency without compromising accuracy, making it practical for

real-time applications.

KEYWORDS

out-of-distribution detection, early stopping, layer-adaptive, deep neural networks,

one-class support vector machine

1 Introduction

Deep neural networks (DNNs) have recently shown remarkable performance in

classification tasks. However, DNNs are typically trained under the closed-world

assumption, which assumes the same data distribution during both training and testing.

This assumption poses challenges in real-world applications when encountering data that

significantly differs from the training data, known as out-of-distribution (OOD) data.

Detecting OOD data is essential because DNNs can produce unreliable or incorrect

predictions when faced with such data, especially in safety-critical applications like

detecting new object categories in autonomous driving and diagnosing unknown diseases

such as COVID-19. Effective OOD detection identifies these data points, enabling the

DNN to either reject these inputs or handle them appropriately, thus enhancing the DNN’s

reliability and robustness.

Many methods have been proposed to detect OOD inputs for DNNs. The majority

of these methods detect OOD inputs using predictive uncertainty measures of a softmax
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classifier, such as entropy (Vyas et al., 2018), epistemic uncertainty

(Malinin and Gales, 2018), and others (Hendrycks and Gimpel,

2016; Liang et al., 2017; Zhao and Chen, 2019; Zhao et al., 2021).

A more recent work, Deep-MCDD (Lee et al., 2020), estimates

a spherical decision boundary for each class based on support

vector data description (SVDD). These boundaries enclose the

in-distribution (InD) data and distinguish OODs based on their

closest class-conditional distribution. Instead of using the last-

layer outputs, (Abdelzad et al., 2019) proposed finding the best

intermediate layer based on a holdout validation OOD dataset.

However, all these methods detect the OOD inputs at the same level

of representation (i.e., outputs at a single layer) and fail to account

for the different complexity of OOD inputs. Recent studies have

shown that multi-layer aggregation is key to the success of OOD

detection in DNNs (Ming et al., 2022; Wang et al., 2022; Lambert

et al., 2023), indicating that considering a broader spectrum of

intermediate layer outputs could lead to more accurate OOD

detection than a single-layer solution. This is due to the intrinsic

nature of increasingly complex concepts learned at deeper layers in

modern DNNs (Zhou et al., 2018). Our empirical study indicates

that different OODs are better detected at their appropriate levels

of representation (see Section 4.3).

While the effectiveness of OOD detection methods is often the

primary focus, in contexts like real-time systems, where resource

constraints, scalability, cost-effectiveness, and user experience are

crucial, the speed of the OOD detector becomes equally important.

With DNNs evolving to process increasingly complex inputs, a

practical approach to minimize unnecessary computations involves

dynamic depth in inference, which can be facilitated by early

stopping strategies. These methods significantly enhance efficiency

without compromising, and sometimes even improving, accuracy

compared to executing the full network depth (Huang et al., 2017;

Kaya et al., 2019; Leroux et al., 2017; Bolukbasi et al., 2017).

However, these solutions only focus on InD recognition and cannot

be directly applied to OOD detection.

To address these limitations, we propose the Early Stopping

OOD detection (ES-OOD) framework that utilizes all intermediate

representations and an early stopping strategy for efficient and

effective OOD detection in DNNs (an overview of ES-OOD is

shown in Figure 1). Specifically, we train separate One-Class SVM

OOD detectors using the outputs of different layers and employ

a simple yet effective layer-adaptive scoring function to identify a

varying best layer for detecting each potential OOD sample. We

enhance the accuracy and robustness of the OOD detectors against

unseen OODs by tuning them through self-adaptive data shifting

(Wang et al., 2018) and fine-tuning the framework using alternating

optimization, which jointly minimizes the DNN classification error

and the OOD detectors’ training errors. In the test time, our

framework adopts “early stopping” to terminate the inference

process early when the OOD detectors at intermediate layers

provide highly confident OOD predictions. Additionally, ES-OOD

uses a voting mechanism to ensure the true positive rate of early-

stopped samples. This framework is easy to use and can be applied

to any existing DNNs without altering their architectural design.

The main contributions of ES-OOD are as follows:

• We propose a novel Early Stopping OOD detection (ES-

OOD) framework that is practical for any off-the-shelf DNNs.

Multiple OOD detectors are attached to the intermediate

layers of a DNN to fully utilize the intrinsic characteristics of

inputs encoded in the intermediate latent space. Through a

layer-adaptive scoring function, OODs of varying complexity

are detected at their most appropriate layers to achieve higher

OOD detection accuracy.

• By integrating an early stopping strategy to detect OODs early

and employing a voting mechanism to ensure the true positive

rate of the early-stopped samples, we significantly improve

efficiency by up to 99.1% while maintaining superior OOD

detection efficacy.

• Extensive experiments on three DNNs with varying depth

and architectures demonstrate that ES-OOD is robust against

OODs of varying complexity and is significantly faster

than state-of-the-art baselines while achieving superior OOD

detection performance on real-world datasets.

2 Related work

2.1 Dynamic neural networks with early
stopping mechanisms

The concept of early stopping is gaining traction in the field of

deep learning. By integrating early exits into DNNs, such systems

allow for “simple” samples to be processed at the initial layers,

thereby avoiding unnecessary computation (Huang et al., 2017;

Kaya et al., 2019). For any given input, an early exit could be

triggered by a confidence metric (Leroux et al., 2017) or a learned

decision function (Bolukbasi et al., 2017). Traditionally, these

methods only focused on improving the performance of DNNs by

evaluating InD samples, overlooking OOD samples. In this paper,

we extend the early stopping principle to specifically address the

detection of OOD samples, proposing a novel framework designed to

efficiently identify “simple” OODs at early layers, thereby conserving

computational resources.

2.2 OOD detection for deep neural
networks

A main track of recent OOD detection research is to use the

final outputs of a DNN to separate OODs from InD samples

(Vyas et al., 2018). Hendrycks and Gimpel (2016) proposes a

baseline method that detects OODs based on the maximum

softmax probabilities of a DNN’s final outputs. ODIN Liang et al.

(2017) incorporates temperature scaling and input perturbation

into the maximum softmax probabilities to enhance the margin

between InD and OOD samples. More recently, Lee et al. (2020)

extends Deep-SVDD to a multi-class setting and proposes Deep-

MCDD, integrating multiple SVDDs into a single deep model, with

each SVDD trained to encompass one InD class sample. However,

these methods primarily focus on the high-level features at the final

layers of DNNs, potentially neglecting simpler, low-level features at

intermediate layers, which might lead to the misclassification of less

complex OODs.

