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Introduction: Quantitative global or regional brain imaging measurements,

known as imaging-specific or -derived phenotypes (IDPs), are commonly used in

genotype-phenotype association studies to explore the genomic architecture of

the brain and how it may be a�ected by neurological diseases (e.g., Alzheimer’s

disease), mental health (e.g., depression), and neurodevelopmental disorders

(e.g., attention-deficit hyperactivity disorder [ADHD]). For this purpose, medical

images have been used as IDPs using a voxel-wise or global approach via

principal component analysis. However, these methods have limitations related

to multiple testing or the inability to isolate high variation regions, respectively.

Methods: To address these limitations, this study investigates a localized,

principal component analysis-like approach for dimensionality reduction of

cross-sectional T1-weightedMRI datasets utilizing di�eomorphicmorphometry.

This approach can reduce the dimensionality of images while preserving spatial

information and enables the inclusion of spatial locality in the analysis. In doing

so, this method can be used to explore morphometric brain changes across

specific components and spatial scales of interest and to identify associations

with genome regions in a multivariate genome-wide association study. For a

first clinical feasibility study, this methodwas applied to data from the Adolescent

Brain Cognitive Development (ABCD) study, including adolescents with ADHD (n

= 1,359), obsessive-compulsive disorder (n= 1,752), and depression (n= 1,766).

Results: Meaningful associations of specific morphometric features with

genome regions were identified with the data and corresponded to previous

found brain regions in the respective mental health and neurodevelopmental

disorder cohorts.

Discussion: In summary, the localized, principal component analysis-like

approach can reduce the dimensionality of medical images while still being

able to identify meaningful local brain region alterations that are associated with

genomicmarkers acrossmultiple scales. The proposedmethod can be applied to
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various image types and can be easily integrated in many genotype-phenotype

association study setups.

KEYWORDS

imaging genetics, GWAS, neurodevelopmental disorders, principal component analysis,

localized dimensionality reduction

1 Introduction

The integration of high-resolution brain imaging and

genetic analysis has opened new avenues for understanding the

complex interplay between neural structure/function and genetic

predispositions in neurodevelopmental and psychiatric disorders.

A contributing factor for this may be that data from these

modalities are typically analyzed independently from each other,

whereas imaging and genomic markers are inherently linked such

that both data sources may only unlock their true potential when

analyzed together. For this reason, genotype-phenotype analysis

methods such as genome-wide association studies (GWAS), in

which the phenotype includes brain neuroimaging data, may offer

new avenues to explore the genomic architecture of the human

brain and how it may be affected or altered in case of neurological

and mental disorders. This may ultimately lead to novel knowledge

and biomarkers that improve clinical diagnosis or result in new

treatment options (Mascarell Maričić et al., 2020; Dagasso et al.,

2020).

The genotypic component of these analyses commonly utilizes

single-nucleotide polymorphisms (SNPs), which are single base

position changes in an individual’s DNA, to identify relevant

differences between individual people or between groups at a

population level (Gray et al., 2000). Analyzing these patterns can

help to identify uncommon or even rare variants, which may

contribute to a disease of interest. However, it is important to note

that many diseases cannot be traced to a single SNP, but multiple

SNPs that have a combined effect, which makes the identification

of relevant SNPs challenging, given the vast number of SNPs that

can be measured.

On the phenotypic side, genotype-phenotype studies typically

use categorical information, such as disease status. However,

such a discretization is often problematic, especially in case of

neurological, mental health, and neurodevelopmental disorders

that exist on a spectrum or consist of multiple sub-types. In

those cases, indirect representations or endophenotypes (Elliott

et al., 2018) derived from imaging modalities such as magnetic

resonance imaging (MRI) may provide more information and

benefit imaging genetics for detecting novel biomarkers (Saykin

et al., 2010; Klein et al., 2019; Thompson et al., 2020). While

using images directly as the phenotype may be theoretically

beneficial, incorporating them into genotype-phenotype analyses

is practically challenging due to the high dimensionality of such

scans that may contain millions of voxels. One solution to

this problem is to focus only on pre-selected regional imaging-

specific or -derived phenotypes (IDPs) associated with specific

brain structures to reduce computational burden (Narr et al.,

2009). However, this may result in the loss of important

localized information.

