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Camera-view supervision for
bird’s-eye-view semantic
segmentation

Bowen Yang*, LinLin Yu and Feng Chen

AI Safety Laboratory, Department of Computer Science, The University of Texas at Dallas, Richardson,
TX, United States

Bird’s-eye-view Semantic Segmentation (BEVSS) is a powerful and crucial
component of planning and control systems in many autonomous vehicles.
Current methods rely on end-to-end learning to train models, leading to
indirectly supervised and inaccurate camera-to-BEV projections. We propose
a novel method of supervising feature extraction with camera-view depth and
segmentation information, which improves the quality of feature extraction
and projection in the BEVSS pipeline. Our model, evaluated on the nuScenes
dataset, shows a 3.8% improvement in Intersection-over-Union (IoU) for vehicle
segmentation and a 30-fold reduction in depth error compared to baselines,
while maintaining competitive inference times of 32 FPS. This method o�ers
more accurate and reliable BEVSS for real-time autonomous driving systems.
The codes and implementation details and code can be found at https://github.
com/blu�sh/sucam.
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1 Introduction

Autonomous driving systems rely on accurate and reliable perception systems to safely

navigate the world around them. A widely adopted perception technique is bird’s-eye-view

semantic segmentation (BEVSS). BEVSS fuses sensor inputs into a top-down, overhead

view of a vehicle’s surroundings, orthographically mapping key elements such as vehicles,

roads, and lanes. A bird’s-eye-view (BEV) representation is crucial for autonomous driving

systems. It is very useful to assess the surrounding environment and plan safe actions.

Prior approaches to this problem rely on end-to-end learning to learn BEV

representations (Hu et al., 2021; Philion and Fidler, 2020; Zhou and Krähenbühl, 2022). A

key problem in BEVSS is mapping features from the camera-view perspective to the bird’s-

eye-view perspective. The geometric relationships between the inputs seen by the camera

and the outputs projected in BEV are represented by the relative depth of objects within

the scene, so depth perception is crucial. The two primary approaches to BEVSS differ on

whether they model depth explicitly or implicitly. Methods such as LSS (Philion and Fidler,

2020) and FIERY (Hu et al., 2021) leverage direct geometric relationships to transform

features from camera-view features to BEV. These methods require an explicit camera-

view depth estimate in order to project camera-view features to BEV. Other methods, such

as CVT (Zhou and Krähenbühl, 2022) and GKT (Chen et al., 2022) leverage attention to

directly learn implicit geometric relationships, and thus do not require an explicit depth

estimate. However, both of these methods have major shortcomings regarding the quality

of camera-view to BEV projections.
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In this work, we propose two novel improvements to the

traditional BEVSS approach, focusing on the family of methods

that explicitly model depth. First, we introduce a supervision

process for extracting camera-view features. We do this in order

to improve the quality of feature extraction in camera-view, which

improves feature relevance in birds-eye-view. In addition, we

propose supervising the explicit camera-view depth estimation that

is used to map camera features to BEV. Previous BEVSS methods

rely on the indirect supervision of depth from the final detection

loss. We show that this leads to inaccurate depth mappings,

which lowers accuracy. We show that our method significantly

improves the camera-view depth estimation, which provides

better information about the relative distance and positioning of

objects. Through extensive experiments, we show that our BEVSS

model with camera-view segmentation supervision and camera-

view depth supervision outperforms current methods on real-

world benchmarks by improving the quality of feature extraction

in camera-view and the reliability of camera-view depth when

compared to the baseline end-to-end approach.

To summarize, our main contributions are as follows:

• we propose directly supervising camera-view depth

estimation. We first map LiDAR points to the camera-

view to generate dense depth labels, and then directly

supervise categorical depth estimation using these labels to

improve the accuracy and reliability of camera-view depth

estimation. The accuracy of the depth prediction on the

nuScenes dataset increases by a factor of 30 times, and the

BEV segmentation IOU increases by 2.6% from without

supervision. Empirical results indicate that this approach

significantly enhances the quality of BEVSS, improving the

accuracy of camera-to-BEV mapping.