Several studies Abdelzad et al. (2019) and Lee et al. (2018) have

explored the use of intermediate outputs for OOD detection. Lee
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FIGURE 1

An overview of our proposed Early Stopping OOD Detection (ES-OOD) framework. Input images reproduced with permission from the Tiny

ImageNet (https://www.kaggle.com/datasets/akash2sharma/tiny-imagenet), SVHN (https://www.kaggle.com/datasets/stanfordu/street-view-

house-numbers), LSUN (https://paperswithcode.com/dataset/lsun) and DTD (https://www.robots.ox.ac.uk/~vgg/data/dtd/) databases.

et al. (2018) calculates a confidence score based on a weighted

average of theMahalanobis distance to the nearest class-conditional

distribution at each layer, with weights optimized using an

additional validation set. Abdelzad et al. (2019) introduces OODL,

which identifies an optimal discernment layer based on a holdout

OOD dataset. Despite their innovations, they handle multi-layer

aggregation either through a fixed weighting function or by selecting

a single “best” layer, limiting their generalizability to unseen OODs.

Moreover, existing OOD detection techniques typically require

the full operation of the neural network to determine if an

input is OOD, which is not ideal for real-time applications. In

contrast, our proposed framework, ES-OOD, incorporates an early

stopping strategy to significantly reduce computational demands

while utilizing outputs from both the final and intermediate layers.

This approach enables more precise OOD predictions through layer-

adaptive scoring, effectively detecting OOD samples of varying

complexity at their most suitable layers.

3 Method

Since OOD samples are rarely available during training, we

formulate OOD detection as a one-class classification problem,

where OOD detectors determine whether an input is in-

distribution or not.

3.1 Problem formulation

Consider an input x from a set X , with a label y from the set

Y = {1, . . . ,K}, where K represents the number of classes. Given

a deep neural networkM with L layers, the network classifies each

input into one of K classes, denoted as ŷ = M(x) ∈ Y .

At each layer ℓ, ranging from 1 to L, the intermediate output x(ℓ)

is fed to a layer-specific OODdetectorCℓ to compute anOOD score

s(ℓ) = Cℓ(x
(ℓ)). Separate OOD detectors are attached to different

layers of M to obtain multiple OOD scores. The final OOD score

of x can be obtained through a multi-layer aggregation function,

such as by taking the average of OOD scores outputted by all OOD

detectors:

sfinal =
1

L

L
∑

ℓ=1

Cℓ(x
(ℓ))

This final OOD score is then used to determine whether x is

in-distribution or not based on a predefined threshold δ.

3.2 One-class support vector machine

In the domain of one-class classification, numerous techniques

can be employed for OOD detection, such as Isolation Forest

(iForest; Liu et al., 2008), Gaussian Mixture Models (GMM;

Mukhoti et al., 2023), and Autoencoders (Sakurada and Yairi,

2014), among others. In this study, we use the One-Class

Support Vector Machine (OCSVM; Schölkopf et al., 2000), a

prevalent choice in existing literature due to its effectiveness.

The motivation for employing OCSVM stems from its strong

theoretical foundation in learning a boundary that encapsulates

the majority of the in-distribution data points, making it robust

against outliers and suitable for high-dimensional feature spaces.

Furthermore, OCSVM is non-parametric, meaning it can model

complex distributions without relying on specific assumptions

about data structure, which enhances its versatility in detecting

diverse OOD samples. It is important to note that our framework

design is flexible and allows for the substitution of OCSVM with
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any other one-class classifiers without altering the underlying

architecture.

The OCSVM operates by defining a feature mapping 8 :X ⊂
R
d → F ⊂ R

h, where h > d. This mapping transforms input

samples {xi}ni=1 ∈ R
d into a higher dimensional feature space

F , aiming to maximize the separation between the input samples

and the origin in this space. To achieve this, the OCSVM seeks

the optimal hyperplane that maximizes the distance from all input

samples to the origin.

The computation typically required for this feature mapping

is circumvented using the kernel trick, which computes the inner

product in the feature space indirectly. Specifically, we employ the

Gaussian Radial Base Function (RBF) kernel for this purpose:

k(xi, xj) = exp
(

−γ ‖xi − xj‖2
)

, (1)

Where γ denotes the kernel width. This selection is motivated

by the kernel’s ability to handle the nonlinear relationships in

high-dimensional data effectively.

The optimization of the OCSVM, Cℓ, at layer ℓ is formulated as

a dual Quadratic Programming (QP) problem, which can be solved

using Lagrange multipliers. The objective function and constraints

are defined as follows:

min
α(ℓ)

1

2

∑

i,j

α
(ℓ)
i α

(ℓ)
j k

(

x
(ℓ)
i , x

(ℓ)
j

)

s.t. 0 ≤ α
(ℓ)
i ≤ 1

νn
, and

∑

i

α
(ℓ)
i = 1 (2)

Where α
(ℓ)
i are the Lagrange multipliers and ν ∈ (0, 1]

represents the upper bound of the training error rate.

For an input sample x processed at layer ℓ, its OOD score is

calculated using the decision function:

Cℓ(x) = −
∑

i

α
(ℓ)
i k

(

x
(ℓ)
i , x(ℓ)

)

+ ρ(ℓ) (3)

The offset ρ(ℓ) can be recovered by ρ(ℓ) =
∑

j α
(ℓ)
j k

(

x
(ℓ)
j , x

(ℓ)
i

)

.

In this setup, positive OOD scores indicate out-of-distribution

samples, whereas negative scores suggest in-distribution samples,

assuming a default threshold of zero (δ = 0).

3.3 Training procedure

Given a pre-trained DNN model, Mθ , parameterized by θ ,

and employing OCSVMs as OOD detectors, we introduce a

comprehensive training objective to optimize both the backbone

model and the OOD detectors simultaneously. The objective

function is defined as follows:

min
θ

min
α(ℓ)L

ℓ=1

L(θ)+ λ

2
·

L
∑

ℓ=1

∑

i,j

α
(ℓ)
i α

(ℓ)
j k

(

x
(ℓ)
i , x

(ℓ)
j

)

(4)

subject to 0 ≤ α
(ℓ)
i ≤ 1

νn
, and

∑

i

α
(ℓ)
i = 1

This formulation includes two primary components: The

first term L(θ) represents the loss function associated with

the DNN, which typically measures the model’s accuracy in

classifying training data; The second term aggregates the quadratic

programming losses from each layer’s OCSVM, scaled by a

regularization parameter λ > 0. Each loss term involves

a summation over pairs of data points, weighted by their

corresponding Lagrange multipliers α
(ℓ)
i , and computed using a

kernel function k.

