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In today’s data-centric landscape, e�ective data stewardship is critical for

facilitating scientific research and innovation. This article provides an overview

of essential tools and frameworks for modern data stewardship practices. Over

300 tools were analyzed in this study, assessing their utility, relevance to data

stewardship, and applicability within the life sciences domain.
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1 Introduction

The term “data stewardship” is commonly used alongside “data governance” in the
current literature (e.g., Brous et al., 2016; Rosenbaum, 2010), which can lead to confusion.
Data stewardship covers the practical elements involved in managing and ensuring the
quality of research data as assets, as well as ensuring that the data is accessible to the
relevant community with high quality (Arend et al., 2022). Conversely, data governance
refers to the establishment of policies, recommendations, concepts, and responsibilities for
data stewardship (Rosenbaum, 2010).

Closely linked and directly related to the concept of “data stewardship” is the term
FAIR (Wilkinson et al., 2016), which stands for Findability, Accessibility, Interoperability
and Reusability. This term has been coined for a set of principles that are highly valid for
scientific data. FAIR principles ensure research objects are reusable and accessible without
specifying technical requirements. They promote rigorous evaluation and extensive reuse
of data. FAIR guiding principles are not a standard but provide flexibility for different
approaches to make data and services findable, accessible, and interoperable for reuse.
Valuable standards can be developed, guided by the FAIR Principles.

Although FAIR data is a quite popular topic for discussion in the scientific community,
our analysis for this review shows that the number of existing tools for FAIR data
stewardship is remarkably small. Most FAIR projects are focused on “FAIRification” of
existing repositories and promotion of FAIR principles, while the number of software
solutions for FAIR data stewardship remains limited. An increased support infrastructure
for FAIR data-publishing, analytics, computational capacity, virtual machines, and
workflow systems is therefore necessary. Building infrastructures based on rich metadata
that supports optimal reuse of research resources is a widely accepted goal, however, the
implementation so far is not even coming close to achieving the ambitious goals of FAIR
data in science (Mons et al., 2020).

Whilst FAIR principles have been thoroughly defined and worked out in sufficient
detail (Mons et al., 2017), the concept of data stewardship is frequently misunderstood
and confused with data governance and data management. There are concerns about
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the stretching of the original meanings of the FAIR Principles and
confusion in their implementation (Jansen et al., 2019).

Despite the growing complexity of data, many researchers
undertake FAIRification of their data themselves. However, they
may lack expertise, knowledge, and experience in the field of data
stewardship. In the domain of medicine, this is highly relevant:
researchers are responsible not only for their findings, but for
data stewardship including study design, data collection, analysis,
storage, ensuring data quality and integrity, and sharing, as well as
protecting the privacy of study subjects (typically patients). Whilst
Research Institutes have a formal responsibility for sensitive data
and are legally bound to appoint a Data Protection Officer to
monitor GDPR compliance; there is no legal obligation to appoint
data stewards (Jansen et al., 2019). Besides, the number of trained
experts in the field of data stewardship is very limited, to say
the least. This implies that researchers must assume the role of
data stewards, despite potentially lacking expertise in this domain
and having professional interests that are not typically aligned
with data stewardship. Consequently, reusability of “patient-level
data” is limited and significant effort needs to be invested to make
medical study data FAIR in retrospective. To address this issue,
specialized tools such as the ADataViewer for Alzheimer’s disease
have been developed (Salimi et al., 2022). ADataViewer establishes
interoperability of longitudinal Alzheimer study data at variable
level. However, such tools require an immense effort for data
understanding, generation of a common data model (CDM) and
mapping of individual variables to that CDM.

A lack of proper data stewardship demonstrable leads to
data loss, lack of interoperability, lack of provenance and poor
reuse of research data (Jansen et al., 2019). Many years of
discussions on FAIR principles and their implementation through
data stewardship have led to a change with funding bodies
and research policy makers. Data stewardship is recognized as
important for ensuring high-quality data and maximizing the
“return on investment” by funding bodies (Wise et al., 2019). There
is a clear consensus that data stewards should be involved as early
as possible in publicly funded projects and should have expertise in
all domains (Wise et al., 2019).

2 Data stewardship methods

Data stewardship plays a crucial role in the sustainable
management of research data in clinical research. It encompasses
methodologies that organizations use to ensure the responsible
and ethical handling of data assets. However, the field of data
stewardship is somehow fuzzy, broad and undefined, making it
challenging to distinguish it from data management and data
governance, which is illustrated in Figure 1.

This lack of clarity can lead to confusion regarding the specific
practices that fall under data stewardship. In our research for this
review, we tried to address this complexity by providing a clear
schema in Figure 2.

Effective data stewardship methodologies are essential for
maximizing the value and utility of data. Adequate data stewardship
ensures that digital research data are FAIR in the long term. Data
management, archiving, and reuse by third parties are all part
of data stewardship, and it is a crucial part of Open Science.

Adequate data stewardship protects the scientific integrity of
research and meets requirements of research funders, journals, and
makes sure that legal compliance to GDPR and other relevant laws
is implemented.

In the following, we will discuss the individual data stewardship
methods that—when combined—result in improved reusability of
data and knowledge.

2.1 Findability

Important step of reusing data is to find it. It is crucial
that both, humans and computers, can easily access data and
the corresponding metadata. Machine-readable metadata plays
a critical role in enabling automatic discovery of datasets and
services, making this an indispensable part of the FAIRification
process. Findability in data stewardship refers to the ability to
easily locate and uniquely identify a specific data object or dataset.
According to Wilkinson et al. (2016), this involves ensuring that
data objects have unique and persistent identifiers, as well as
machine-readable metadata that accurately describes the content
and context of the data, and makes explicit the identifier of the data
it describes. Both data and metadata must be registered or indexed
as a searchable resource.

Data stewardship methods that ensure findability of research
data include data cataloging, data sharing, structured description
of methods for data acquisition and data identification processes.