• We propose directly supervising segmentation feature

extraction in camera-view. We utilize semantically labeled

LiDAR points that are projected to camera-view to supervise

relevant feature extraction from the camera-view encoder.

Our empirical results demonstrate that adding camera-view

segmentation supervision allows our model to learn a more

meaningful camera-view representation, achieving 78.9%

IOU in camera-view. This improves the quality of BEVSS by

a significant margin on the nuScenes dataset, beating the best

baseline by 2.7%.

• We demonstrate that our method outperforms the current

real-time BEVSS models on the most popular real-world

dataset, nuScenes (3.8% IOU improvement), while still only

requiring camera RGB inputs at testing time. It runs inference

at 32 FPS on an RTX 2080 Ti GPU, which is very competitive

with the real-time baselines that we compare to.

2 Related work

2.1 Bird’s eye view semantic segmentation

The goal of BEVSS in autonomous driving is to predict the

semantic layout of a scene in the bird’s-eye-view perspective.

BEVSS is a crucial perception task for downstream applications

such as path planning, where an accurate representation of the

surroundings is needed. BEVSS relies on transforming sensor

inputs, such as camera images or LiDAR point-clouds, into bird’s-

eye-view. Broadly, there are two common approaches to this task.

Implicit geometric methods leverage learned geometric

relationships between camera-view and BEV (Zhou and

Krähenbühl, 2022; Chen et al., 2022; Pan et al., 2020; Xu

et al., 2022b; Roddick and Cipolla, 2020; Gosala and Valada, 2022).

These methods often utilize transformers (Zhou and Krähenbühl,

2022; Liu et al., 2023; Xu et al., 2022b; Roddick and Cipolla,

2020; Gosala and Valada, 2022) or MLPs (Pan et al., 2020) to

encode camera-view images to the BEV space. CVT (Zhou and

Krähenbühl, 2022) uses a cross-view transformer to learn the

camera to BEV transform. BEVFusion (Liu et al., 2023) introduces

a fusion mechanism that integrates information from multiple

sensors into a common BEV space. CoBEVT (Xu et al., 2022b)

introduces a collaborative approach by fusing features from

multiple agent vehicles to create a more comprehensive BEV

representation.

Explicit geometry based methods focus on directly projecting

camera-view features to BEV (Philion and Fidler, 2020; Hu

et al., 2021; Roddick et al., 2018; Harley et al., 2022). Methods

in this category estimate a depth distribution that is used for

projection (Philion and Fidler, 2020; Hu et al., 2021). FIERY

(Hu et al., 2021) introduces instance segmentation and temporal

modeling in BEV. OFT (Roddick et al., 2018) forgoes the depth

distribution to uniformly project features into BEV. SimpleBEV

(Harley et al., 2022) utilizes radar aggregation to further improve

the camera-to-BEVmapping. Other works explore combining BEV

segmentation with other tasks such as object detection to improve

the performance (Kumar et al., 2024; Xie et al., 2022).

In previous approaches, whether implicit or explicit, the

transform from camera-view to birds-eye-view is learned

indirectly, typically through the final segmentation loss. In

contrast, we propose supervising the view-transformation by

directly learning the camera-view depth distribution during

training. Similarly, the feature extraction in camera-view is

supervised by the final segmentation loss, whereas in this work

we directly supervise it during training. Through experiments we

show that directly supervising the camera-view depth estimation

and camera-view feature extraction significantly improves the

accuracy of the BEV prediction.