To effectively solve the joint optimization problem defined in

Equation 4, we employ an alternating optimization strategy. This

technique iteratively updates the model parameters θ and the dual

coefficients {α(ℓ)}Lℓ=1 for the OCSVMs across all layers. The process

involves two main steps:

• Step I: Update Model Parameters θ .

In the first step, the dual coefficients {α(ℓ)}Lℓ=1 for each

OCSVM are held fixed. The backbone model parameters θ are

then re-estimated by minimizing the following objective:

min
θ

L(θ)+ λ

2L

L
∑

ℓ=1

∑

i,j

α
(ℓ)
i α

(ℓ)
j k(x

(ℓ)
i (θ), x

(ℓ)
j (θ)) (5)

• Step II: Update Dual Coefficients {α(ℓ)}Lℓ=1.

With the updated θ parameters fixed, the next step is to

regenerate the intermediate outputs for the training samples

using the current model parameters. These outputs are then

used to re-estimate the dual coefficients for each OCSVM by

solving the optimization problem outlined in Equation 2.

In training the OCSVMs, two hyperparameters, the Gaussian

kernel width γ and the training error upper bound ν, play pivotal

roles. γ determines the smoothness of the decision boundary. A

smaller γ results in a smoother boundary, which can generalize

better but may also underfit by failing to capture finer details in the

data distribution. ν on the other hand, sets the maximum allowable

training error rate, essentially filtering out noise in the training

dataset. It also influences the minimum number of support vectors

OCSVMmust use, balancing the model’s sensitivity to outliers with

its ability to detect OOD samples.

Typically, these hyperparameters are optimized using a

validation set containing both InD and OOD samples. However,

due to the scarcity of OOD training data, we employ self-adaptive

data shifting (Wang et al., 2018) for hyperparameter tuning

by generating pseudo-OOD samples purely from the available

InD data. This allows for a more practical and flexible tuning

process, which is particularly beneficial in applications where OOD

samples are difficult to collect. Specifically, this approach involves

identifying the edge patterns (boundary points) of the target data

and shifting them away from the data in the direction of the

negative gradient of data density. The magnitude of the shift is

chosen such that the pseudo OODs are placed at an optimal

distance from the target data, not too far or too close, ensuring

proper regulation of the decision boundary without overfitting.

We summarized ES-OOD’s training procedure in Algorithm 1.
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Input: Pre-trained DNNmodelMθ , InD training set X

Output: Jointly trainedMθ and OOD detectors {Cℓ}Lℓ=1

1: Generate the intermediate outputs {X (ℓ)}Lℓ=1

2: Generate pseudo-OODs

{X (ℓ)
pseudo}

L
ℓ=1 = selfAdaptiveDataShifting({X (ℓ)}Lℓ=1)

3: Hyper-parameter tuning for {Cℓ}Lℓ=1 using {X (ℓ)}Lℓ=1

and {X (ℓ)
pseudo}

L
ℓ=1

4: while not done do

5: Fix the {α(ℓ)}Lℓ=1 and re-estimate θ (Equation 5)

6: Update the intermediate outputs {X ∗(ℓ)}L1
7: Re-train {Cℓ}Lℓ=1 using the updated intermediate

outputs

{X ∗(ℓ)}L1 (Equation 2)

8: return trained Mθ and {Cℓ}Lℓ=1

Algorithm 1. ES-OOD Training procedure.

3.4 Layer-adaptive scoring

Given L OCSVM OOD detectors {Cℓ}Lℓ=1 that each output an

OOD score s(ℓ) for input x, we need to either define a threshold

for each OOD detector or design an aggregation function that

consolidates all the OOD scores into a final prediction. Empirically,

we found that layer-adaptive scoring performs better than a fixed

threshold because the predictions of OOD detectors often diverge

(see Section ??). We chose a simple yet effective scoring function

that propagates the most confident opinion among all OOD

detectors as the final prediction. Specifically, the layer-adaptive

scoring is designed as:

sfinal = max
[

{Cℓ(x
(ℓ))}Lℓ=1

]

(6)

One challenge with this scoring design is that OCSVMs trained

on different features generally produce scores on different scales.

This effect can be alleviated by standardizing the training features

for each OCSVM: x
′ = (x − x̄)/σ , with x̄ being the sample mean

and σ being its standard deviation.

This layer-adaptive scoring is so named because it acts as

an equal-weighted (with each layer contributing a weight of 1)

maximum OOD score propagation function. It outputs the most

confident decision among all the OOD detectors operating at

different layers, allowing the model to adaptively choose the most

appropriate layer for detecting OOD samples. By applying a

threshold to the final OOD scores, OOD samples can be detected at

the layer where they receive the highest OOD score. This approach

effectively propagates the maximumOOD confidence across layers,

ensuring that the most reliable layer is used for detection. As a

result, it can utilize the full spectrum of characteristics encoded in

different layers to achieve more accurate OOD detection compared

to a single-layer solution, underscoring the importance of multi-

layer aggregation in the success of OOD detection in DNNs (Ming

et al., 2022; Lambert et al., 2023) (see Section 4.6). Meanwhile,

unlike other multi-layer aggregation methods (Abdelzad et al.,

2019; Lee et al., 2018), it does not require access to any validation

data and is robust against unseen OODs (see Section 4.2).

3.5 Integrating OOD detection with early
stopping

To facilitate early stopping in this OOD detection framework,

the most convenient solution is to transform the OOD scores

derived from the decision function (Equation 3) into OOD

probabilities. By applying a fixed threshold on these probabilities,

inputs with high OOD probabilities can be stopped early. Directly

applying a fixed threshold on raw OOD scores is infeasible due

to scale differences. Alternatively, one can apply layer-specific

thresholds on raw OOD scores or on the OOD probabilities to

achieve early stopping; however, this solution requires a large

validation set and does not generalize well to unseen OODs.

The raw scores from OCSVMs represent distances to the

decision boundary, which cannot be directly interpreted as

probabilities. To address this, ourmethod involves converting these

raw scores into density estimations under the assumption that

the raw scores of InD training samples are normally distributed.

Specifically, at layer ℓ, we first standardize the raw OOD scores

using the mean (µℓ) and standard deviation (σℓ) computed from

the raw scores of the InD training samples:

C̃ℓ(x) =
Cℓ(x)− µℓ

σℓ

(7)

Once standardized, the OOD probability for an input x at layer

ℓ is estimated using the cumulative distribution function (CDF) of

the standard normal distribution:

Pℓ(x) =
∫ C̃ℓ(x)

−∞

1√
2π

e−
1
2 t

2
dt (8)

Here, Pℓ(x) represents the probability that input x is an OOD at

layer ℓ.