2.1.1 Data sharing
Sharing data fosters transparency in scientific research,

enabling a comprehensive understanding of the analysis process
and facilitating the reproducibility of results. Sharing data provides
the basis for validation of machine learning models on independent
data sets suitable for testing and validation. It thus provides
the basis for generalization of insights gained through Machine
Learning (ML) and Artificial Intelligence (AI) modeling. In the
absence of comprehensive data, metadata, and details about the
resources utilized to produce the data, reproducing a study becomes
impossible (Uribe et al., 2022). Therefore, a lack of data sharing
and data interoperability directly contributes to the reproducibility
crisis we observe in biomedicine.

Data that is not shared within commercial organizations plays a
crucial role in the development of intellectual property, ultimately
resulting in economic gains. However, the publication of patents
may serve to facilitate the long-term reuse of data. Still, challenges
exist in terms of access to data, as well as the establishment of
ontologies and standards within this domain.

Efficient sharing of data has the potential to amplify
the advantages of costly and time-consuming large datasets
(Wilson et al., 2021). Combining previously shared biological
datasets accelerates the development of analytical techniques
employed in biological data analysis. Furthermore, the reuse
of rare samples enhances their impact. Aggregating data for
meta-analyses increases the overall study power, while also
reducing the occurrence of insulated, non-interoperable and
unique (underpowered) studies. Moreover, data sharing enables
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FIGURE 1

Venn diagram illustrating the domains of data management, data stewardship and data governance and their partial overlaps. Definitions of the

domains and domain overlaps are provided.

researchers to build upon prior studies to confirm or challenge their
findings, instead of duplicating the same experiments.

Data consists of recorded observations, while metadata
describes the data itself and the methods used to generate
it. In a life science context, metadata frequently includes
supplementary details about biomedical samples (e.g., patient
samples), such as sex, medical condition, and information about
experimental equipment. Most biological disciplines adhere to
specific metadata standards outlining the required information
accompanying datasets.

Scientists seeking valuable guidance on appropriate data
sharing practices are encouraged to refer to FAIRsharing. This
collaborative platform consolidates information on standards,
repositories, and policies aligned with the FAIR principles,
providing domain-specific community standards (Sansone et al.,
2019).

2.1.2 Repositories
There are numerous repositories where researchers can deposit

their scientific data, and sometimes it can be challenging to find a
repository suitable for a specific discipline. Repositories suitable for
some areas of life science are presented in Figure 3.

Depending on the experimental nature, various specialized
repositories cater to diverse data sharing needs, each imposing
distinct requirements for data and metadata formatting. In cases
where no repository aligns with the author’s requirements, the
generalist repository Zenodo can be employed for any type of
scientific data (Sicilia et al., 2017). The Open Science Framework

(OSF) also may serve as a generalist repository: this platform is
used for structuring scientific projects. Additionally, OSF functions
as a versatile repository, enabling the sharing of data and various
materials by making the OSF project publicly accessible (Foster and
Deardorff, 2017). To find appropriate repository to share the data,
scientists may use FAIRsharing, the registry of standards, policies,
knowledge bases and repositories (Sansone et al., 2019), or register
of repositories re3data (Pampel et al., 2023). Other examples of
general-purpose repositories are Dryad (Rousidis et al., 2014) and
FigShare (Thelwall and Kousha, 2016).

The world of data repositories in the Life Sciences appears
very heterogeneous and guiding principles concerning metadata
annotations, legal guidance on data sharing or aspects like
provenance cannot be found. First attempts at addressing these
issues have been made (Wilson et al., 2021), but are not yet
common practice.

2.1.3 Identifiers
Identifiers serve the purpose of labeling, distinguishing, finding,

and retrieving entities within a collection or resource managed
by a specific organization, which acts as the authoritative body
within the respective domain of knowledge. The fundamental
idea is that identifiers must be distinct, meaning they must be
assigned in a unique way. Consequently, there exists a one-to-one
relationship between the identifier and the entity it represents. In
isolated systems the likelihood of identifier collision is negligible.
However, different isolated systems may create identical identifiers
for different entities: these identifiers are considered locally unique,
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FIGURE 2

Schematic representation of data stewardship methods in life sciences.

as there is no assurance of their uniqueness across all other
existing systems, in other words, their global uniqueness cannot be
guaranteed (Juty et al., 2020).

The FAIR principles advocate for the utilization of globally
unique, persistent, and machine-resolvable identifiers (GUPRI or
GUPRID) (Mangione et al., 2022) as essential components for
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FIGURE 3

Schematic representation of data sharing repositories in life sciences. The ordering principle is based on the modality of data; with a dedicated class

of general repositories.

both data and metadata. Every endeavor toward FAIRness is
encouraged to employ tools and methodologies that facilitate
the creation of unequivocal identifiers, ensuring their sustained
functionality even in the event that the FAIRified assets are no
longer accessible. Consequently, services and technologies for
GUPRI should ensure the enduring availability of the identifiers
associated with FAIRified assets.

Best citation practice requires globally unique and Internet-
resolvable identifiers, specifically Uniform Resource Identifiers
(URIs). URIs are concise character sequences uniquely identifying
resources, which can be physical, digital, or abstract in nature.
The scheme name in a URI indicates the resolution method, with
a focus on secure http URIs. The resolution of URIs is explored
within the context of REST interfaces, the standard method for
accessing essential metadata, including resolution endpoints, for
persistent identifiers.

Web-based identifiers have been in existence long before the
emergence of FAIR principles. A very popular example is the
Digital Object Identifier (DOI) system, for more than 20 years
widely employed in publishing to identify documents and data
sets, facilitating data citation and interoperability. Maintained by
the International DOI Foundation, with DataCite as a crucial
Registration Agency, over 16 million unique DOIs have been
registered. DataCite membership allows organizations to mint
DOIs annually, with resolution services provided at no cost (Juty
et al., 2020).

While DOIs are valuable for uniquely identifying digital
objects, pURLs (Persistent URLs) offer additional benefits in
terms of granularity, customization, linking, and flexibility that
make them valuable tools for managing and sharing digital
resources effectively. PURLs can be easily managed and updated
by organizations to reflect changes in the structure or content of
digital resources. This flexibility allows for more dynamic linking
and ensures that users are always directed to the most current

version or location of a resource. DOIs are typically assigned at
the level of a single digital object, such as an article or dataset. In
contrast, pURLs can provide more granular identifiers that point to
specific sections, components, or versions of a digital resource. This
granularity can be useful for linking to specific parts of a resource
or enabling more precise citations (Hakala, 2010).