2.2 3D object detection

3D object detection is a perception task that is commonly

in autonomous perception systems. The task is to locate objects

of interest in a scene by estimating 3D bounding boxes. Early

approaches perform 2D object detection and predict depth

information to project to 3D (Manhardt et al., 2019; Girshick

et al., 2014). With the popularization of LiDAR and other point-

scanning technology, methods that utilize point-cloud data rose

to the forefront. PointNet (Qi et al., 2017a) directly processes

point-clouds leading to improved object detection. PointNet++

(Qi et al., 2017b) refined this approach further, addressing the

hierarchical structure of point clouds. Voxel-based methods such

as VoxelNet (Zhou and Tuzel, 2018) convert point-clouds into

a voxel grid to leverage 3D convolutions. Pseudo-LiDAR based
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approaches project image features into 3D by predicting a pseudo

point-cloud rather than using LiDAR. This allows these methods to

only need camera inputs at testing time. BEVDepth (Li et al., 2023)

proposes supervising the point-cloud projection. BEVFusion (Liu

et al., 2023) proposes directly fusing LiDAR and camera features

in order to incorporate multi-sensor information into 3D object

detection.

BEVSS and 3D object detection share significant similarities,

particularly in tasks like autonomous driving where understanding

complex environments is critical. Both techniques require sensor

fusion, integrating data from LiDAR, cameras, and radar to

create a comprehensive 3D representation of the scene. BEV

segmentation classifies regions (e.g., roads, vehicles), while 3D

object detection identifies objects and their spatial boundaries. Both

face challenges such as occlusion handling, where parts of the

environment are obscured, and the need for real-time processing

to ensure fast and accurate decision-making. These shared goals

and obstacles make advancements in one field directly applicable to

the other.

2.3 Monocular depth estimation

Monocular depth estimation tries to infer depth information

from a single RGB image. Traditional approaches rely on hand-

crafted features and probabilistic graphical models (Saxena et al.,

2005, 2008). Deep learning-based methods have demonstrated

promising results by learning depth cues directly from data. Eigen

et al. (2014) introduced one of the first CNN based models for

depth estimation. Some approaches proposed a fully convolutional

architecture that improved performance (Laina et al., 2016). Other

notable works include the use of conditional random fields (Liu

et al., 2015), adversarial training (Chen et al., 2018), and attention

mechanisms (Xu et al., 2022a) to enhance depth prediction.

Recently, methods using self-supervised (Godard et al., 2019; Liu

et al., 2023) and unsupervised (Godard et al., 2017; Sun et al., 2023)

approaches rose to prominence, alleviating the need for large-scale

ground truth depth data.

Monocular depth estimation plays a crucial role in enhancing

BEVSS. In BEVSS, understanding the spatial structure of the

environment is vital for accurate scene interpretation, and

monocular depth estimation helps bridge the gap between 2D

image data and 3D scene representation. By leveraging monocular

depth cues, BEVSS can estimate object heights, relative distances,

and spatial relationships, which are critical for generating precise

top-down views.

3 Method

In this section, we introduce our proposed method for the

BEVSS task. The fundamental structure of our model follows

LSS (Philion and Fidler, 2020): Given N camera-view images

Xk ∈ R
3×H×W

N with intrinsics Ik ∈ R
3×3 and extrinsics Ek ∈

R
3×4, our goal is to generate a bird’s-eye-view representation of the

scene. From this, we predict a binary segmentationmask in the BEV

frame y ∈ R
C×X×Y , where X and Y denote the BEV coordinate

dimensions. In the following sections, we will introduce our novel

components. We summarize our proposed architecture in Figure 1.

The basic framework of our proposed architecture follows LSS

and FIERY (Philion and Fidler, 2020; Hu et al., 2021). There are

two stages to our architecture. The first stage extracts features from

inputs and projects them into 3D space. The second stage pools

3D features into a BEV voxel grid that we use to predict semantic

segmentation.

The first stage of our model extracts context features and

estimates a depth distribution for N camera-view input images.

We generate representations at all possible depths for any given

pixel by predicting a probabilistic categorical depth distribution for

each pixel. LSS supervises this depth estimate with only the final

detection loss. Instead, we propose a novel process to supervise the

depth distribution prediction and context feature extraction, which

we expand on in Sections 3.1, 3.2. In this context, we consider a set

of discrete depths D and define |D| points {(h,w, d) ∈ R
3 | d ∈ D}

at each pixel in the camera-view. For a given pixel p in camera-view

M, we predict a context vector c ∈ R
C with C channels and a depth

distribution α̂ ∈ △|D|−1. The context features are projected into the

3D space by scaling them with the probabilistic depth distribution.