By applying a predefined OOD probability threshold 0 < ξ <

1 on Pℓ(x), we can implement a simple early stopping strategy

during the inference process: If the OOD probability Pℓ(x) exceeds

ξ at any layer ℓ, the inference process is terminated, and x is

identified as OOD. By setting a large threshold ξ , this early stopping

strategy can improve OOD inference efficiency by stopping further

computation for highly suspected OOD inputs.

Note that instead of assuming a Gaussian distribution for the

InD training samples’ OOD scores, more sophisticated density

estimation methods can be used to achieve better results, such as

Kernel Density Estimation (Silverman, 2018), Gaussian Mixture

Models (Mukhoti et al., 2023), k-Nearest Neighbors (Loftsgaarden

and Quesenberry, 1965), or Normalizing Flows (Rezende and

Mohamed, 2015). However, fine-tuning the OOD detection

accuracy is not the main focus of this work. Our primary focus

is the framework design of effective and efficient OOD detection

with early stopping. We also demonstrate that even with such a

strong assumption, this early stopping strategy can significantly

reduce computational overhead while maintaining superior OOD

detection performance (see Section 4.2).
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3.6 Voting mechanism

The early stopping strategy alone is insufficient for effective

OOD detection in DNNs due to the accumulation of false positives

as the neural network goes deeper. To mitigate this, we integrate a

voting mechanism that requires k ∈ Z
+ votes for an input to be

identified as OOD and stopped early. Specifically, for an input x to

be stopped early as OOD, we must have |{Pℓ(x)}L1 > ξ | ≥ k.

This approach significantly lowers the false positive rate, as

misclassifying an InD sample as OOD requires multiple detectors

at various layers to agree, each surpassing the OOD probability

threshold ξ . Although the suitable range of k values may vary

based on a deep neural network’s depth and design, it can be easily

determined by a small validation set. Our findings suggest that

under appropriate settings, ES-OOD is robust to variations in k (see

Section 4.4).

The complete inference procedure is summarized in

Algorithm 2.

Input: Trained Mθ and OOD detectors {Cℓ}Lℓ=1, test input x, pre-

defined OOD probability threshold ξ , voting count k, and OOD

score threshold δ

Output: label of x

1: OOD vote count q = 0

2: for ℓ ∈ {1, · · · , L} do

3: Evaluate the OOD score Cℓ(x
(ℓ)) of x at layer ℓ

(Equation 3)

4: Standarize OOD score Cℓ(x
(ℓ)) to obtain C̃ℓ(x)

(Equation 7)

5: Calculate OOD probability Pℓ(x) using C̃ℓ(x)

(Equation 8)

6: if Pℓ(x) > ξ then

7: q = q+ 1

8: if q ≥ k then

9: return OOD

10: else

11: Continue

12: Calculate the final OOD score sfinal using layer-

adaptive scoring (Equation 6)

13: if sfinal > δ then

14: return OOD

15: else

16: return ŷ = Mθ (x)

Algorithm 2. ES-OOD Inference procedure.

4 Experiments

4.1 Experimental settings1

We evaluated ES-OOD on its OOD detection accuracy and

efficiency by utilizing two common InD datasets, five OOD datasets

1 The source code and datasets are available at:

https://github.com/haoliangwang86/ES-OOD.

TABLE 1 Image classification accuracy of the trained backbone models.

Model CIFAR10 CIFAR100

VGG-16 93.94% 74.13%

ResNet-34 94.67% 75.02%

DenseNet-100 95.06% 77.18%

of varying complexity, and three widely used DNN models.

This comprehensive testing setup was compared against four SOTA

baselines to demonstrate the effectiveness and efficiency of our

approach.

4.1.1 Datasets
We utilized two InD datasets (CIFAR10 and CIFAR100) and

five OOD datasets (LSUN, Tiny ImageNet, SVHN, DTD; Cimpoi

et al., 2014, and Pure Color) in our experiments. The “Pure

Color” dataset is a synthetic dataset that contains 10,000 randomly

generated pure-color images. For each InD-OOD combination, we

construct a training set using all the training images in the InD

dataset and form a balanced test set using all the test images in

both InD and OOD datasets. If the test set is unequal in size, we

randomly select images from the larger set to match the size of the

smaller one. All images were downsampled to a resolution of 32×32

using Lanczos interpolation.

It is important to note that while prior studies often used

linear interpolation for downsampling (Abdelzad et al., 2019; Lee

et al., 2020, 2018; Liang et al., 2017), we found that using linear

interpolation will introduce severe aliasing artifacts, making such

OOD samples easily detectable. To address this, we employed

Lanczos interpolation for downsampling OOD images, a more

sophisticated technique that better preserves the original image

quality and ensures more authentic OOD samples.

4.1.2 Backbone models
Our evaluation employed three widely recognized DNNs in

computer vision and machine learning: VGG-16, ResNet-34, and

DenseNet-100. Thesemodels, which vary in depth and architecture,

demonstrate the adaptability of our framework. All models were

trained in traditional image classification settings using stochastic

gradient descent (SGD) with a momentum of 0.9. Specifically,

VGG-16 was trained for 300 epochs with a batch size of 128, using

weight decay regularization of 5× 10−4 and an initial learning rate

of 0.05, which was halved every 30 epochs. ResNet and DenseNet

followed the training settings detailed in Lee et al. (2018, 2020).

The image classification accuracies of these models are presented

in Table 1.

4.1.3 Feature reduction
We implemented a feature reduction step on the intermediate

outputs to ensure scalability (Abdelzad et al., 2019). Among the

various pooling methods tested (including max/average pooling

of different sizes and global max/average pooling), global average

pooling was found to be the most effective. The resulting features
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were then standardized using the mean and standard deviation of

the training set, as detailed in Section 3.4.

4.1.4 Hyperparameters tuning
For OCSVM, we set the parameter ν at 0.001 to minimize

the number of InD samples allowed to be noise. The

parameter γ is optimized using pseudo-OODs, created by

self-adaptive data shifting of InD training samples only

(Wang et al., 2018). The search range for γ is [0.001,

0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0], which can be

further narrowed based on the specific InD-backbone combination

to suit feature complexity and reduce training time. For the early

stopping strategy, following (Lee et al., 2018), a validation set

of 500 randomly selected OOD samples was used to determine

the voting count k. We set the OOD probability threshold ξ

as 0.99 to ensure a low false positive rate and search for k

within 20–70% of a DNN’s total length, aligning it with specific

architectural design.