Including whole medical images, particularly T1-weightedMRI

datasets due to their wide-spread use, as part of the phenotypic

association within a GWAS is not a new concept and several studies

have used voxel-wise testing for this purpose (Stein et al., 2010). For

example, Rodrigue et al. (2020) used source-based morphometry,

a neuroimaging methodology to describe volumetric changes on

a voxel-by-voxel basis, using BGENIE (Bycroft et al., 2017), a

linear approach for multiple-trait testing in a GWAS that was

specifically designed for UK Biobank data (Bycroft et al., 2018).

While multivariate testing methods like this can help to mitigate

somemultiple testing constraints related to the high dimensionality

of images, dimensionality reduction is typically needed to allow

for more spatially smooth results in comparison to potentially

noisy results and to avoid other issues with voxel-wise testing, like

computational time complexity.

One alternative to voxel-wise testing is to perform

dimensionality reduction of the T1-weighted MRI datasets or

other sequences using principal component analysis (PCA)

prior to conducting a GWAS. However, this results in a spatially

global description of the variation in the medical images. Such

a global approach has, for example, been previously used to

investigate associations with canonical component analysis

(Mihalik et al., 2022) or sub-groups in disorders by non-negative

matrix factorization (Anderson et al., 2014; Arnedo et al., 2015).

Thus, instead of performing spatially highly localized genotype-

phenotype association testing using the voxel-wise data, one is

now modeling the data’s global variability in far fewer dimensions.

While theoretically sound, a potential issue with using PCA to

reduce dimensionality of medical images is that multiple brain

regions, which are not functionally or anatomically related or close

in distance, may appear within one component. This directly leads

to difficulties drawing conclusions about specific brain regions that

are associated with a particular SNP.

We have recently proposed a more flexible localized approach

(Dagasso et al., 2022) for integrating T1-weighted MRI datasets

that falls on a spectrum between voxel-wise testing and global

PCA (see Figure 1). The proposed approach performs a localized

PCA on these MRI datasets via distance-based covariance matrix

manipulations (Wilms et al., 2017). In doing so, components

are more likely to encode more spatially localized information,

which may be assumed to have higher associations with the

genetic/genomic aspect of the analysis than a standard global

PCA approach. This approach, therefore, effectively combines

the strengths of a purely IDP-based dimensionality reduction for

GWAS (ease of interpretation, use of prior knowledge) and PCA-

based methods (fully data-driven). Another added benefit of the

proposed PCA-like approach over voxel-wise testing schemes is its

ability to generate data that visually highlights the morphological

changes associated with the identified principal components. As
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FIGURE 1

Schematic illustration of the di�erent dimensionality reduction techniques. The proposed method closes the gap between voxel-wise and global

PCA approaches, where the user defines a boundary distance, visualized by the green circle surrounding a particular voxel. This emphasizes how

each component represents a di�erent region of the brain.

in standard PCA, the localized principal components derived

by our method span an affine subspace from which data can

be sampled. With this generated data, a visual investigation of

the viable morphometric brain traits is easily possible, which is

useful from a clinical perspective to identify potential disease

biomarkers. However, it remains to be investigated if the proposed

method can generate meaningful results for mental health and

neurodevelopmental disorders.

The aim of this paper was to extend the proposed method

and further evaluate it in more detail within a first clinical

feasibility analysis. Specifically, we aimed to investigate and provide

evidence for the feasibility of our method and the strengths of

the localized setup over a traditional PCA setup. Therefore, the

proposed method was applied to data from the Adolescent Brain

Cognitive Development (ABCD) (Casey et al., 2018) study to

investigate if it can identify meaningful associations of specific

morphometric brain features at varying levels of localization with

genome regions when applied to data from adolescents with

three different disorders with known genetic contribution. This

manuscript presents a significant extension of Dagasso et al. (2022),

with the major additions being: (1) implementation and evaluation

of additional kernel sizes for the localized PCA, (2) an additional

investigation of the proposed technique by application to three

mental health and neurodevelopmental disorders, and (3) a greatly

extended quantitative and qualitative evaluation of the results from

a clinical perspective.