The context feature cd ∈ R
C associated with point pd is then

defined as the context vector c scaled by the corresponding depth

probability α̂d.

cd = α̂dc. (1)

The next stage of our model is voxel pooling, which combines

extracted features from camera-view into a unified coordinate

system, and pools them into a feature map. We follow the voxel-

pooling method described in BEVFusion (Liu et al., 2023). We first

associate each point in the camera-view point cloud with a cell in

the BEV grid. We can precompute this, since the position for each

point in the pointcloud is fixed, unlike in LiDAR. We sort all points

according to the grid indices and record the rank of each point,

so that all points within the same BEV cell will be consecutive. We

aggregate the features in the BEV grid by performing a sum pooling

on the features. This creates a C × H ×W BEV tensor that can be

processed by a standard CNN to create BEV predictions.

3.1 Depth supervision

In previous models, the supervision of depth distribution relied

solely on the final detection loss, which limited their ability to

effectively capture depth information. To address this limitation,

we introduce direct supervision for discrete depth prediction from

the camera-view perspective. This camera-view depth supervision

allows our model to better capture spatial relationships and depth

cues, resulting in more accurate camera-to-BEV mappings.

To generate dense ground-truth depth information, we use

LiDAR point clouds. A LiDAR point P = (X,Y ,Z) can be projected

into camera view k using the rotationmatrix Rk ∈ R
3×3, translation

vector tk ∈ R
3, and intrinsic parameters Kk ∈ R

3×3. The

corresponding image coordinates (uk, vk) are obtained through the

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2024.1431346
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Yang et al. 10.3389/fdata.2024.1431346

FIGURE 1

Diagram of our proposed model. We extract context features from input images, predict camera-view segmentation and depth, project camera
features into BEV view, and predict a BEV occupancy map.

following equation:

(

uk vk 1
)

= Ki × [Ri|ti]×
(

X Y Z 1
)

(2)

Next, we perform a min-pooling operation on the matrix of

projected camera-view points A to generate a dense camera-view

depth label B, with dimensions m × n, by downscaling by a factor

of k:

Bi,j = min
{

Aki+p,kj+q : p, q = 0, 1, . . . , k− 1
}

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n
(3)

We utilize focal loss as our depth loss function, which has

the property of encouraging more evenly distributed softmax

probabilities across multiple depth bins rather than concentrating

on a single incorrect bin. This property is particularly useful when

the model is uncertain about the depth, as distributing the context

vector uniformly across depth bins helps mitigate the impact of

incorrect predictions. Formally, we supervise the predicted depth

distribution α̂ with the ground-truth depth distribution α
gt , where

the depth loss is defined as:

LDepth = −
∑

d = 1Dα
gt

d
· (1− α̂d)

γ · log(α̂d) (4)

In this formulation, α
gt

d
is the one-hot encoding of the ground-

truth depth class d, α̂d is the predicted probability for depth class d,

γ is the focusing parameter, and D is the total number of discrete

depth classes.

As shown in Figure 2, the depth predictions from the “Without

Depth Supervision” column are significantly inferior to those in

the “With Depth Supervision” column. Furthermore, in Table 2, we

observe that incorporating depth supervision results in a 30-fold

reduction in depth prediction error. This substantial improvement

demonstrates the necessity of depth supervision for accurate depth

distribution predictions.

3.2 Segmentation supervision

Even with our proposed depth supervision, the depth

prediction and by extension the mapping to BEV can still be

noisy and incorrect. Semantic information is noisy and hard

to decode correctly in BEV, leading to worse predictions. To

address this, we propose supervising the extraction of camera-

view features using ground-truth LiDAR points labeled with

semantic segmentation classes. Specifically, we feed camera-view

context features c into a segmentation head in order to predict a

camera-view occupancy mask of relevant objects for each pixel.