4.1.5 Baseline methods and evaluation metrics
We benchmark our method against four SOTA OOD detection

techniques: MSP (Hendrycks and Gimpel, 2016), ODIN (Liang

et al., 2017) (employing both temperature scaling and input

preprocessing for optimal performance), OODL (Abdelzad et al.,

2019) (with iSUN (Xu et al., 2015) as an additional OOD dataset to

determine the optimal discernment layer), and Deep-MCDD (Lee

et al., 2020). For evaluating the OOD detection effectiveness, we

utilize three common metrics: AUROC, AUPR, and FPR at 95%

TPR. To evaluate efficiency, we calculate the percentage of total

FLOPS (floating point operations executed per second) saved by

the early stopping strategy.

4.2 Performance evaluation

Without considering the early stopping, a performance

comparison is reported in Table 2. The mean values of each

evaluation metric are also included to demonstrate the overall

performance on OOD datasets with varying complexity.

It can be observed that OODs of higher complexity are harder

to detect, such as LSUN and Tiny ImageNet images, which may

contain complex backgrounds or multiple objects. In contrast,

OODs of lower complexity are easier to detect, such as SVHN,

which contains cropped street view house numbers, or DTD,

which contains images of different textures. The synthetic Pure

Color dataset is of the lowest complexity, as it contains limited

information.

Furthermore, single-layer solutions are not robust against all

OODs of different complexity. OOD detection methods that rely

on features from the final layers (MSP, ODIN, and Deep-MCDD)

tend to perform well with complex OODs like LSUN and Tiny

ImageNet. However, these methods struggle with simpler OODs

such as SVHN, DTD, and Pure Color. The OODL baseline, which

leverages a fixed best layer, shows a similar performance pattern to

MSP, ODIN, and Deep-MCDD, primarily because LSUN and Tiny

ImageNet are of similar complexity as the iSUN dataset, which was

used for calibrating OODL’s best layers. When the complexity of

test OODs differs significantly from iSUN, OODL’s performance

deteriorates significantly.

Through multiple intermediate OOD detectors and the

layer-adaptive scoring, ES-OOD exploits the full-spectrum

characteristics encoded in different latent spaces. By considering

the early layers’ outputs, ES-OOD significantly outperforms the

four baseline methods on OOD datasets of lower complexity

(SVHN, DTD, and Pure Color). More importantly, ES-OOD

achieves the best average AUROC, AUPR, and FPR at 95% TPR

for all InD-Backbone settings, demonstrating its robustness against

OODs of varying complexity. Overall, ES-OOD shows an 8.21%

improvement in AUROC, a 7.8% improvement in AUPR, and

a 29.98% improvement in FPR at 95% TPR compared to the

second-best baseline method.

If taking the early stopping into consideration, we compared

the OOD detection performance and efficiency gain of ES-OOD

with or without the Early Stopping (ES) in Table 3. Efficiency

gain refers to the computational savings in terms of FLOPs

(Floating Point Operations), which are reduced by halting the

OOD inference process early when a confident decision is made.

ES-OOD with early stopping (w/ ES) significantly reduces OOD

inference time while maintaining comparable or even better

OOD detection performance. Overall, integrating early stopping

improves general inference time by 18.9–65.1%, and by up to

99.1% for simpler OODs like DTD and Pure Color, demonstrating

substantial efficiency improvement while preserving high OOD

detection accuracy.

4.3 Layer-specific OOD detection
dynamics

As DNN layers deepen, they learn increasingly complex

features (Zhou et al., 2018). By equipping intermediate layers

with OOD detectors, we can identify OODs based on varying

feature complexity. Using the VGG model and CIFAR10 InD as

an example, Figure 2 illustrates the number of OODs detected by

each OOD detector. For more complex OODs like LSUN and

Tiny ImageNet, the majority are identified by the last two OOD

detectors. Conversely, simpler OODs are primarily detected by the

first seven OOD detectors.

Figure 3 illustrates the Tiny ImageNet OODs detected by OOD

detectors at various layers using the VGG backbone and CIFAR10

as the InD dataset. Detectors in the early layers aremore sensitive to

image colors and textures, capturing fine-scale details. In contrast,

detectors in the final layers tend to identify OODs based on objects

or scenes, demonstrating their ability to recognize more complex

OODs. A similar pattern is observed for the DTD dataset, as shown

in Figure 4.

4.4 Advantages of using intermediate OOD
detectors

An optimal discernment layer (or best layer) can be found

for a particular OOD dataset, but it may not be the optimal
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TABLE 2 Performance evaluation without early stopping.

InD/model OOD AUROC ↑ AUPR ↑ FPR at 95% TPR ↓
MSP/ODIN/Deep-MCDD/OODL/ES-OOD(ours)

Cifar10

VGG-16

LSUN 86.25 / 86.75 / 85.19 / 88.03 / 87.98 85.26 / 87.06 / 84.76 / 88.01 / 85.31 69.27 / 67.72 / 59.09 / 62.38 / 54.75

Tiny 85.66 / 86.35 / 83.95 / 87.10 / 88.64 84.23 / 86.22 / 83.49 / 86.98 / 87.21 67.36 / 64.30 / 61.56 / 64.08 / 45.99

SVHN 91.12 / 91.47 / 89.81 / 91.68 / 95.17 87.06 / 89.29 / 93.99 / 88.46 / 94.68 21.78 / 25.45 / 64.02 / 23.52 / 17.37

DTD 87.73 / 90.26 / 88.33 / 92.16 / 97.29 87.05 / 89.58 / 80.60 / 90.82 / 97.49 66.24 / 46.33 / 53.56 / 25.04 / 14.06

Pure color 98.57 / 99.77 / 98.42 / 99.41 / 99.96 98.18 / 99.75 / 98.30 / 98.94 / 99.87 04.66 / 01.24 / 05.68 / 02.08 / 00.13

Mean 89.87 / 90.92 / 89.14 / 91.68 / 93.81 88.36 / 90.38 / 88.23 / 90.64 / 92.91 45.86 / 41.01 / 48.78 / 35.42 / 26.46

Cifar100

VGG-16

LSUN 73.00 / 73.58 / 72.83 / 75.10 / 72.48 68.49 / 69.78 / 69.92 / 69.68 / 65.28 75.43 / 74.92 / 85.12 / 74.99 / 80.24

Tiny 77.10 / 77.83 / 76.37 / 79.84 / 80.57 72.64 / 74.82 / 73.27 / 75.20 / 75.19 63.53 / 68.89 / 80.50 / 60.68 / 56.22

SVHN 75.43 / 78.18 / 74.98 / 78.43 / 87.07 71.53 / 76.20 / 86.52 / 72.63 / 85.82 66.26 / 70.29 / 82.31 / 62.78 / 48.94

DTD 75.75 / 76.81 / 73.80 / 77.76 / 93.28 70.20 / 72.94 / 58.84 / 70.63 / 93.33 62.13 / 64.66 / 82.20 / 57.82 / 33.20

Pure color 62.66 / 51.22 / 78.28 / 58.10 / 96.71 54.24 / 49.93 / 73.44 / 49.13 / 95.24 72.32 / 95.31 / 81.83 / 64.85 / 30.08