Data stewards use digital identifiers to track and link data
across different systems, ensuring data integrity and consistency.
Identifiers are also used to enforce access controls, monitor
data usage, and facilitate data sharing within and outside the
organization. In order to uphold the principles of FAIR data
management, it is imperative to assign digital identifiers to
all published objects (Juty et al., 2020). These identifiers play
a crucial role in enabling the tracking of data, ensuring its
provenance, and enhancing its discoverability and reusability. By
implementing digital identifiers, researchers can establish a robust
framework for managing and sharing data effectively within the
scientific community.

2.2 Accessibility

According to FAIR principles, data is considered accessible if
it can be obtained by machines and humans upon appropriate
authorization and through a well-defined, explicit protocol.
Achieving optimal accessibility involves the utilization of linked
metadata that describes datasets within central data repositories.
By employing such linked metadata, researchers gain access to
associated datasets, enhancing the effectiveness of their search
results. These linked metadata conform to a standardized set
of descriptions specific to biology. Public repositories typically
offer the necessary technical infrastructure, access interfaces, and
comprehensive documentation to facilitate proper usage (Fillinger
et al., 2019). Making data available allows for verification of
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results, facilitates further analysis, and enables the reuse of data
for new discoveries, ultimately advancing scientific knowledge and
accelerating research progress (Veitch et al., 2022).

Ensuring data accessibility is closely connected with data
privacy that restricts access to certain data for ethical reasons. This
includes data anonymization or pseudonymization, passwords and
encryption, authentication and authorization, role-based accounts
for data access and following data privacy regulations that are
different in healthcare and research, informed consent issues,
intellectual property issues and the General Data Protection
Regulation (GDPR).

Differential privacy is a framework for ensuring that the
inclusion or exclusion of an individual’s data in a dataset does not
significantly affect the outcome of any analysis or query performed
on that dataset. It aims to provide strong privacy guarantees by
adding noise or randomness to query results, thereby obscuring the
contribution of individual data points while still allowing accurate
aggregate analysis (Ziller et al., 2021).

The GDPR is a comprehensive set of regulations that have
been introduced to safeguard the personal data of European Union
citizens. It establishes strict rules for the processing of personal data.
One of the key aspects of the GDPR is the recognition of a special
category of personal data known as health data (Lopes et al., 2020).
Health data refers to any information related to an individual’s
physical or mental health, including medical history, diagnoses,
treatments, and test results. This type of data is considered sensitive
and is subject to special conditions regarding its treatment and
access by third parties. This means that health data is subject
to even stricter regulations than other types of personal data.
The GDPR requires organizations that work with health data
to obtain explicit consent from individuals before doing so.
Additionally, organizations must implement appropriate measures
to ensure the confidentiality of health data. They must also appoint
a Data Protection Officer (DPO) to oversee compliance with
GDPR regulations.

Besides compliance with GDPR regulations, compliance with
ISO 27001 standards is strongly recommended for any type of
sensitive data. ISO 27001 is a standard that helps organizations
establish a secure and reliable method of network communication
(Wylde et al., 2022). This includes implementing protocols for
data access control and encryption of passwords to prevent
unauthorized access to sensitive information. The standard also
emphasizes the importance of training cybersecurity staff to be able
to detect and respond to potential attacks from malicious third
parties. By adhering to ISO 27001, organizations can minimize the
risk of network communication attacks and ensure that their data
remains safe and secure.

It is important to note that protected data that is not
available for common free use is still considered accessible.
There are valid reasons for keeping data shielded from public
access, and one of them is competitiveness. The FAIR principles
emphasize the importance of providing transparent details on
how to access data, the context in which the data was generated,
guidelines for reuse, and proper citation instructions. However,
FAIR does not enforce data to be openly accessible or free of
charge. Data that is not available for free is still considered
accessible because there is a publicly available protocol that
enables user to access data through payment. Accessible data

is not equal to open data and does not guarantee that data
will be available for free and for every user (Mons et al.,
2017).

2.3 Interoperability

According to FAIR data principles, interoperability refers to
the integration and collaboration of data or tools from disparate
sources, requiring minimal effort. To be interoperable, data
and metadata should use formal language broadly applicable
for knowledge representation and should use vocabularies that
follow FAIR principles. Also data and metadata should include
qualified references to other data (Wilkinson et al., 2016). It
is noteworthy that even though those requirements provide
semantic data interoperability, they do not establish any statistical
data interoperability.

FAIR principles prioritize machine-actionability to fully adhere
to FAIR guidelines. Although RDF and ontologies are commonly
used to meet FAIR criteria, other data formats tailored to specific
needs can also be applied in a FAIR framework. Utilizing RDF
with appropriate ontologies is called semantic harmonization. It
enhances interoperability and facilitates information exchange,
especially at the metadata level (Mons et al., 2017).

Achieving data interoperability at semantic level can be
realized through various methods, including the creation and
adherence to controlled vocabularies (CVs), standardized chemical
nomenclature, and compliance with formatting standards for the
exchange of data (Vesteghem et al., 2020). The goal of semantic
harmonization is to provide a common vocabulary for research,
where each term has a clear and unambiguous meaning. Usage
of common terminology allows smooth integration and machine
readability. There are several approaches to this task, such as using
shared standards, terminologies, and ontologies. The Ontology
Lookup Service offered by EMBL-EBI offers a user-friendly search
platform for ontologies (Vesteghem et al., 2020).

SNOMED CT is widely recognized as a standardized system
for naming healthcare concepts globally. It is one of the
largest and most robust ontologies, which serves as a coding
system for term identification and a multi-hierarchical ontology
that facilitates the relationship between concepts. Managed by
the International Health Terminology Standards Development
Organization (IHTSDO), now known as SNOMED International,
SNOMED CT is a comprehensive clinical terminology system
that offers a standardized approach to representing clinical data
collected by healthcare workers (Chang and Mostafa, 2021).

