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Background

Bacteriophages (phages) are viruses that infect and replicate within host bacteria and

archaea (Chatterjee and Duerkop, 2018; Dion et al., 2020). Phages are the most abundant

entities in the biosphere (Dion et al., 2020) and are distributed across different biomes

populated by bacterial and archaeal hosts, including the gastrointestinal tract of humans

and animals, and oceanic beds (Chevallereau et al., 2022; Clokie et al., 2011). They play

a vital role in the rapid evolution and adaptation of their hosts in various environments

(Dion et al., 2020).

Phages exhibit high genomic, morphological, and structural diversity, composed of

DNA or RNA that can be single-stranded or double-stranded and packaged into a capsid

(Dion et al., 2020; Fokine and Rossmann, 2014). The structural form of the capsid was

a major feature used in the taxonomic classification of phages until the advent of whole-

genome sequencing, which has now become the gold standard for this classification (Dion

et al., 2020; Fokine and Rossmann, 2014; Turner et al., 2023). Phages are broadly classified

as tailed or non-tailed, with double-stranded DNA tailed phages constituting about 96%

of all known phages (Dion et al., 2020). Phages possess a diverse array of tail structures

essential for host recognition, attachment, and penetration, making them important targets

in phage therapy research (Fokine and Rossmann, 2014; Gil et al., 2023). Phage infection of

its host begins with the recognition of a receptor on the bacterial cell surface for attachment

(Dowah and Clokie, 2018; Latka et al., 2017). To penetrate the host cell, phages must

overcome various complex barriers on the bacterial cell wall, such as the outer membrane

of Gram-negative bacteria and the lipoteichoic acids of Gram-positive bacteria (Chen

et al., 2014; Latka et al., 2017). Phages encode virion-associated carbohydrate-degrading

enzymes called depolymerases, which are distinct from the endolysins produced by phages

during the lysis stage (Knecht et al., 2020; Yan et al., 2014). These depolymerases, encoded

by tailspike protein (TSP) genes, recognize, bind, and degrade cell-surface associated

polysaccharides, unmasking phage receptors and making them accessible for bacterial

infection (Gil et al., 2023; Greenfield et al., 2019; Latka et al., 2017).
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Tailspike proteins are integral components of phage tail

structures, and their activities as polysaccharide depolymerases are

related to host specificity and infectivity (Greenfield et al., 2019).

A hallmark of TSPs is their host specificity, high thermostability,

resistance to protease treatment, and stability in the presence of

high concentrations of urea and sodium dodecyl sulfate (Chen

et al., 2014). Phage TSPs possess carbohydrate depolymerase

activity and recognize capsule, and lipopolysaccharides (LPS)

where they cleave components of the LPS to position the

phage toward a secondary membrane receptor during infection

(Knecht et al., 2020). TSPs have been observed to decrease

bacterial viability, leading to antimicrobial applications. For

example, Ayariga et al. (2021) demonstrated that the ε34 phage

tailspike protein has enzymatic property as a LPS hydrolase

and synergizes with Vero Cell culture supernatant in killing

Salmonella Newington. The ε34 TSP also showed bactericidal

efficacy against different Salmonella serovars in various matrices

(Ibrahim et al., 2023). Miletic and colleagues (Miletic et al.,

2016) expressed the receptor binding domain of the Phage P22

Gp9 tailspike protein in plant tissue (Nicotiana benthamiana),

and demonstrated that, upon oral administration of lyophilized

leaves expressing Gp9 TSP to newly hatched chickens, Salmonella

concentrations were reduced on average by approximately 0.75

log relative to controls. Others have shown that TSPs can be

used to control the growth of plant pathogens. For example,

expression of the Erwinia spp. phage TSP DpoEa1h in transgenic

apple and pear plants significantly reduced fire blight (Erwinia

amylovora) susceptibility (Malnoy et al., 2005; Roach andDonovan,

2015), likely due to removal of the main virulence factor

amylovoran and exposing the E. amylovora cells to host plant

defenses (Kim et al., 2004). Finally, phage LKA1 TSP exhibits

disruptive activity against biofilms while also reducing virulence

in Pseudomonas in an infection model (Olszak et al., 2017).

Collectively, these studies demonstrate the utility of TSPs as novel

antimicrobials to control the growth of food and plant-borne

pathogens in foods.