Although the output of the segmentation head is not directly

used in the model, we show that supervising camera-view feature

extraction teaches the model to extract more relevant features,

which leads to better BEV performance. We can use the same

process described in Section 3.1 to project a semantically labeled
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FIGURE 2

Qualitative results of the proposed camera-view supervisions. Supervising depth greatly improves the accuracy and meaningfulness of the predicted
depth distribution.

pointcloud into camera view. We adopt Binary Cross-Entropy loss

to enforce relevant feature extraction in camera-view. Formally,

we supervise camera-view context feature extraction by predicting

binary camera-view occupancy mask Spred with camera-view

segmentation ground truth Sgt . The loss that we use to supervise

camera-view segmentation that we use can be formulated as

LSeg = −

(

Sgt · log(Spred)+ (1− Sgt) · log(1− Spred)
)

(5)

where Sgt is the ground truth camera-view segmentation and

Spred is the predicted probability. Camera-view segmentation

supervision allows the model to more effectively learn relevant

features in camera-view, which improves the feature quality in BEV

frame.

3.3 Overall loss function

We use focal loss as our loss function in BEV. Our BEV loss can

be defined as

LBEV = −
(

yi · (1− pi)
γ · log(pi)+ (1− yi) · p

γ

i · log(1− pi)
)

(6)

where yi is the true label of the BEV pixel i, pi is the

predicted probability of the BEV pixel i, and γ represents the

focusing parameter of the loss. Our overall loss function involves

three terms. The BEV, camera-view depth, and camera-view

segmentation losses are summed together to create our final loss.

We jointly optimize these terms during training. Our overall loss

function is defined below.

L = LBEV + λDepthLDepth + λSegLSeg (7)

4 Implementation details

4.1 Architecture

For our camera-view backbone, we use a pre-trained

EfficientNet-B4 (Tan and Le, 2019) and a camera input resolution

of 224 × 480 for fair comparison to previous literature (Zhou

and Krähenbühl, 2022; Hu et al., 2021; Chen et al., 2022). We

downscale camera-view inputs by a factor of k = 8 from 224× 480

to 28 × 60 to extract context features, following Hu et al. (2021).

We discretize continuous camera-view depth into depth bins:

bin(d) =

⌊

d−2
0.5

⌋

+ 1, for 2 ≤ d ≤ 58, which we find to be

a good balance for the amount of depth bins. We implement

the voxel-pooling method described in Liu et al. (2023) to

perform our view transform from camera-view to BEV. We pool

camera view features into a BEV grid of C × H × W, where

C = 128,H = 200,W = 200, following previous literature

(Hu et al., 2021). We utilize ResNet18 (He et al., 2016) as our

BEV feature decoder to obtain our final prediction, following

LSS and FIERY (Philion and Fidler, 2020; Hu et al., 2021). For

our camera-view depth prediction module and camera-view

segmentation prediction module, we use an architecture consisting

of atrous spatial pyramid pooling and a deformable convolution

layer to provide accurate depth estimation and occupancy masks.t

This architecture allows us to handle geometric variations and

multi-scale features (Chen et al., 2017). We use λDepth = 0.0025

and λSeg = 0.05, which we obtained through hyper-parameter

tuning.

4.2 Training details

Following Zhou and Krähenbühl (2022), we train all models

using focal loss (Lin et al., 2017) with γ = 2, following Zhou and

Krähenbühl (2022). We use a batch size of 32 on 4 A6000 GPUs.
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FIGURE 3

Qualitative results of our method. We show two examples, one on the left and one on the right. The leftmost column of each example shows
camera-view images. The first row is the input image to the model, the second row is the camera-view depth prediction of our model, and the third
row is the camera-view segmentation prediction of our model. The rightmost column of each example shows the segmentation prediction in bird’s
eye view. Our model meaningfully predicts camera-view depth and segmentation, and BEV segmentation.

We optimize using the Adam optimizer (Kingma and Ba, 2014)

and the One-Cycle learning rate scheduler (Smith, 2017). We set

the learning rate to 4 × 10−3 and the weight decay to 4 × 10−7,

following Zhou and Krähenbühl (2022). We train for a total of 20

epochs, which finishes in approximately 6 h.