2 Materials and methods

2.1 Data

The 4th release of the Adolescent Brain Cognitive Development

(ABCD) study data was used in this work to develop and evaluate

the proposed localized morphometrics approach (Dagasso et al.,

2022; Piras et al., 2015). The ABCD study is a longitudinal study

conducted in the United States of America with initial enrolment

of children between 9 and 10 years of age who are followed

into early adulthood. ABCD contains imaging data, genomic data,

and wide range of clinical and neuropsychological assessments.

In this work, standardized T-scores from the Child Behavior

Checklist (CBCL) DSM-5-Oriented Scale categories of attention

deficit/hyperactivity problems, obsessive-compulsive problems,

and depressive problems was used for definition of attention deficit

hyperactivity disorder (ADHD), obsessive compulsive disorder

(OCD), and depressive disorder, respectively. Therefore, for all

three mental health and neurodevelopmental disorders, the CBCL

T-scores were scaled to a range between 50 and 100, with a score of

50 representing the average for the subject’s particular age and sex.

Based on the CBCL scoring system, any scores falling below the

93rd percentile were considered normal for that category, scores

falling in the 93rd to 97th percentile were in the borderline-clinical

range, and scores above the 97th percentile were in the clinical

range. For this work, borderline-clinical and clinical participants

were grouped into the mental health or neurodevelopmental

disorder class to maximize sample sizes, with the remaining

participants falling under the 93rd percentile, for each of the CBCL

DSM-5-Oriented Scale categories, comprising the non-disorders

group (Stanley et al., 2022).

All available participants within the three identified categories

of study in the disorder classes were included in this work

provided existing quality-controlled genomic and medical imaging

data were available. Individual age- and sex-based matching of

controls to disorder groups were conducted for all three disorders,

leading to variable sized control groups (see Table 1). Due to co-

occurrence of diagnoses, it is possible that the same child can be

assigned to more than one disorder group. Using the family ID’s

available, no individuals from the same respective family ID for

each mental health and neurodevelopmental disorder setup were

included more than once. To further maximize the sample sizes

available, participants from minority groups in the ABCD study,

specifically those self-identifying with non-white backgrounds were

included. For each disorder dataset, ∼80% of the participants were

white (ADHD: 1,095, OCD: 1,357, depressive disorder: 1,367). The

description of the number of participants included in each dataset

is provided in Table 1.

2.1.1 Genomics
The Affymetrix NIDA Smokescreen genotyping array

(Ashburner et al., 1998) was used in the ABCD study as the
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TABLE 1 Participants included in each category for the neurodevelopmental disorder datasets.

ADHD (age range: 108–173
months)

OCD (age range: 107–171
months)

Depressive disorder (age range:
107–170 months)

Cases Una�ected Cases Una�ected Cases Una�ected

Subclinical Clinical Subclinical Clinical Subclinical Clinical

Female 232 121 286 153 167 361 201 194 442

Male 220 135 365 274 246 551 166 212 551

sequencing platform for obtaining the genomic data, which

contains 646,247 markers (SNPs) over 23 categories. Examples of

the categories covered by this array include psychiatric disorders

and common genes linked to addiction disorders. This array was

specifically designed for investigations into smoking and other

addiction behaviors with a particular focus on regions identified by

various databases, such as HapMap, related to smoking behavior

and nicotine metabolism and included 1,014 genes known to be

associated with addiction (Ashburner et al., 1998). The quality-

controlled genomic data includes samples from both saliva and

whole blood to allow for higher successful calls and reduced

missing data. Cleaning of the genomic SNP data was filtered

for minor allele frequency (maf) of >0.05, with, the genotype

missingness (geno) at 0.1, individual missingness (mind) at 0.1,

exclusion of all variants with one or more multi-character allele

codes (snps -only) and Hardy-Weinberg equilibrium (hwe) exact

test p-being the default value set at 0.001 in PLINK (v2.0) (Smith,

2002). After filtering, 247,554 SNPs passed cleaning and filtering

and were included in the subsequent genome-wide association

studies described below.

2.1.2 Magnetic resonance imaging
Among other sequences, structural T1-weighted MRI datasets

with a resolution of 1.0 × 1.0 × 1.0 mm3 were acquired within

the ABCD study using either Siemens, Phillips, or GE scanners at

various field strengths. For further information about the specific

details of the imaging acquisitions, we direct the reader to the

detailed imaging protocol of the ABCD study (Casey et al., 2018).