Alternative approach is the use of UMLS. The UMLS
Metathesaurus, the most extensive thesaurus in the biomedical
field, offers a structured representation of biomedical information,
organizing concepts based on semantic type and establishing
both hierarchical and non-hierarchical connections between them
(Aronson, 2001).

There are many existing ontologies for different fields of
research that can be found using Ontology Lookup Service. One
of the most popular ontologies in the field of bioinformatics in
Human Phenotype Ontology (HPO). HPO methodically defines
and categorizes human phenotypes in a logical manner. Serving
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as an ontology, HPO facilitates computational reasoning and
advanced algorithms to aid in integrated genomic and phenotypic
analyses. The extensive clinical, translational, and research uses of
HPO encompass genomic interpretation for diagnostic purposes,
gene-disease identification, mechanism elucidation, and cohort
analysis, all contributing to the advancement of precision medicine
(Köhler et al., 2021).

Another well-known source of common terms is the
International Classification of Diseases (ICD). For more than
a century, the ICD has served as the primary foundation for
ensuring the comparability of statistics related to mortality and
morbidity causes across different locations and throughout various
time periods. A significant amount of knowledge regarding the
prevalence, origins, and impacts of human illnesses globally relies
on data organized according to the ICD. Clinical adaptations of the
ICD form the primary framework for disease statistics, especially
pertaining to hospital-treated cases. These statistics play a vital role
in essential functions like payment structures, service strategizing,
quality control and safety management, as well as health services
research (Harrison et al., 2021).

Implementing ontologies, classifications and terminologies at
early stages of the data collection process improves interoperability
and findability (Vesteghem et al., 2020). The use of common
vocabularies enables ontology mappings and content mappings.
It is noteworthy to mention that mapping as a data stewardship
challenge may face a revolution through the utility of Large
Language Models and their embeddings (Salimi et al., 2024).

2.4 Reusability

In the context of FAIR data principles, reusability is
a fundamental aspect that emphasizes making data easily
understandable and accessible for future use for different purposes
beyond its original intent. This can include applications in new
research projects, policy-making, education, or commercial use. To
enhance reusability, data should be well-documented with clear
descriptions of the methodology, context, and conditions for reuse.
This ensures that others can confidently interpret and apply the
data in different contexts (Wilkinson et al., 2016). Additionally,
providing appropriate metadata, standardized formats, and clear
licensing information contributes to the reusability of data.

Metadata should describe the data’s context, methodology,
quality, and any transformations applied to it. This allows users to
understand how the data was collected and processed.

High-quality data that has been validated and curated is more
likely to be reused. Ensuring accuracy and reliability enhances trust
in the data.

By adhering to FAIR principles, researchers and organizations
can foster a culture of data sharing and maximize the potential for
meaningful and impactful reuse of data across various disciplines.

All the above-mentioned principles (findability, accessibility,
and interoperability) serve to provide better reusability of scientific
data. There are no specific data stewardship methods that
directly address reusability: it is the combination of findability,
interoperability and accessibility methods that results in offering
better reusability.

3 Data stewardship tools and services

Given the expansive nature of data stewardship and its
nebulous boundaries, distinguishing between tools that qualify as
data stewardship tools and those that do not does pose a challenge.
Certain researchers view data stewardship as a broad concept
encompassing a wide array of data management tools. In this paper,
we have curated a selection of tools based on the following criteria:

1. The tool under consideration must be designed for
applications within the life sciences domain or demonstrate
utilization within this field (documented by publications).

2. Adherence to FAIR principles in the design of the tool
or incorporation of key features conducive to FAIR data
stewardship is essential for inclusion.

3. The tool’s availability as of March 2024 is a prerequisite for its
consideration in this study.

A total of over 300 tools were initially gathered from
publications related to the field and retrieved through searches
on PubMed. Many tools were gained from the publication of
Mangione et al. (2022), where 277 tools were analyzed, but most
tools were not related directly to life sciences. Following the
application of rigorous selection criteria mentioned above, 70
tools were identified and are listed in Figure 4. The tools have
been categorized based on their intended function into Findability
tools, Accessibility tools, and Interoperability tools. While data
management and data stewardship are distinct topics, a subset
of data management tools has been incorporated due to the
integral role of effective data management in facilitating robust
data stewardship practices. Additionally, certain tools tailored
for data stewardship purposes may align with the domain of
data management, underscoring the interconnected nature of
these disciplines.

3.1 Findability tools

We categorized tools facilitating Findability into three primary
groups: data sharing tools, data acquisition tools, and data
storage tools.

Data sharing tools streamline the process for scientists to share
their data in alignment with FAIR principles, as the name suggests.
These tools are essential for promoting collaboration, transparency,
and reproducibility in scientific research.

The Nanopub Jupiter Lab Extension, a tool developed
by the FAIR Workflows project, represents a significant
advancement in the field of scientific data management.
This Jupiter Lab extension is specifically tailored to facilitate
the searching and publishing of Nanopublications within
the Python notebook environment (Mangione et al.,
2022).

ROHub serves as a research object management platform
aimed at facilitating the preservation and lifecycle management
of scientific investigations. Notably, it adopts the research object
model and paradigm as its core framework. This involves
consolidating resources linked to a specific experiment into
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FIGURE 4

Categorization of data stewardship tools in Life Science and listing of instances of selected tools.

a singular digital entity referred to as a “research object.”
Additionally, essential metadata is presented in a semantic format,
accessible to both users and machines, providing a comprehensive
approach to organizing and interpreting scientific content. ROHub
contributes to supporting scientists and researchers in the effective
oversight and safeguarding of their research efforts, as well as
facilitating the sharing and publication of their work (Palma et al.,
2014).

The CONNECT dashboard, developed by OpenAIRE,
simplifies the process of publication and sharing the research data,
applying Open Science principles (Príncipe et al., 2017).

The SODAR tool offers a versatile solution for scientists,
enabling seamless metadata management through the ISA API,
efficient data storage via iRODS, and comprehensive data
acquisition and analysis functionalities. By leveraging SODAR,
researchers can effectively curate their data for publication and

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2024.1428568
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Aksenova et al. 10.3389/fdata.2024.1428568

dissemination in alignment with the FAIR principles, thereby
enhancing the accessibility and reusability of their scientific
findings (Nieminen et al., 2022).