Despite the known antimicrobial applications of TSPs, only

a few have been fully characterized to date. This could be

partly due to the laborious nature of detection techniques,

which include plaque assays followed by examination under a

transmission electron microscope (TEM) to identify “bulb-like”

baseplate structures at the base of phage tails indicative of TSPs

(Bhandare et al., 2024; Knecht et al., 2020). The decreasing costs

of sequencing and the availability of improved bioinformatics

tools have facilitated the construction of large-scale genome and

metagenome datasets (Emond-Rheault et al., 2017; Wattam et al.,

2014). High-throughput in silico detection of TSP-encoding genes

in genomic data would not only provide further details regarding

the diversity of TSPs in virulent phages but could also be used

to identify TSPs in prophages. In this report, we present a high-

level curated resource called TSP database (TSPDB) for the rapid

detection of tailspike proteins in multiomics sequence data. This

TSPDB will be an indispensable resource for researchers in phage

biology, drug discovery, and antimicrobial resistance domains

to further contribute to the understanding of the structure and

function of these proteins to harness their potential for diverse

applications, such as the development of phage therapy for bacterial

infections or phage-based biocontrol of foodborne pathogens, and

drug discovery (Brives and Pourraz, 2020; Roach and Donovan,

2015).

Data and methodology

Data mining and quality check

The DDBJ/ENA/GenBank and UniProt databases (Sayers et al.,

2022; The UniProt Consortium et al., 2023) were queried for

TSPs using search terms commonly associated with tailspike

proteins, such as “phage tailspike,” “tail spike proteins,” “phage

endopeptidase,” and “phage endorhamnosidase.” (Figure 1). Hits

were systematically filtered based on annotation criterion to

exclude duplicate results. Nucleotide sequences of TSPs were

retrieved from public databases using accession numbers obtained

from the database query via NCBI Entrez Programming Utilities

(E-utilities) (National Center for Biotechnology Information,

2023).

Dataset curation

From this exercise, 17,211 sequences were obtained from the

queried public databases. Duplicated sequences were removed

using thresholds of ≥95% sequence coverage and nucleotide

similarity with cd-hit (Li and Godzik, 2006) and Seqkit (Shen

et al., 2016), resulting in 9,129 unique TSP sequences. To assess the

sequence length distribution and perform quality checks on unique

TSP sequences, Gaussian distribution analysis was conducted.

Sequences shorter than 400 bp, which could represent partial

region or incomplete sequences that may lack critical functional

domains required for accurate annotation and functional

prediction, were excluded from the dataset. By excluding these

shorter sequences, we reduce the possibility of including fragments

that could introduce noise or inaccuracies into the database. This

threshold helps ensure that the TSPDB contains more reliable and

complete sequences for functional analysis and annotation. This

filtering process resulted in a total of 8,105 unique TSP sequences

(Figure 1). TSP sequences with a length of ≤10,000 bp were

retained to include those originating from Gram-positive bacteria

such as Clostridium and Streptococcus, among others. Overall size

range of TSPs retrieved from the public databases is 405 to 9,990

bp (Figure 2A). Further analysis of TSP genes in the TSPDB reveals

a significant difference (p < 0.001) in the sizes of TSPs between

Gram-negative and Gram-positive bacteria. Specifically, the

average size of TSPs for Gram-negative bacteria is 2,070 bp, while

the average size for Gram-positive bacteria is substantially larger, at

3,255 bp (Figure 2B). The TSPDB contains TSPs from more than

400 bacterial genera. Among these, the top 13 genera represented

were Gram-positive bacteria, with TSPs from Bacillus (n = 1,616)

being the most common, followed by Streptococcus (n = 1,152),

Clostridium (n = 683), Enterococcus (n = 387), and Staphylococcus

(n = 372). Additionally, TSPs from Gram-negative bacterial

genera, Salmonella (n = 80), Escherichia (n = 58), Klebsiella (n =

52), and Pseudomonas (n = 25) were among the top 38 TSPs in the

database (Figure 2C). To assess the normality of the distribution
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FIGURE 1

Workflow for the construction of the tailspike protein database (TSPDB). TSP sequences were retrieved from GenBank and UniProt using specific

search terms, yielding 17,211 sequences. After filtering by annotation and excluding sequences <400 bp and >10,000 bp, deduplication at ≥95%

similarity reduced the dataset to 8,105 unique sequences, which were then compiled into the TSPDB for e�cient access.

of TSP frequencies across bacterial genera, we performed a

Shapiro-Wilk test. This test yielded a statistic of 0.487 and a p-value

< 0.0001, confirming a significant departure from normality.