All imaging datasets used in this work underwent the ABCD

minimal processing pipeline (Baurley et al., 2016), which follows

common pre-processing standards such as bias field correction

(Baurley et al., 2016).

2.2 Registration and deformation field
generation

Instead of directly modeling the image content of the

T1-weighted data, we restrict our analysis to morphological

information using techniques from deformation-based,

diffeomorphic morphometry to reduce the complexity of the

analysis (Ashburner et al., 1998). The benefit of this approach is

that it removes unwanted intensity differences between scans that

may occur despite the harmonization of the imaging protocols

between sites so that the analysis can be restricted to purely

morphological differences. Therefore, we a brain extraction was

performed in a first step to remove non-brain tissue from the

images, using the Brain Extraction Tool (Smith, 2002). Next, each

subject’s T1-weighted image was registered to a common atlas,

specifically the NIHPD asymmetric aged 7–11 years old (Fonov

et al., 2011), using the non-linear, diffeomorphic image registration

toolkit ANTs (Avants et al., 2008). The resulting deformation

fields encode the morphological differences between the brain atlas

and each subject’s morphology on a voxel-by-voxel basis. Those

deformation fields serve as a starting point for further analyses in

this work. The final registrations for the participants were visually

inspected to ensure proper registration of the patient data to the

atlas template.

2.3 Localized PCA dimensionality reduction
of the deformation fields

Principal component analysis (PCA) is a widely used

multivariate technique for reducing the dimensionality of a dataset

by identifying a low-dimensional affine subspace of maximum

data variation. However, standard PCA does not account for the

spatial relationships associated with medical imaging data. To

address this limitation, we reduce the dimension of the vectorized

deformation fields with our previously proposed spatially localized

PCA approach (Wilms et al., 2017, 2022). Briefly described, instead

of performing an eigen-decomposition of the sample covariance

matrix, we manipulate the covariance matrix by reducing relations

between field elements that are spatially far away in the image

space. This helps us to focus on local information in the estimated

PCA components. More specifically, the covariance matrix is

manipulated with a distance-based Gaussian kernel function,

whose width (distance parameter) can be selected by the user

based on the Euclidean distance between image locations whose

relationship should be preserved in the analysis. A more detailed

description of this method can be found in Dagasso et al. (2022)

and Wilms et al. (2017, 2022).

The distance parameters utilized in this work are defined in

relation to the diagonal of the minimum-constraining bounding

box surrounding the atlas being used for registration. The dataset

used for the localized PCA was the participants’ deformation fields

from the registration step, with a training set defined as 80% of

the total participants and 20% reserved for testing. The variability

retained was set to 90% of the data for each of the chosen distance

parameters, which defined the number of components used.

The generative modeling capabilities of a PCA-based

morphometry model enable the exploration of the morphological

data along various principal component axes, which can be used
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to our benefit in this context. More precisely, we can sample

data from the estimated low-dimensional affine subspace, which

enables a visualization of the morphological variation encoded by

subspace directions/PCA components that are highly correlated to

certain SNPs. Due to our unique and localized setup, the identified

correlated components can be used to illustrate high structural

variability within a specific, spatially localized region that might

be otherwise lost in a global dimensionality reduction setup via

standard PCA. Code availability at: https://github.com/wilmsm/

localizedssm.

2.4 Multivariate genome-wide association
study

Canonical component analysis (CCA) was performed for the

multivariate GWAS in this work using mv-plink (Ferreira and

Purcell, 2009). CCA aims to explain the largest possible amount of

covariation between a SNP and all traits in the data by extracting a

linear combination of all traits, and vice versa with the respective

phenotypes. A multivariate setup was chosen in this work to

allow for inherent correlations between the phenotypic features.

Separate group comparisons were performed for each disorder

described above and analyzed by using the localized components

as endophenotypes to determine in which cases SNPs were more

likely to be associated with morphological changes by comparing

the participants in the unaffected groups and the participants

in the disorder groups. For each component from the localized

PCA setups described above, we adjusted this morphometric brain

data for the covariates: sex, age, and the first 10 genetic principal

components, which were calculated using PLINK v2.0 (Purcell

et al., 2007). All principal components from the localized PCA setup

for each disorder were included in these multivariate GWAS’ in

order to retain the whole brain representation from the localized

PCA. The results of the multivariate GWAS’ were visualized by

Manhattan plots generated using the qqman R package (Turner,

2018).