Mean 72.79 / 71.52 / 75.25 / 73.85 / 86.02 67.42 / 68.73 / 72.40 / 67.45 / 82.97 67.93 / 74.81 / 82.39 / 64.22 / 49.74

Cifar10

ResNet-34

LSUN 90.16 / 90.26 / 88.02 / 91.97 / 89.06 87.62 / 90.19 / 86.74 / 90.56 / 84.48 33.24 / 50.28 / 55.75 / 31.19 / 37.35

Tiny 86.53 / 85.46 / 83.34 / 88.81 / 89.29 84.79 / 86.46 / 83.25 / 87.66 / 86.47 58.26 / 74.41 / 61.28 / 46.15 / 36.90

SVHN 84.33 / 81.22 / 88.08 / 87.74 / 97.77 81.88 / 81.89 / 93.97 / 85.13 / 97.67 66.58 / 81.16 / 57.06 / 42.84 / 12.17

DTD 87.64 / 83.96 / 84.56 / 92.10 / 97.91 85.24 / 84.39 / 75.07 / 91.10 / 98.06 51.61 / 78.01 / 62.13 / 30.82 / 11.84

Pure color 94.59 / 96.84 / 96.11 / 95.52 / 99.99 93.48 / 96.93 / 93.81 / 94.35 / 99.99 17.84 / 15.54 / 36.80 / 19.50 / 00.04

Mean 88.65 / 87.55 / 88.02 / 91.23 / 94.80 86.60 / 87.97 / 86.57 / 89.76 / 93.33 45.51 / 59.88 / 54.60 / 34.10 / 19.66

Cifar100

ResNet-34

LSUN 75.63 / 77.52 / 74.65 / 51.91 / 65.25 70.76 / 72.81 / 70.14 / 51.92 / 59.65 62.63 / 63.51 / 84.34 / 94.84 / 78.61

Tiny 78.70 / 81.28 / 78.29 / 67.05 / 75.82 74.47 / 77.39 / 78.26 / 66.91 / 73.74 57.97 / 57.47 / 78.84 / 90.27 / 68.91

SVHN 78.76 / 84.16 / 78.62 / 79.00 / 84.61 73.71 / 78.74 / 88.50 / 69.18 / 76.09 55.29 / 46.58 / 77.50 / 45.81 / 36.85

DTD 75.32 / 78.94 / 77.11 / 86.25 / 91.39 70.07 / 74.52 / 84.85 / 83.45 / 91.97 62.59 / 60.60 / 81.49 / 40.94 / 41.19

Pure color 55.23 / 62.25 / 63.47 / 96.46 / 99.80 48.09 / 52.11 / 53.16 / 91.14 / 99.78 67.52 / 59.04 / 99.32 / 04.98 / 01.04

Mean 72.73 / 76.83 / 74.43 / 76.13 / 83.37 67.42 / 71.11 / 74.98 / 72.52 / 80.25 61.20 / 57.44 / 84.30 / 55.37 / 45.32

Cifar10

DenseNet-100

LSUN 92.07 / 94.01 / 87.19 / 88.47 / 84.38 89.47 / 93.12 / 86.23 / 84.87 / 80.95 26.40 / 23.71 / 55.00 / 40.69 / 51.55

Tiny 89.96 / 91.95 / 85.22 / 84.62 / 88.75 87.69 / 91.32 / 84.44 / 80.90 / 87.80 35.09 / 34.04 / 58.14 / 57.25 / 43.73

SVHN 89.00 / 89.54 / 89.48 / 97.19 / 97.79 85.73 / 88.11 / 94.46 / 97.54 / 97.51 36.33 / 43.54 / 51.29 / 16.07 / 09.41

DTD 88.65 / 85.42 / 86.93 / 95.10 / 97.61 86.06 / 84.75 / 77.33 / 96.14 / 97.58 39.61 / 60.98 / 59.57 / 33.07 / 12.00

Pure color 91.83 / 96.78 / 96.21 / 79.15 / 99.97 87.80 / 95.01 / 95.08 / 69.92 / 99.97 16.06 / 09.31 / 23.84 / 40.08 / 00.17

Mean 90.30 / 91.54 / 89.01 / 88.91 / 93.70 87.35 / 90.46 / 87.51 / 85.87 / 92.76 30.70 / 34.32 / 49.57 / 37.43 / 23.37

Cifar100

DenseNet-100

LSUN 76.38 / 77.41 / 75.17 / 59.11 / 69.69 72.14 / 73.19 / 71.18 / 57.10 / 64.28 62.62 / 65.02 / 82.93 / 91.64 / 72.59

Tiny 79.73 / 84.27 / 78.25 / 61.84 / 81.29 76.10 / 81.66 / 75.11 / 59.22 / 78.81 55.24 / 50.97 / 77.48 / 81.85 / 62.76

SVHN 80.08 / 81.30 / 74.99 / 71.73 / 86.99 75.29 / 74.89 / 86.25 / 65.36 / 78.23 51.73 / 49.32 / 82.48 / 66.07 / 32.89

DTD 73.18 / 70.29 / 79.34 / 84.69 / 93.79 69.03 / 67.93 / 66.09 / 84.72 / 93.95 73.09 / 91.60 / 75.11 / 56.15 / 30.67

Pure color 79.60 / 80.86 / 91.14 / 85.39 / 99.47 73.54 / 77.68 / 89.64 / 79.53 / 99.41 44.87 / 61.26 / 49.77 / 34.72 / 02.84

Mean 77.79 / 78.83 / 79.78 / 72.55 / 86.25 73.22 / 75.07 / 77.65 / 69.19 / 82.94 57.51 / 63.63 / 73.55 / 66.09 / 40.35

Evaluation metrics with “↑” indicate higher values are better, while those with “↓” indicate lower values are better. The best values are highlighted in bold.

choice for OOD datasets of different complexity (Abdelzad et al.,

2019). In Figure 5, we show the AUROC of SVHN and LSUN

at each layer of VGG-16 (using CIFAR10 and CIFAR100 as

InD, respectively). The best layer for SVHN is layer 5, while

the best layer for LSUN is the last layer. Such a best layer

could be estimated using a separate OOD dataset; however, as

observed in Table 2, OODL that estimates the best layer using

the iSUN dataset can have its performance degrade significantly
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TABLE 3 Performance comparison of ES-OOD with (w/) or without (w/o) Early Stopping (ES).