Data acquisition tools are used to find related datasets
and publications, check data provenance and gather additional
information. These tools are essential for gathering accurate and
reliable data in a fast and convenient way.

REDCap introduces an innovative workflow methodology
and software solution created to expedite the development
and implementation of electronic data capture tools, specifically
tailored to bolster clinical and translational research efforts. It is
a web-based application that serves as a valuable facilitator in the
development of clinical research, predominantly within health-
related domains, thereby contributing to a reduction in research
costs. It empowers researchers to optimize usage of electronic
data capture components. The adoption of REDCap enhances
the methodologies employed in data collection while concurrently
offering a secure repository for data storage. Established as a robust
instrument for clinical research, REDCap has garnered widespread
utilization by academic and governmental institutions (Harris et al.,
2009; Garcia and Abrahão, 2021).

The Aber-OWL infrastructure furnishes reasoning services
tailored for bio-ontologies. Comprising an ontology repository
alongside a suite of web services and interfaces, Aber-OWL
facilitates ontology-driven semantic access to and retrieval of
biological data and literature within the domain (Hoehndorf et al.,
2015).

The ukbREST tool has been specifically developed for the UK
Biobank study, with potential for adaptation to other biobanks,
providing users with streamlined access to phenotypic and genetic
data. Through its REST API, ukbREST enables efficient retrieval
of data within a secure network environment. These features
position ukbREST as a useful resource in enhancing the accessibility
of valuable biobank data to the scientific community, thereby
fostering reproducibility in research analyses (Pividori and Im,
2019).

The Figshare Harvester for OpenVIVO constitutes a specialized
tool crafted to aggregate data from Figshare. This harvester is
equipped to conduct data harvesting based on tags or ORCiD
identifiers. When provided with a designated tag or identifier, the
harvester systematically compiles all content associated with that
query from Figshare, generating RDF for each individual work.
Notably, the Harvester adheres to openVIVO URI conventions for
dates and individuals, ensuring that only distinctly identified works
and individuals are incorporated into the resulting RDF dataset
(Ilik et al., 2018).

The FAIR Data Pipeline (Mitchell et al., 2022) was developed
amidst the COVID-19 crisis to offer a valuable resource for
tracking provenance within the scientific community. This tool
effectively synchronizes data and metadata between the execution
platform and a remote data registry, simplifying the process of
tracing the origins and history of scientific data and gathering
related information.

Data storage tools are designed for secure long-term
preservation of datasets, metadata and related information.
Effective data storage solutions not only safeguard the data against
loss or corruption but also facilitate easy retrieval and sharing
among the scientific community. Due to the high number of

different scientific repositories for various domains in life sciences,
only the most popular universal repositories are mentioned in
this section.

DataCite (Neumann and Brase, 2014) was formed to address
the complexities associated with data citation. Its primary
objectives include facilitating seamless data access, promoting
the adoption of data publication practices, and endorsing
data archiving efforts. Usage of DOIs offers a straightforward
mechanism for retrieving and reusing research data.

Re3data (Pampel et al., 2023) is a global registry of research
data repositories, used by scientists to find an appropriate
repository to store and share research data. Presently, re3data
delineates the characteristics of more than 3,000 research data
repositories utilizing a comprehensive metadata schema and
provides numerous opportunities for searching.

Dryad is an open-access repository that allows scientists to
securely store, search, access, and reuse research data associated
with their scholarly publications (Rousidis et al., 2014). By
submitting data files with DOIs and metadata, researchers can
streamline the procss of data discovery and preservation. The
primary goal of Dryad is to facilitate the accessibility and reusability
of valuable research data, ultimately enhancing the impact of
scientific findings.

Figshare (see https://figshare.com) differs from other
repositories as it allows researchers to share datasets that were not
published. FigShare accommodates the uploading of diverse data
categories by contributors, encompassing data that is in the pre-
peer review phase. This facilitates immediate distribution, giving
authors the opportunity to get early feedback. A growing number
of esteemed journals have embraced the publication of preprints to
streamline the peer review process. Furthermore, FigShare actively
promotes the dissemination of negative results and research data
that has been generated but remains unreported, fostering a more
comprehensive and transparent scientific discourse (Thelwall and
Kousha, 2016).

Zenodo (see https://zenodo.org) is a research data repository
and digital preservation platform that provides a reliable and
open-access space for researchers to store and share their
research outputs. Developed by OpenAIRE and CERN, Zenodo
accommodates a wide range of research data, including datasets,
software, publications, and project documentation. As an integral
part of the European Open Science Cloud (EOSC), Zenodo
contributes to the global open science movement by facilitating the
curation and accessibility of research data (Sicilia et al., 2017).

3.2 Accessibility tools

Within the realm of accessibility tools, two primary categories
have been identified: anonymization and pseudonymization
tools, privacy-compliance verification tools and GDPR-compliance
verification tools. Anonymization and pseudonymization tools

play a crucial role in safeguarding sensitive patient data for
subsequent publication.

Amnesia, developed by OpenAIRE, serves as a data
anonymization tool designed to facilitate the anonymization
of sensitive data, thereby enabling subsequent statistical analysis.
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This tool is used to avoid the risk of deanonymization while
concurrently minimizing any potential degradation in data quality
(Crutzen et al., 2019).

µ-ANT represents a pragmatic and readily configurable
anonymization tool tailored for healthcare data. Through the
integration of contemporary methodologies, it ensures robust
privacy assurances while endeavoring to maintain the utility of
anonymized data. Notably, µ-ANT accommodates the diverse
attribute types prevalent in electronic healthcare records, catering
to the needs of both practitioners and software developers engaged
in data anonymization efforts (Sánchez et al., 2020).

Anonimatron is a free open-source data anonymization tool.
It recognizes patterns in the dataset and generates anonymized
datasets for further use (Kulkarni and Bedekar, 2022).

Anonymizer stands as another open-source tool designed
for data anonymization. Employing anonymized random data,
it systematically replaces all information within a database. A
distinctive attribute of Anonymizer lies in its emphasis on data
formatting, ensuring that the generated data closely mirrors the
structure of the original data from authentic users (Vovk et al.,
2023).