5 Experiments

Our experiments aim to show the effectiveness of our method

and compare it to the state-of-the-art. We evaluate our method

on vehicle and driveable region segmentation on a real-world

commonly used driving dataset (Caesar et al., 2020).

5.1 Dataset

Following the evaluation settings of the previous baselines

(Zhou and Krähenbühl, 2022; Philion and Fidler, 2020; Hu et al.,

2021; Xu et al., 2022b; Chen et al., 2022), we evaluate our proposed

method on the nuScenes dataset (Caesar et al., 2020). The nuScenes

dataset comprises data from 1,000 real-world scenes, with each

scene lasting 20 seconds and containing 40 frames. This results in a

total of 40,000 samples. It offers a 360◦ view around the ego-vehicle

through six camera perspectives, with each view providing both

intrinsic and extrinsic details. We resize the camera images to 224×

480 pixels, and generate Bird’s-Eye-View (BEV) labels of 200× 200

pixels for analysis. The dataset also contains semantically-labeled

LiDAR points for each frame, which we use to generate camera-

view depth and segmentation labels. Objects are annotated with 3D

bounding boxes. Using the pose of the ego vehicle, we generate

200 × 200 BEV binary occupancy masks by orthographically

projecting 3D bounding boxes to the BEV plane. We evaluate the

quality of the bird’s-eye-view segmentation in a 100m × 100m

region around the ego vehicle, and we sample the map at a 50

cm resolution. This setting was popularized by LSS (Philion and

Fidler, 2020), and is used in most current literature (Zhou and

Krähenbühl, 2022; Hu et al., 2021; Chen et al., 2022; Xu et al.,

2022b).

5.2 Metrics

We use Intersection-over-Union (IoU) to evaluate

segmentation tasks, including bird’s-eye-view and camera-view

segmentation, following established literature (Philion and Fidler,

2020; Xu et al., 2022b; Hu et al., 2021; Zhou and Krähenbühl, 2022).

IoU is a widely accepted metric that measures the overlap between

the predicted and true regions. A higher scores indicates better

performance. For camera-view depth prediction, we use Relative

Square Error (RSE), as depth prediction involves predicting

continuous values rather than binary labels (Xie et al., 2022; Eigen

et al., 2014; Ranftl et al., 2021). A lower RSE score indicates better

performance. We follow literature in using different metrics for

segmentation (IoU) and depth prediction (RSE). Additionally, we

report inference speeds on a single RTX 2080 Ti GPU and provide

qualitative results in Figure 3. We report inference speeds with

Frames Per Second (FPS), which is the amount of samples that our

model can process per second.

5.3 Comparison to baselines

We compare our model to the most recent competitive

benchmarks for real-time BEV semantic segmentation in Table 1.

For a fair comparison we use models with a similar input resolution

(in our case, 224 × 480), and only use camera information at test

time. We also only use models that consider one single time-step

prediction, since multi time-step prediction gives an advantage.We

compare our method to VPN (Pan et al., 2020), OFT (Roddick

et al., 2018), LSS (Philion and Fidler, 2020), CVT (Zhou and

Krähenbühl, 2022), FIERY (Hu et al., 2021), CoBEVT (Xu et al.,

2022b), and GKT (Chen et al., 2022). For vehicle segmentation, our

method obtains a 3.8% higher IoU than the next most competitive

model, GKT. For driveable region segmentation, our method

obtains a 3.4% higher IoU than the next most competitive model

that reports it. We also match previous baselines with a very

competitive inference time of 32 FPS evaluated on a RTX 2080 Ti.

As can be seen from Table 3, supervising camera-view depth greatly
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TABLE 1 Comparison to baselines on the nuScenes dataset.