2.5 Inversion of deformation fields and
application to atlas

Following the analysis of the genome-wide association study

results, components of the localized PCA that are more strongly

correlated to each of the top SNPs were further investigated. The

components most strongly correlated to a SNP in question were

identified by setting an absolute value threshold, based upon the

distribution of the results, of either >0.2 or 0.15, if there were none

over 0.2. Exploration along the components axes within the affine

subspace were then sampled to visually inspect the morphological

variation encoded by this component.

2.6 Experimental setup

Application of the methodology was done for three different

mental health and neurodevelopmental disorders (ADHD, OCD,

and depressive disorder) that are known to exhibit hereditary and

morphological brain changes (Klein et al., 2019; Piras et al., 2015;

Pauls, 2022; Zhang et al., 2018; Sayal et al., 2018; Wu et al., 2014;

Hoogman, 2019). The distances chosen for each disorder were

global, three-quarter, one-half, one-eighth, one-sixteenth, one-sixty

fourth, and one-one twenty eighth distances. These distances were

chosen to investigate a wide range of scales and to enable a

comparison between localized PCA and global PCA. The one-one-

hundred-twenty-eighth distance, in particular, represents a pseudo

voxel-wise setup due to its fine resolution. A multivariate GWAS

was computed individually for each of these distance parameters

and for each mental health and neurodevelopmental disorder. The

resulting components identified as being linked to genetic variants

were then investigated to determine brain regions being stored

within the component, which were identified using the CerebrA

atlas (Manera et al., 2020). For the full methodology setup see

Figure 2. Our study used a cluster node with 4x Intel(R) Xeon(R)

Gold 6148 CPU and 3022 GB of RAM available with a runtime

of ∼6 h per distance threshold setup. For the multivariate GWAS

setup, the same cluster node was used with a run time of∼24 h. We

have added this information to our methodology section.

3 Results

3.1 Comparison of information stored
within di�erent distance setups

To investigate the localization methodology, we visualized the

information stored within the first three components for four of

the distance parameter setups for children with OCD (see Figure 3).

The sixteenth, eighth, half, and global distances were chosen in this

example to illustrate the variability in the regions stored within

the individual components as well as the localization of these

magnitude changes in the deformation fields. As it can be seen,

the global, or non-localized PCA, contains a large variability in

regionality information stored in comparison with, for example,

the one-sixteenth distance. This shows that the localized-based

PCA-like setup can represent and analyze more regional based

information. Moreover, it is worth noting that when using smaller

distance parameters, such as 1/64th or 1/128th, it is becoming

increasingly difficult to identify specific regions of importance and

as such may be similar to voxel-wise testing with its problems in

this sense.

Moreover, Table 2 provides the number of components that

were retained for each neurodevelopmental disorder for each

distance setup. In comparison to the ABCD tabulated structural

imaging data, which contains over 450 radiomic features, such

as cortical surface area and thickness measurements from the

Destrieux atlas (Fischl, 2012), this illustrates the dimensionality

reduction capabilities of our setup.

3.2 Attention-deficit hyperactivity disorder

For the experiment with the ADHD group, we found that

the more localized distance setups result in additional genotype-

phenotype associations that were not identified in the global
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FIGURE 2

Overall schematic of the study setup.
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FIGURE 3

Visualization of the first three principal components for four distances to illustrate the di�erences in information stored for the OCD investigation.

TABLE 2 Number of components used per analyses for each disorder

included in our experimental setup.

Number of components
per distance set-up

ADHD OCD Depressive
disorder

Global 265 226 225

3/4 249 234 233

½ 268 249 249

1/8 348 343 345

1/16 320 326 324

1/64 282 283 285

1/128 268 279 280

distance setup that practically equals a standard PCA. This is

illustrated in Figure 4 while additional visualizations are available

in Supplementary Figures 1–7.