NLM-Scrubber, an openly accessible clinical text de-
identification tool, has been developed by the National Library of
Medicine. Its objective is to empower clinical scientists with access
to health information devoid of patient identification, adhering to
the Safe Harbor principles articulated in the HIPAA Privacy Rule
(Kayaalp et al., 2015).

Privacy-compliance verification tools are used to measure the
risks of privacy breaches or deanonymization.

Anonymeter is a statistical framework for quantifying privacy
risks in synthetic tabular datasets, focusing on singling out,
linkability, and inference risks (Giomi et al., 2022). Through
experiments, they show that privacy risks scale with the amount
of privacy leakage, with synthetic data exhibiting low vulnerability
to linkability. Anonymeter outperforms existing frameworks in
detecting privacy leaks and computation speed, contributing to a
privacy-conscious use of synthetic data.

The Automated Cyber and Privacy Risk Management Toolkit
(AMBIENT) assesses and analyzes an organization’s cyber and
privacy risks, providing recommendations for mitigating measures
that optimize risk reduction (Gonzalez-Granadillo et al., 2021).
Comprising three primary modules, AMBIENT includes a
Cybersecurity Risk Assessment module for evaluating potential
cyber threat scenarios, a Privacy Risk Assessment module for
identifying privacy risks in compliance with GDPR objectives, and
a Risk Mitigation module for selecting and implementing optimal
measures to address identified risks.

GDPR compliance verification tools are instrumental in
ensuring adherence to GDPR guidelines. These tools assess
and monitor organizational practices to verify the proper
handling and protection of personal data in accordance with
GDPR requirements.

GDPRValidator endeavors to support small and medium-sized
enterprises that have transitioned their services, wholly or partially,
to cloud environments in achieving compliance with GDPR. This
tool specifically addresses the challenges encountered in managing
and storing data within cloud infrastructures, ensuring alignment
with GDPR standards (Cambronero et al., 2022).

The Automated GDPR Compliance Verification Tool
represents a scalable data protection solution designed with a
focus on automated compliance verification and auditability,
rooted in informed consent and modeled through a knowledge
graph. This tool achieves automated compliance verification
by employing a regulation-to-code process, translating GDPR
regulations into precisely defined technical and organizational
measures, culminating in the generation of software code. This
approach ensures a systematic and efficient integration of GDPR
principles into the design and implementation of data protection
measures (Chhetri et al., 2022).

Ensuring compliance with GDPR holds particular significance
within the digital health domain, given the commonplace
processing of highly sensitive personal health data. To streamline
the intricate process of compliance with regulations, the GDPR
Toolkit for Digital Health has been developed with the explicit
intention of providing support and guidance in navigating the
complexities associated with GDPR adherence in the realm of
digital health (Hussein et al., 2022).

3.3 Interoperability tools

In the spectrum of interoperability tools, we have categorized
three principal types: ontology mapping tools that enhance
interoperability by aligning datasets with established ontologies,
tools for mapping datasets to common data models, and tools
dedicated to the harmonization and annotation of metadata.

Ontology mapping tools are commonly used to identify terms
within ontologies that correspond to data and metadata. This
process creates a unified set of variables across different datasets.
This mechanism ensures enhanced interoperability by fostering
a common understanding of variables and facilitating seamless
integration of diverse datasets.

The OxO tool, developed by EMBL-EBI, functions as a service
dedicated to identifying mappings between terms derived from
ontologies, vocabularies, and coding standards. It facilitates this
process by importing mappings from diverse sources, including the
Ontology Lookup Service and a selected subset of mappings from
the UMLS (Harrow et al., 2020).

UMLS MetaMap, developed by the National Library of
Medicine, is a program designed to map biomedical text onto
the Metathesaurus or, equivalently, to discern concepts within the
Metathesaurus referenced in the text. Employing a knowledge-
intensive approach, MetaMap leverages symbolic, natural language
processing, and computational linguistic techniques to achieve
accurate and contextually informed mappings (Aronson, 2001).

The BioPortal Mapping terminology service offers a unified
interface to access diverse terminologies and ontologies.
Leveraging BioPortal’s scalable infrastructure, this service enhances
performance while concurrently minimizing maintenance costs,
providing an efficient and feature-rich platform for navigating and
utilizing various terminological resources (Zhao et al., 2016).

BiobankConnect (Pang et al., 2015) offers a user-friendly
interface designed to expedite the biobank harmonization process,
presenting a streamlined approach. Its applicability extends beyond
biobank operations, making it a potentially valuable tool for various
biomedical data integration endeavors.
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Karma (Erkimbaev et al., 2018) serves as an information
integration tool, facilitating swift and seamless integration of data
from diverse sources such as databases, spreadsheets, and text files.
Utilizing a graphical user interface, users can model information
based on a selected ontology, automating a substantial portion
of the integration process. The tool employs machine learning
to discern the mapping of data to ontology classes, subsequently
proposing a model that effectively links these classes together.

RightField, an open-source tool (Wolstencroft et al., 2011),
facilitates the integration of ontology term selection into Excel
spreadsheets. Although developed prior to the FAIR principles,
RightField remains a valuable asset in the realm of data stewardship.
Its primary function involves the creation of semantically aware
Excel spreadsheet templates, which scientists can then reuse
for data collection and annotation. Notably, scientists benefit
from RightField by consistently annotating their data without
delving into the intricacies of various standards and ontologies,
all seamlessly embedded within the familiar Excel spreadsheet
environment. This approach ensures data consistency without
necessitating a departure from customary scientific practices.

SCALEUS-FD (Pereira et al., 2020) is a semantic web tool that
complies with FAIR Data principles, allowing for data integration
and reuse through online exposure of data and metadata in a
self-descriptive manner. The tool addresses privacy issues and
enables cataloging and searchability, with potential for improving
medical care, public health policies, and clinical trials. Semantic
technologies are able to describe data, map and link distributed
datasets, and create an information network that can be used to
search for information from a single entrypoint. FAIR data requires
a persistent, globally unique identifier for data and metadata,
as well as rich and standardized metadata that includes clear
references to the identified data. The FAIRification process involves
transforming data into a machine-readable, FAIR-compliant
representation, defining metadata on data usage and provenance,
and providing a query interface for end-users. SCALEUS allows
migration of structured and unstructured information into a
semantic format without the need for a predefined data integration
ontology, offering flexibility in managing data models.