This result supports the observation of a skewed distribution,

where Gram positive bacteria host genera (e.g., Bacillus and

Streptococcus) exhibit notably high TSP counts compared

to others.

Diversity of TSPs

To assess the diversity of the 8,105 unduplicated TSP

sequences and their suitability for database creation, we employed

a phylogeny-based approach. The TSP sequences were aligned

using MAFFT v7.453 (Katoh, 2002), and a maximum likelihood

tree was constructed with FastTree v2.1.11 (Price et al., 2010)

using the generalized time reversible mode and 1,000 bootstrap

replicates for node support. The resulting phylogenetic tree

was visualized using the web-based Microreact visualization tool

(Argimón et al., 2016) (Figure 2D). The phylogeny revealed

the high diversity of TSPs in the TSPDB, further supporting

the uniqueness of individual TSPs. TSPs from the same

species often belonged to different clusters. For example, TSPs

from Bacillus and Listeria were distributed across multiple

clusters in the phylogeny. While the majority of TSPs from

Salmonella belonged to the same cluster, there were also a few

instances of TSPs from this host genus in separate clusters

(Figure 2D).

TSPDB construction

The deduplicated TSP nucleotide sequences were utilized to

construct the TSP database using makeblastdb (Camacho et al.,

2009). This database is compatible for use with ABRicate (https://

github.com/tseemann/abricate) and other bioinformatics tools

equipped with embedded BLAST algorithms, such as BLAST suites

and SRST2 (Inouye et al., 2014), among others.

TSPDB application

The TSPDB was recently utilized in a study by Bhandare

et al. (2024), where the database was implemented within

an ABRicate container. The database index files suitable for

use with blast was generated using makeblast_db option in
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FIGURE 2

Analysis of phage tail spike proteins in the TSPDB. (A) Sequence length distribution of genes encoding phage TSPs contained in the TSPDB. TSP size

in the database ranged from 405–9,990 bp. (B) Di�erential frequency distribution of TSP gene sizes in Gram-negative (orange circles) and

Gram-positive (blue circles) bacteria in the TSPDB. (C) Frequency across the top 37 genera of host phages carrying TSPs in the TSPDB. (D)

Phylogenetic diversity of the 8,105 TSPs in the TSPDB. Each node represents a unique TSP contained in the TSPDB, with nodes of similar color

belonging to the same genera. The top 37 genera are displayed in color. An interactive version of this figure is accessible through the following link -

https://microreact.org/project/7Kv61nb6aRapgGgHpxsNGL-tspdb-v20. To assess the normality of the distribution of TSP frequencies across

bacterial genera, we performed a Shapiro-Wilk test. In this analysis, the Shapiro-Wilk test yielded a statistic of 0.487 and a p-value < 0.0001,

confirming a significant departure from normality. This result supports the observation of a skewed distribution, where a small number of genera

(e.g., Bacillus and Streptococcus) exhibit notably high TSP counts compared to others.

ABRicate. The step-by-step guide on how to incorporate TSPDB

into ABRicate for rapid screening of large genomic dataset

is detailed on the ABRicate Github page (https://github.com/

tseemann/abricate). The presence of TSPs in a collection of

phage genomes were determined using stringent parameters

(≥90% identity and ≥70% coverage). TSPDB provides valuable

applications across various fields, particularly in phage therapy,

biocontrol, and functional genomics and would contribute to

advancing the application of TSPs in biocontrol strategies in

agriculture and food safety. Overall, the TSPDB contains a vast

dataset of diverse TSPs found in phages, and the integration

of this database into phage detection tools will enhance the

functional annotation of these genes in large genomic and

metagenomic datasets. Lastly, the TSPDB described here will

undergo regular updates and expansion to include new TSPs as they

become available in public databases ensuring that the database

remains comprehensive.

Limitations

It is acknowledged that mis-annotation of some TSPs as

hypothetical proteins or tail fibers in public databases may have

resulted in the omission of certain TSP genes in this study.

However, the TSPDB will be continually updated to incorporate

additional TSP genes.

Dataset description

The TSPDB is freely accessible on GitHub at the following link:

https://github.com/yemilawal/Tailspike-proteins or by searching

for the title “TSPDB: A curated resource of tailspike proteins with

potential applications in phage research” on GitHub. Additionally,

accession numbers of genes encoding phage tailspike proteins in

TSPDB are available on the GitHub page. A backup version is also
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available for download on Figshare at https://doi.org/10.6084/m9.

figshare.25526323.
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