Using Manhattan plots, we identified two genomic regions

on chromosome 8 and on chromosome 9 that were further

investigated. Although these regions did not reach genome-wide

significance, we identified these SNPs as being the most significant

in the Manhattan plots towers in the following and, therefore, as

potential targets for future studies. More precisely, for the global

distance and the other larger distance setups, we investigated a

region on chromosome 9 around the gene GNAQ, for the three-

quarter distance, we particularly investigated the SNP rs1930541

(p-value 1.24 × 10−5), which is an intron variant in the gene

GNAQ, which has ubiquitous gene expression levels. However,

this gene or SNP has not been priorly implicated in ADHD or

neurodevelopmental disorders, whichmakes it an interesting target

for future studies. The 97th component was strongly linked to

this SNP, and the left hemisphere pars orbitalis and the middle

temporal regions had the highest changes of magnitude within this

component (see Figure 5). Volume changes in the pars orbitalis and

middle temporal regions have been previously (Nickel et al., 2018;

Shaw et al., 2007).

For chromosome 8, we investigated the results from the 1/64

distance setup, with the SNP rs6998882 (p-value 5.72× 10−5) being

the most significant in this region. This SNP is an intron variant

in the gene region of CSMD1, which has been previously reported

in ADHD-related studies (Liu et al., 2021), and has a biased brain

expression. The 68th component was further investigated in this

case, showing to be associated with the right hemisphere’s inferior

temporal brain region (see Figure 6).

3.3 Obsessive-compulsive disorder

Visualizations from theManhattan plots illustrate how different

distance parameters provide varying information or more clear

patterns depending on the distances used for the patients with

obsessive-compulsive disorder (see Figure 7). In the 1/8 distance

setup, for example, there is a clear tower, which was not visible

as clearly in the global distance, though with the finer distance

setups, these clear patterns seem to disappear (see Figure 7;

Supplementary Figures 8–14).

As can be seen in the Manhattan plots, no SNPs found

were at a genome-wide significance level (1 × 10−8). Despite

this finding, we discuss some SNPs that were identified as

being the most significant in the Manhattan plots towers in

the following as potential targets for future studies. The SNPs

were chosen for discussion as the towers indicate that a more

likely associated SNP occurs in this region that is more likely

associated despite not being significantly linked to the brain

regions in question. The tower seen in chromosome 6 in varying

distance setup Manhattan plots occurred in the gene SIRT5, with
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FIGURE 4

Manhattan plots of the GWAS results for the ADHD experimental set-up. (a) Global distance set-up Manhattan plot. (b) 1/64 distance set-up

Manhattan plot.

SNP rs2841505 (p-value 4.75 × 10−6) being the most significant

SNP in that region, as visualized in the Manhattan plot for the

1/16 distance (see Figure 7b, dotted red rectangle). SIRT5 has an

increased level of brain tissue expression levels (Carithers et al.,

2015) but has not been priorly implicated in OCD or other

neurodevelopmental disorders so far. For the global distance setup,

we investigated chromosome 12, which occurs within the LRRK2

gene, as highlighted by the green rectangle in Figure 7a. This result

is also apparent within the half-distance setup, although with more

noise mixed in within the top SNPs. LRRK2 has been priorly

implicated in Parkinson’s disease and has been noted to have an

effect on dopamine receptor trafficking (Rassu et al., 2017). In

line with this finding, current research suggests a link between

OCD and dopamine pathways (Dong et al., 2020). LRRK2 was

found to have an ubiquitous tissue expression (Carithers et al.,

2015).

The component with the highest link to the top SNP,

rs11564150 (p-value 1.82 × 10−5), in LRRK2 was component

13 (see Figure 8). This component was mainly associated with

the precuneus region in both, the right and left hemisphere,
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FIGURE 5

Visualization of the axial view for component 97, in the 3/4 distance set-up.

FIGURE 6

Visualization of the axial view for component 68, in the 1/64 distance set-up.

showing major deformation changes. The precuneus region has

been previously linked to OCD (Piras et al., 2015). All distance

setup Manhattan plots not shown in the main paper can be found

in Supplementary material.

3.4 Depression

Similar results as in OCD for comparing SNP results across

the different distances were found in the depression group. As
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FIGURE 7

Manhattan plots of the GWAS results for the OCD experimental set-up. (a) Global distance set-up Manhattan plot. (b) 1/16 distance set-up

Manhattan plot. (c) 1/128 distance set-up Manhattan plot.
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FIGURE 8

Visualization of component 13, for the eighth distance set-up, highly correlated to SNP rs11564150. (Left) Sagittal view. (Right) Coronal view.

can be seen in the Manhattan plots for the varying distances

(see Figure 9; Supplementary Figures 15–21), there were varying

results across the distances. However, a relatively consistent region

in chromosome 17 can be identified in several of the plots (see

Figure 9, purple rectangle), with a clear distinctive tower, which was

the reason for further investigation, despite not meeting genome-

wide significance. All distance setup Manhattan plots not shown in

the main paper can be found in Supplementary material.