Take Your Terms from Ontologies (Tyto) (Bartley, 2022) is
a lightweight Python tool designed to facilitate the incorporation
of controlled vocabularies into routine scripting practices. Initially
developed for applications in synthetic biology, Tyto showcases
versatility that may prove beneficial for users engaged in diverse
areas of bioinformatics research.

The exclusive utilization of the CDM mapping approach
is observed in a singular tool, namely the Data Steward Tool
(DST). CDMs are standardized structures or formats used to
organize and represent data from various sources in a consistent
manner. CDMs provide a common framework for describing data
elements, relationships, and attributes, regardless of the original
source or format of the data, enabling cataloging, managing data,
and improving interoperability across resources. Domain-specific
common data models benefit research institutions and facilitate
data sharing.

It is noteworthy at this point to mention that the availability of
CDMs and the mapping capability to CDMs is a prerequisite for
federated learning (Oh and Nadkarni, 2023).

The CDMmapping is the process of aligning data from various
sources to a standardized model. In this approach, data elements,
attributes, and relationships from different datasets are mapped
to corresponding elements in the CDM. CDM mapping typically
involves identifying similarities and differences between the
structure and semantics of data in different datasets and mapping
them to the corresponding elements in the CDM. This process may
require data transformation, normalization, or standardization to
ensure compatibility and consistency across datasets.

DST is an application that allows for semi-automatic semantic
integration of clinical data into ontologies and global data
models and data standards. DST can standardize clinical datasets,
map them to ontologies, and align with OMOP standards.
DST is a web application for clinical data management and
visualization. It provides a user-friendly interface to extend the
model, add mappings, and read clinical data (Wegner et al.,
2022). The COVID-19 pandemic has generated a vast amount
of heterogeneous clinical data worldwide. Establishing a CDM
specific to COVID-19 and using tools like DST can facilitate
standardization and normalization of these datasets. By unifying
and standardizing the data, data scientists can analyze larger
cohorts. The COVID-19 CDM, developed in the COPERIMO Plus
project, incorporates multiple datasets and can export standardized
data to FHIR format. The DST is used for mapping data from
various sources, enriching the CDM, and comparing with other
global data standards like OMOP (Wegner et al., 2022).

Tools for metadata harmonization and annotation play a
crucial role in establishing interoperability through the alignment
of metadata. These tools enable editing of metadata, ensuring a
harmonized and standardized approach to enhance compatibility
across diverse datasets.

One prominent tool within this category is the ISA API, an
integral component of the ISA Software Suite. The ISA API offers
users robust programmatic capabilities for handling metadata,
facilitating automation through a standardized interface. It acts
as a key interoperable link between the two ISA formats and
integrates seamlessly with various life science data formats essential
for depositing data in public databases (Johnson et al., 2021).

The FAIR Data Station (Nijsse et al., 2022) offers tools for
the proper FAIRification of (omics) data and provides capabilities
to construct searchable metadata databases for similar projects.
Furthermore, it offers assistance in the submission of sequence data
metadata to the European Nucleotide Archive (ENA).

CEDAR, an acronym for the Center for Expanded Data
Annotation and Retrieval (Vesteghem et al., 2020), offers a
comprehensive suite of freely available tools. These tools encompass
the creation of metadata templates, the population of templates
with metadata, the submission of metadata to external repositories,
and the storage, search, and management of both templates and
metadata (Musen et al., 2015).

Qvain (Keskitalo and van Hemel, 2018), developed as part
of the Finnish project Fairdata, is a tool designed to streamline
the creation of standardized metadata for research datasets. As an
integral component of the Fairdata services, Qvain offers workflows
to facilitate the generation of structured metadata, enhancing the
overall quality of research datasets. Qvain is an open-source project
(see https://www.fairdata.fi/en/about-fairdata/fairdata-services/).
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Morpho, a desktop application (Higgins et al., 2002), empowers
researchers in the field of ecology and earth sciences to
generate metadata and construct a catalog encompassing both
data and metadata. Developed by The Knowledge Network
for Biocomplexity, Morpho facilitates the querying, editing,
and visualization of data collections. While it is no longer
actively supported, Morpho remains accessible as an open-source
application, providing continued availability for users (see https://
knb.ecoinformatics.org/tools/morpho).

MDEmic (Kunis et al., 2021) presents a user-friendly platform
for editing metadata associated with microscopic imaging data,
offering a seamless experience. Simultaneously, it provides a high
level of flexibility for adjusting metadata sets and their associated
data models. In the context of the ongoing standardization process
for metadata in microscopic experiments, MDEmic aligns itself
with this evolving landscape, ensuring adaptability and compliance
with emerging standards.

The SHAPEness Metadata Editor is a Java desktop application
designed to assist users in creating and updating RDF metadata
descriptions. Featuring a robust user interface, it facilitates the
seamless population and validation of metadata structured as
graphs (Paciello et al., 2022). This Metadata Editor has been
developed within the framework of the European Plate Observing
System (EPOS) (see https://epos-eu.github.io/SHAPEness-
Metadata-Editor/gitpage/index.html).

ESPERANTO, developed in 2023, represents an innovative
framework facilitating standardized semi-supervised
harmonization and integration of toxicogenomics metadata,
thereby enhancing their FAIRness in compliance with Good
Laboratory Practice (Di Lieto et al., 2023). The tool ensures
harmonization across metadata through the establishment
of a specialized vocabulary. With a user-friendly interface,
ESPERANTO is designed to support users in harmonizing
metadata, irrespective of their background or expertise, providing
a seamless experience.

SMetaS (Sample Metadata Standardizer, Bremer and Fiehn,
2023) is another novel software tool that is used for automated
metadata standardization. Users construct a sample metadata
matrix and populate it with natural language descriptions.
Subsequently, the tool employs advanced algorithms to convert
the matrix by substituting free-text terms with predefined
vocabulary terms. This conversion process prioritizes simplicity
and employs sophisticated techniques such as synonym matching
and typographical correction within an n-grams/nearest neighbors
model framework. SMetaS facilitates the downstream analysis of
research studies and samples through the implementation of string
equality, ensuring that data is FAIR for retrospective purposes.