BEV model Input resolution Vehicle Drivable area Params (M) FPS

VPN 224× 480 29.3 - 4 31

OFT 360× 1, 080 30.1 71.7 - -

LSS 128× 352 32.1 72.9 14.3 25

FIERY 224× 480 35.8 - 7.3 8

CVT 224× 480 36.0 74.3 1.1 35

SinBEVT 512× 512 37.1 - 1.6 35

GKT 224× 480 38.0 - 1.2 45

SUCAM (Ours) 224× 480 41.8 78.1 10.5 32

BEV Vehicle and Drivable Area evaluation is done with Intersection-over-Union (IoU). A score higher is better. Inference times are measured on an RTX 2080 Ti GPU. Our method performs

at the state-of-the-art while maintaining competitive inference times. Best values are bolded.

increases the accuracy of the depth projection, and since that depth

projection is directly used in the camera-to-BEV projection, our

method performs better. Table 3 also shows that our camera-view

supervision also improves the feature extraction in camera-view.

These factors contribute to the better performance of our method.

5.4 Ablation study

In this section, we demonstrate the effectiveness of the

components of our proposed method.

5.4.1 Depth ablation study
Table 2 ablates different methods of obtaining the depth

estimate used to project camera-view features into the BEV plane.

The first row, Uniform Depth, is assigning a uniform depth

distribution over all depths to each pixel. Note that there are no

learnable parameters for this method. Soft Probabilities is what

LSS (Philion and Fidler, 2020) and FIERY (Hu et al., 2021) use.

It indirectly supervises the camera-view depth distribution of each

pixel using the BEV segmentation loss. This method does involve

learnable parameters, but there is no direct supervision. GT Depth

directly uses ground-truth camera-view depth obtained from

LiDAR point-clouds in order to project camera-view features to

BEV. This method does not involve learnable parameters, because

it directly uses ground-truth depth for the projection instead of

predicting a distribution. Finally, LDepth directly supervises the

depth distribution using ground-truth camera-view depth obtained

from LiDAR point-clouds as the regression target.

Based on Table 2, Uniform Depth performs the worst. We

expect this because the model is unable to learn geometric

relationships between objects in camera-view and BEV, and only

is able to uniformly project features. Soft probabilities performs

better because the model is able to use the final BEV segmentation

loss to improve the depth distribution. As we expect, GT Depth

performs the best by far, since it directly uses ground-truth depth

to create an accurate projection of camera-view features to BEV.

This provides motivation for us to supervise the depth distribution

using the GT depth in LDepth. We can see that by doing this, we

can improve the IoU by 3% over the soft probabilities method. We

TABLE 2 Ablation study of di�erent depth projection methods.

Depth type BEV vehicle Depth error

Uniform depth 35.7 -

Soft probabilities 38.3 10.45

GT depth 53.6 -

LDepth (Ours) 40.9 0.33

BEV vehicle evaluation is done using Intersection-over-Union (IoU). Higher is better. Depth

error is measured in Relative Squared Error (RSE), lower is better. We compare several

representations of the camera-view depth distribution. Best values are bolded.

TABLE 3 Ablation study of our proposed loss terms.

Loss
components

BEV
vehicle

Depth
error

Camera-view
Seg.

LBEV 38.3 10.5 -

LBEV +LSeg 41.0 9.43 78.9

LBEV +LDepth 40.9 0.33 -

LBEV +LDepth +

LSeg

41.8 0.27 71.2

The first row is a model trained with only the base BEV loss. The second row is the BEV

loss summed with the camera-view seg. loss. The third row is the BEV loss summed with the

camera-view depth loss. The fourth row is our full model. Best values are bolded.

can also see that this supervision causes a large reduction in the

relative-squared-error (RSE) of the depth distribution by a factor of

30, proving that our depth supervision significantly improves the

quality of camera-view depth estimation.