InD/model OOD
AUROC ↑ AUPR ↑ FPR at 95% TPR ↓ E�ciency

gain (%) ↑
w/o ES w/ ES Di� w/o ES w/ ES Di� w/o ES w/ ES Di�

Cifar10

VGG-16

LSUN 87.98 87.61 -0.37 85.31 84.79 -0.52 54.75 54.75 0.00 3.83

Tiny 88.64 88.76 0.12 87.21 87.85 0.64 45.99 45.99 -0.00 12.32

SVHN 95.17 96.54 1.37 94.68 96.77 2.09 17.37 16.95 -0.42 62.78

DTD 97.29 97.22 -0.07 97.49 97.39 -0.10 14.06 13.30 -0.76 72.85

Pure color 99.96 99.26 -0.70 99.87 99.28 -0.59 00.13 01.40 1.27 97.85

Mean 93.81 93.88 0.07 92.91 93.22 0.31 26.46 26.48 0.02 49.93

Cifar100

VGG-16

LSUN 72.48 72.01 -0.47 65.28 65.38 0.10 80.24 80.00 -0.24 2.76

Tiny 80.57 80.47 -0.10 75.19 77.04 1.85 56.22 56.16 -0.06 13.34

SVHN 87.07 87.21 0.14 85.82 87.02 1.20 48.94 48.89 -0.05 33.80

DTD 93.28 93.36 0.08 93.33 93.78 0.45 33.20 32.22 -0.98 68.85

Pure color 96.71 98.44 1.73 95.24 98.49 3.25 30.08 02.95 -27.13 98.56

Mean 86.02 86.30 0.28 82.97 84.34 1.37 49.74 44.04 -5.70 43.46

Cifar10

ResNet-34

LSUN 89.06 85.63 -3.43 84.48 81.20 -3.28 37.35 37.69 0.34 16.38

Tiny 89.29 88.42 -0.87 86.47 87.23 0.76 36.90 37.03 0.13 36.04

SVHN 97.77 96.96 -0.81 97.67 97.04 -0.63 12.17 11.87 -0.30 86.61

DTD 97.91 96.63 -1.28 98.06 96.78 -1.28 11.84 13.35 1.51 87.11

Pure color 99.99 98.23 -1.76 99.99 98.29 -1.70 00.04 03.36 3.32 99.09

Mean 94.80 93.17 -1.63 93.33 92.11 -1.22 19.66 20.66 1.00 65.05

Cifar100

ResNet-34

LSUN 65.25 65.47 0.22 59.65 65.27 5.62 78.61 78.56 -0.05 4.76

Tiny 75.82 74.81 -1.01 73.74 76.00 2.26 68.91 68.91 -0.00 12.18

SVHN 84.61 85.00 0.39 76.09 85.44 9.35 36.85 37.65 0.80 13.37

DTD 91.39 87.10 -4.29 91.97 88.73 -3.24 41.19 41.24 0.05 36.83

Pure color 99.80 91.30 -8.50 99.78 92.59 -7.19 01.04 16.53 15.49 64.68

Mean 83.37 80.74 -2.63 80.25 81.61 1.36 45.32 48.58 3.26 26.36

Cifar10

DenseNet-100

LSUN 84.38 84.34 -0.04 80.95 82.43 1.48 51.55 51.51 -0.04 17.29

Tiny 88.75 88.65 -0.10 87.80 88.56 0.76 43.73 43.78 0.05 35.26

SVHN 97.79 96.97 -0.82 97.51 97.10 -0.41 09.41 04.93 -4.48 71.86

DTD 97.61 96.38 -1.23 97.58 96.57 -1.01 12.00 08.63 -3.37 74.22

Pure color 99.97 97.50 -2.47 99.97 97.62 -2.35 00.17 04.74 4.57 88.26

Mean 93.70 92.77 -0.93 92.76 92.46 -0.30 23.37 22.72 -0.65 57.38

Cifar100

DenseNet-100

LSUN 69.69 69.92 0.23 64.28 69.55 5.27 72.59 72.64 0.05 5.64

Tiny 81.29 79.85 -1.44 78.81 80.43 1.62 62.76 63.12 0.36 11.21

SVHN 86.99 89.85 2.86 78.23 90.86 12.63 32.89 33.29 0.40 18.10

DTD 93.79 90.27 -3.52 93.95 91.40 -2.55 30.67 30.44 -0.23 25.32

Pure color 99.47 93.14 -6.33 99.41 93.97 -5.44 02.84 13.03 10.19 34.08

Mean 86.25 84.61 -1.64 82.94 85.24 2.30 40.35 42.50 2.15 18.87

The “Diff” columns are calculated by “w/ ES” minus “w/o ES.” The green shading indicates that “w/ ES” achieved better results, while red shading indicates the opposite. Evaluation metrics with

“↑” indicate higher values are better, while those with “↓” indicate lower values are better. The best values are highlighted in bold.

when encountering OODs of different complexity. Therefore,

instead of choosing the best layers for different OODs, ES-OOD

propagates the most confident OOD prediction across all layers

and can effectively construct a good OOD confidence measurement

for unseen OODs. For all five OOD datasets considered in

this paper, ES-OOD can achieve competitive or even better

accuracy compared to their corresponding best layers (see Section

4.6).
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FIGURE 2

Number of OODs detected by OOD detectors at di�erent layers using VGG-16 and CIFAR10 InD.

FIGURE 3

Correctly identified Tiny ImageNet OODs by OOD detectors at di�erent layers, using VGG backbone and CIFAR10 as InD dataset. Input images

reproduced with permission from the Tiny ImageNet (https://www.kaggle.com/datasets/akash2sharma/tiny-imagenet) database.

FIGURE 4

Correctly identified DTD OODs by OOD detectors at di�erent layers, using VGG backbone and CIFAR10 as InD dataset. Input images reproduced

with permission from the DTD (https://www.robots.ox.ac.uk/~vgg/data/dtd/) database.
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A B

FIGURE 5

The optimal discernment layers of SVHN and LSUN on VGG-16. (A) Optimal discernment layer when CIFAR10 as InD. (B) Optimal discernment layer

when CIFAR100 as InD.

FIGURE 6

Trends of AUROC and e�ciency gain as OOD probability threshold ξ increase using VGG-16 backbone and CIFAR10 InD.

4.5 Performance-cost trade-o� of using
early stopping: a sensitivity snalysis

Two critical hyperparameters for early stopping are the OOD

probability threshold ξ , which determines when an input is flagged

as OOD at each layer, and the voting count k, which sets the

minimum number of votes an input must receive across layers to

determine its final identity (OOD or not). Both hyperparameters

control the performance-cost trade-off in different ways.