The region in chromosome 17 identified occurred in the gene

AATK, with the SNP rs2725417 (p-value 4.82× 10−6) from the 1/8

distance being the most significant SNP in this region. This gene

has biased brain expression but has not been priorly implicated in

any mental health or neurodevelopmental disorders so far.

Component 20 (see Figure 10) showed the highest link to SNP

rs2725417 and includes part of the cerebellum, inferior temporal,

and the left and right lateral occipital regions. Alterations in

the cerebellum region, including structural and functional, have

been implicated in several psychiatric and neurodevelopmental

disorders, including depression. However, the exact mechanisms

how the cerebellum is affected remain unclear in depression

(Phillips et al., 2015; Depping et al., 2018; Sathyanesan et al., 2019;

Moberget et al., 2019).

4 Discussion

Imaging genetics is a relatively new field that is still exploring

how to best include and combine genotype and phenotype datasets

in a unified analysis, while ensuring both (1) the proper use of

the datasets and (2) the full realization of the potential both data

modalities have for current and future studies. Given the sheer

size of both datasets, with millions of voxels in MRI datasets, and

potentially hundreds of thousands to millions of SNPs available,

the development of new approaches for targeted, effective image

dimensionality reduction for GWAS’ is an important avenue of

research. In this study, we investigated the utility of a novel and

efficient method to include whole brain image information in a

GWAS and further tested our method on three different pediatric

mental health and neurodevelopmental disorders. The proposed

method combines ideas from deformation-based morphometry

and localized PCA. We showcase that the localized dimensionality

reduction approach provides an opportunity to investigate specific,

spatially-localized, imaging-derived phenotypes that can be used

in conjunction with existing multivariate genome-wide association

study frameworks in a data-driven way without having to rely

on pre-defined atlas-based parcellation of the brain space. This

is especially beneficial in cases where medical and mental health

conditions or disorders may affect more than one region of the

brain in different (non-linear) ways.

The approach presented in this work can be broadly applied

to various disorders to generate new hypotheses that can then

be tested in more detail later on by using various distance

thresholds. By doing this, no assumptions are made what features

are linked to various medical and mental health diseases or

disorders, which separates it from other setups that utilize atlases

or masking of particular brain regions. In addition, the ability

to work with a range of distances, this method can help identify

further genotype-phenotype associations that would otherwise be

undetectable as shown in this work for three specific disorders.

Along the same lines, the proposed method is flexible enough

to encode additional prior knowledge about brain morphology

into the pipeline (e.g., hemispheric symmetries) by adjusting the

distance measure used accordingly.

The generative modeling aspect of this pipeline is an added

benefit, given its ability to visualize phenotypic changes associated

with correlated components along their axes. This visualization

may be useful when analyzing the morphological changes that

are highly associated with a SNP. This could be potentially useful

for future precision medicine applications investigating how a

particular SNP causes morphometric effects on a patient level.

Moreover, it allows to visualize specific changes that one is unable to

display when using data such as Jacobian matrices (Rodrigue et al.,

2020) or even voxel-wise testing (Stein et al., 2010), the two other

techniques often used in GWAS analyses of neuroimaging data.
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FIGURE 9

Manhattan plots of the GWAS results for the depression disorder experimental set-up. (a) Global distance set-up Manhattan plot. (b) 1/8 distance

set-up Manhattan plot. (c) 1/128 distance set-up Manhattan plot.

We demonstrated the utility of this pipeline in directly

associating morphometric, imaging-derived phenotypes from

T1-weighted imaging with genomic regions in preadolescent

participants with and without ADHD, OCD, and depressive

disorder, all of which are hereditary disorders with some known

or previously reported structural brain changes. It should be
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FIGURE 10

Visualization of component 20, for the 1/8 distance set-up, which was highly correlated with SNP rs2725417. (Left) Axial view. (Middle) Coronal view.