5.4.2 Loss ablation study
We also ablate the effect of our method components in

Table 3. We compare our base model, model with camera-

view segmentation loss, model with camera-view depth loss, and

model with both. For each method, we report the IoU of BEV

segmentation, the predicted camera-view depth RSE, and the

camera-view segmentation IoU (if applicable). Our base model

achieves an IoU of 38.3%. Supervising camera-view segmentation

improves this IoU by about 3% to 41.0% IoU, while achieving a
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FIGURE 4

On the left, we measure model performance as we exclude m ∈ {0, 1, 2, 3, 4, 5} cameras from the input. On the right, we measure the performance of
our model as we exclude specific cameras from the input.

camera-view IoU of 78.9%. Supervision of the depth distribution

has a similar positive effect, improving IoU to 40.9%. Combining

the two components improves IoU to 41.8%, an 5% improvement

over the base model. We guess that the camera-view IoU decreases

when adding depth loss because camera-view segmentation loss has

a relatively small value when compared to the depth loss, and so

outweighs it. This could be potentially solved with further hyper-

parameter tuning. A future direction of work to improve the depth

estimation even further would be to utilize multiple LiDAR sweeps

from different time-steps to generate more dense labels.

5.5 Model robustness

In this section, we evaluate the robustness of our proposed

model in common real-world settings.

5.5.1 Missing cameras
A common real-world scenario in autonomous driving is

dropped cameras: cameras that are disabled and go offline

during operation. We evaluate the robustness of our model in

this common situation. In Figure 4, we evaluate our model’s

performance as we exclude several cameras from our model input.

Themodel’s performance drops as the number of cameras decreases

due to the decreased observed area. On the right, we measure the

relative importance of each camera by testing model performance

as we drop specific cameras from the input. The front and back

cameras appear to be the most important, as the IoU decreases

the most when these are dropped. Additionally, the back camera

in nuScenes has the largest area covered out of all cameras, so as we

expect, excluding this camera causes the largest IoU decrease. We

note that in the most common case of one camera dropped, our

model still maintains very respectable performance.

5.5.2 Performance over distance
Figure 5 illustrates the robustness of our method as the

distance of perceived objects from the ego vehicle increases.

We measure IoU while varying the minimum distance threshold

for objects to be included in the IoU computation. Specifically,

for each minimum distance value, we exclude any object closer

than the specified threshold to the ego vehicle during the IoU

calculation. This analysis allows us to assess how well our method

performs in segmenting objects at different distances from the

FIGURE 5

We measure the e�ect of distance on model performance. We
measure the IoU as we increase the minimum distance from the
vehicle for an object to be included in the IoU measurement. In
other words, we exclude objects within the minimum distance from
the ego vehicle from the IoU calculation. IoU drops approximately
linearly with the minimum distance of evaluation. This may be
because objects that are farther away are more prone to incorrect
camera to BEV projections.

ego vehicle. We observe the impact of object distance on the

segmentation accuracy of our method (depth-based projection)

and CVT (transformer based projection). IoU drops approximately

linearly with the minimum distance of evaluation for both

methods. This may be because objects that are farther away are

more prone to incorrect camera to BEV projections, regardless

of the projection method. Performance is expected to decrease

over distance for a perception model. In real-world scenarios,

predictions that are a large distance away from the sensors should

be trusted less. A future direction of work may be to quantify this

predictive uncertainty.

6 Conclusion

Bird’s eye view (BEV) semantic segmentation is crucial for

autonomous vehicles to accurately perceive and understand their

surroundings in real-world driving scenarios. In this work,

we introduce two novel supervision processes that significantly

enhance the performance of real-time BEV semantic segmentation:

camera-view depth supervision and camera-view segmentation

supervision. Camera-view depth supervision helps our approach

better capture spatial relationships and depth information,

leading to more accurate camera-to-BEV mappings. Camera-view

segmentation supervision allows the model to more effectively

learn the semantic correlations between camera-view and the
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BEV frame. Some limitations of our work are the fact that our

training scheme requires LiDAR data and camera-level labels

during testing time. Our camera-view depth and segmentation

supervision also adds extra computational cost to the overall

model. Note that our model still only needs RGB camera inputs

during inference. Through extensive qualitative and quantitative

evaluations, we demonstrate that our proposed method shows

significant improvement compared to previous methods. We also

run experiments to show the robustness of our methodology

to common real world scenarios such as dropped cameras and

distant objects.
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