To analyze the effect of the OOD probability threshold ξ , let’s

assume all the OOD detectors at different layers are well-trained

and can produce reasonably accurate OOD probability estimations

for the inputs. In this case, OODs will generally have higher OOD

probabilities than InDs, hence, a higher OOD probability threshold

ξ can potentially reduce the false positive rate as fewer InDs will

be misclassified as OOD. However, a higher OOD probability

threshold ξ will also lead to fewer inputs being identified early as

OODs, requiring more computational resources.

Using the CIFAR10-VGG16 setting as an example, as shown in

Figure 6, as ξ increases from 0.80 to 0.99, OOD detection accuracy

increases while efficiency gain reduces for all OODs. However, as ξ

increases from 0.99 to 1.0, the OOD detection accuracy either drops

or increases slightly, while the efficiency gain reduces to zero as no

OODwill stop early. This means early stopping can sometimes help

increase OOD detection performance while reducing the inference

time. Depending on the application, the suitable ξ range may vary

according to its priority in performance and cost, but for general

applications, it is reasonable to set 0.95 ≤ ξ < 1.0 to maintain high

OOD detection accuracy while being more efficient. From Figure 6,

we can also observe that simpler OODs like SVHN, DTD, and Pure

Color have flatter efficiency gain curves than more complex OODs

like LSUN and Tiny ImageNet. This is because simpler OODs are

assigned high OOD probabilities and hence are less susceptible to ξ

changes.

The voting hyperparameter k is also pivotal in

controlling the performance-cost trade-off. A higher k
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FIGURE 7

Trends of AUROC and e�ciency gain as voting count k increase using VGG-16 backbone and CIFAR10 InD.

A B

FIGURE 8

Number of suspected/early stopped LSUN OODs at di�erent layers of VGG-16 using CIFAR10 InD. (A) k = 2. (B) k = 3.

A B

FIGURE 9

Number of suspected/early stopped Pure Color OODs at di�erent layers of VGG-16 using CIFAR10 InD. (A) k = 2. (B) k = 3.

value means more positive votes an input needs before

being identified early as OOD, thereby reducing the

number of inputs stopped early. As k increases, the

framework will eventually become its non-early-stopping

counterpart.

As shown in Figure 7, there is a clear trade-off between AUROC

and efficiency gain. Higher k values enhance AUROC but reduce

efficiency gains, while lower k values improve efficiency but may

degrade AUROC. Moreover, as shown in Figure 8, complex OODs

such as LSUN are mostly flagged as suspected OODs (i.e., having
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TABLE 4 A comparison between the ES-OOD and its individual OOD detectors in the intermediate layers.

InD/
model

Metric C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 ES-OOD

CIFAR10

VGG-16

AUROC ↑ 60.20 78.14 89.55 89.00 83.92 81.13 77.99 70.45 65.96 71.58 83.57 89.20 91.62 93.73

AUPR ↑ 89.18 94.60 97.55 97.51 96.36 95.75 94.87 92.80 87.07 89.27 94.46 97.08 97.79 98.48

FPR at 95%

TPR ↓
95.47 84.39 61.76 64.55 77.97 85.61 89.12 95.19 88.47 82.01 56.04 63.22 37.16 28.25

CIFAR100

VGG-16

AUROC↑ 51.87 70.09 83.71 82.61 79.72 77.08 76.17 69.55 72.43 70.38 62.66 37.80 73.46 85.34

AUPR↑ 85.56 91.89 95.93 95.85 95.19 94.51 93.84 91.90 91.11 90.27 86.70 76.10 90.42 95.93

FPR at 95%

TPR↓
94.75 89.32 76.22 80.75 83.96 86.80 86.00 90.39 81.74 86.29 85.16 96.38 65.37 52.58

Performance has been averaged across all OOD datasets. Evaluation metrics with “↑” indicate higher values are better, while those with “↓” indicate lower values are better. The best values are
highlighted in bold.

OOD probabilities greater than the predefined threshold ξ ) at the

ending layers. Increasing k will postpone the early stopping to the

latter layers, allowing more opinions from different OOD detectors

to be considered for more accurate detection. A similar effect is

observed for simple OODs, such as the Pure Color images, as shown

in Figure 9, where with k increasing from 2 to 3, most Pure Color

OODs are stopped at layer 3 instead of layer 2. From Figure 7 we

also observe that efficiency gains are most pronounced for simpler

OOD datasets such as SVHN, DTD, and Pure Color, in contrast to

more complex datasets like LSUN and Tiny ImageNet, indicating

that early stopping yields greater computational savings for less

complex OODs as a large amount of them can be identified and

stopped very early. Additionally, while k is crucial for achieving

a satisfactory balance between performance and cost, the trends

show that AUROC maintains a relatively flat curve with increasing

k values after a certain point (k ≥ 3 in this case). This demonstrates

that although a very small k can drastically improve efficiency, it

comes at a great cost to OOD detection accuracy, but as we increase

the k value, ES-OOD’s OOD detection performance remains robust

against variations in k within a large range.

4.6 Ablation study

Here, we compare the OOD detection performance of the

proposed ES-OOD framework with each of its individual OOD

detectors on a mixed OOD dataset containing five OOD datasets

(LSUN, Tiny ImageNet, SVHN, DTD, and Pure color). The

results are shown in Table 4. Using VGG-16 as an example, for

both CIFAR10 and CIFAR100 InD settings, ES-OOD consistently

achieves better performance than any single OOD detector.

5 Conclusion

In conclusion, we introduced ES-OOD, a novel layer-adaptive

OOD detection framework with early stopping. By attaching

OOD detectors at intermediate layers and employing a layer-

adaptive scoring, ES-OOD can effectively detect OODs with

varying complexity at their most suitable layers. The motivation

behind our approach stems from the pressing need for efficient

and reliable OOD detection in real-time systems, where traditional

methods prioritize detection effectiveness but often at the cost of

significant computational resources. This limitation is particularly

evident in applications like autonomous driving and medical

diagnosis. To address these challenges, ES-OOD integrates early

stopping and layer-adaptive scoring to minimize computational

overhead while maintaining superior detection accuracy. ES-

OOD utilizes an early stopping strategy to terminate inference

when confident OOD predictions are made at intermediate layers

and includes a voting mechanism to ensure the true positive

rate. The framework is compatible with any existing DNNs and

does not require OOD samples during training. By reducing

computational costs by up to 99.1% without compromising on

accuracy, ES-OOD effectively strikes a balance between efficiency

and accuracy, making it highly suitable for resource-constrained

environments in real-world applications. Extensive experiments

demonstrate that ES-OOD is significantly faster and more effective

than state-of-the-art baselines in detecting OODs across various

DNN architectures.
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