(Right) Sagittal view.

emphasized that our setup, while applied to T1-weighted imaging

datasets in this work, can be theoretically applied to any other

brain imaging modality or sequence as well and can be combined

with other statistical tests. Examples of other acquisition techniques

could be T2-weighted imaging, diffusion tensor imaging to obtain

connectivity information, which could be especially important

in disorders such as ADHD like in our study, or functional

magnetic resonance imaging. The overall motivation of this study

was to provide a more intuitive way to include diverse high

dimensional imaging data in GWAS’, as such our method is not

limited to macro-structural brain imaging data and can also be

employed in multi-modal and other non-brain imaging contexts

(e.g., cardiac imaging).

The findings from the various distance parameter ADHD

configurations revealed a strong correlation in the middle temporal

and pars orbitalis regions, brain regions that have been previously

associated with ADHD (Nickel et al., 2018; Shaw et al., 2007).

Likewise for the OCD cohort, the proposed method led to feasible

results with a relevant SNP identified in the gene region LRRK2,

which is implicated in dopamine receptor trafficking, which is

a feasible result given recent research (Dong et al., 2020). For

the third disorder cohort, depressive disorder, we also found a

feasible result with the cerebellar region having been reported to be

implicated in psychiatric as well as neurodevelopmental disorders.

Overall, the SNP results from the GWAS’ found more distinct

patterns within the 1/16 and 1/8 distance setups in comparison to

smaller distance parameter setups. This may indicate that as the

distance parameters are reduced, we are reaching a lower limit of

distance parameters that is needed or leads to reasonable results.

Thus, using very small distance setups that are more similar to

voxel-wise analyses may not reveal any additional insights and may

even hide them. Given the variability of the top SNPs in the larger

distances, global or 1/2 for example, compared to 1/8, there may

be SNPs that are more highly linked to the global changes across

the brain structures in comparison to SNPs that are more local to

specific brain structure changes, again directly showing a benefit

of the proposed method. Thus, using a top-down approach using

distances such as global, 1/2, and 1/16 may be useful to investigate

more global structural changes to more specific structural changes

(this was visualized in Figure 3).

One of the main limitations of this study are the relatively

small sample sizes for each of the included neurodevelopmental

and mental disorders, which is the reason why we chose to enhance

our sample sizes by including subclinical groups. This limitation

is well-recognized in pediatric datasets, where obtaining large,

comprehensive datasets can be challenging. In the future, we aim

to address this issue by scaling our work to adult datasets, as

larger and more robust datasets are typically available for adult

cohorts. This will allow us to investigate the generalizability of

our findings and validate them in a larger dataset. Additionally,

given the heterogeneity of study sites, there may be site-specific

biases contained in the imaging. However, the ABCD study did

harmonize and optimize imaging acquisitions across the three

scanner platforms (Casey et al., 2018). While other global PCA-

like methods (Mihalik et al., 2022; Anderson et al., 2014; Arnedo

et al., 2015), which focus on global eigenvalue decomposition

of the data and other atlas-based analyses exist, a comparison

between our localized dimensionality reduction technique and

these methods is currently out of scope for this study as the

focus of our paper was to present and provide a first feasibility

analysis of our method to identify the potential benefits of a

localized setup.

The localized PCA setup described in our study enables

the inclusion of full images via morphometric, imaging-derived

phenotypes from T1-weighted imaging into multivariate GWAS

frameworks. The results found were overall clinically feasible and

in line with current knowledge in the domain, but may also indicate

new findings for the neurodevelopmental disorders included in

this work. Overall, our method holds considerable promise for

investigations of data-driven imaging phenotypes in a multivariate

GWAS setup for identifying new genotype-phenotype associations,

which can be applied to other diseases and disorders.
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5 Conclusion

This proposed approach is a novel fully-data driven

methodology that enables the inclusion of any medical imaging

data without the need for pre-definition of spatial regions into

a multivariate GWAS. The findings for the three psychiatric

and neurodevelopmental disorders we tested it on are feasible

in terms of the genotype and phenotype characteristics, both.

While we showcase its capabilities on neuroimaging data, our

method and its associated pipeline can be applied to any type of

medical imaging data to support manifold genotype-phenotype

analyses that may help to identify unknown genomic variants.

The minimum number of images needed for this analysis depends

on the signal in the data and cannot be generally defined by a

single number.
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