Schema.org is a project focused on standardizing metadata
vocabulary to enhance the FAIR principles of web content (Cano
et al., 2022). Its application offers content creators the means
to improve the accessibility and interoperability of their content.
While leveraging schema.org can be advantageous for biomedical
research resource providers, applying its standards to biomedical
research outputs may present challenges. Nevertheless, Schema.org
serves as a valuable tool for authoring, extending, and utilizing
metadata schemas, ultimately contributing to the improvement of
FAIRness in biomedical data.

NExtSEEK (Pradhan et al., 2022) empowers users to gather
and organize essential information, enabling researchers to enhance

reusability and reproducibility. It facilitates the dissemination of
data and metadata to the scientific community through public
repositories. NExtSEEK serves as a valuable tool to streamline the
sharing and accessibility of research information.

The Clinical Data Interchange Standards Consortium’s
(CDISC) Operational Data Model (ODM) plays a crucial role
as a flexible standard for the transmission and preservation of
metadata and subject clinical data within the realm of clinical
trials. However, due to the limited compatibility of some electronic
health systems with ODM as an input format, there is a pressing
need for the conversion of ODM to alternative data standards
and formats. Addressing this challenge, ODMToolBox (Soto-
Rey et al., 2018) offers a systematic template-driven approach
for the development of ODM converters. By providing online
access to templates, programming tools, and an ODM test suite,
ODMToolBox simplifies the process of creating new converters,
thereby promoting enhanced interoperability in the management
of clinical trial data.

3.4 Data management tools

In our classification, instruments falling outside the three
primary groups are categorized as Data Management Tools,
all of which are integral to data stewardship. Within this
classification, Data Management Tools can be further delineated
into three subgroups: tools for datamanagement planning, tools for
measuring data FAIRness, and tools for managing data workflows.

Data management planning tools are essential instruments
designed to assist researchers in developing strategies for
organizing their data throughout the research lifecycle. It serves to
create a data management plan (DMP) prior to the research.

The Data StewardshipWizard (DSW) tool offers a user-friendly
platform for customizing the DSW knowledge model, structured
into chapters that encompass various facets of data management
(Devignes et al., 2023). Within each chapter, specific sections
house targeted questions designed to gather pertinent information.
These questions are categorized based on their relevance to
different stages of the data/project lifecycle and their impact on
ensuring compliance with FAIR principles. Through an intuitive
questionnaire interface, users can instantiate a knowledge model as
a DMP project. Additionally, the tool allows for the preservation of
pre-filled project versions as templates, facilitating the streamlined
creation of multiple DMP projects that share common information.

Argos, developed by OpenAIRE, stands as a DMP tool
integrated with other OpenAIRE services and the European Open
Science Cloud (Papadopoulou et al., 2023). This tool facilitates the
creation and editing of DMPs while promoting FAIR principles
for sharing. It provides a workspace for convenient versioning of
DMPs, accommodating changes that may occur throughout the
research cycle.

The DMP Tool (Sallans and Donnelly, 2012), developed by
the California Digital Library, is a free tool designed to assist
researchers in creating Data Management Plans (DMPs). Offering
guidance tailored to specific funders with DMP requirements,
the tool is versatile and can be utilized by anyone seeking
to develop generic DMPs for research facilitation. Additionally,
the tool provides access to resources and services available
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at participating institutions to support the fulfillment of data
management requirements.

EasyDMP (Philipson et al., 2023), developed by Sigma2 in
collaboration with EUDAT2020, is a free-of-charge tool accessible
to researchers in Norway and across Europe. The primary objective
of EasyDMP is to offer researchers with limited experience in
data management a straightforward method for creating a DMP.
Achieving this goal involves translating the data management
guidelines provided by funding agencies into a series of easy-to-
answer questions, many of which include predefined responses. The
resulting DMP serves as a blueprint for researchers to implement
the necessary elements ensuring the proper management of
their data.

Tools for data FAIRness measurement offer automated
solutions for assessing and scoring the level of FAIRness using
a given dataset. By employing various quantifiable metrics, these
tools offer a comprehensive analysis of how well a dataset aligns
with the FAIR principles. For instance, they may assess the presence
of metadata that enhances findability, evaluate access protocols
that ensure data can be easily retrieved, analyze the degree of
interoperability with other datasets, and measure the reusability of
data through licensing and documentation.

F-UJI (Devaraju and Huber, 2021) is specifically crafted for
programmatically measuring the FAIR aspects of research data.
Adhering to best practices, standards, and relevant literature in
research data preservation and publication, the tool has undergone
testing with pilot data repositories as part of the FAIRsFAIR
project. Currently used by various projects within the European
Open Science Cloud, F-UJI aims to contribute to the ongoing
advancement of FAIR data principles in the research community.

The FAIRshake toolkit (Clarke et al., 2019) was created to
facilitate the development of community-driven FAIR metrics,
coupled with both manual and automated FAIR assessments.
The outcomes of FAIR assessments are represented as insignias,
which can be embedded within websites hosting digital resources.
Utilizing FAIRshake, a range of biomedical digital resources
underwent comprehensive evaluations, encompassing bothmanual
and automated assessments, to gauge their degree of adherence to
FAIR principles.

The FAIR Evaluation and Validation Assessment (EVA) tool,
developed in the framework of the European Open Science
Cloud, is tailored for data management systems such as open
repositories. Its customizable nature enables seamless integration
into diverse settings, offering scalability and automation. Designed
to be adaptable across various environments, repository platforms,
and scientific disciplines, FAIR EVA prioritizes the adherence to
the dynamic FAIR Principles. Through FAIR EVA, data FAIRness
can be quantitatively assessed, providing a valuable metric for
evaluating data management practices (Aguilar Gómez and Bernal,
2023).

FAIR Evaluator (Wilkinson et al., 2019) is a system that
uses measurable indicators, open-source tools, and community
participation to evaluate digital resources. This system helps data
stewards understand how FAIR their resources are and provides a
roadmap for improvement.

FAIR-Checker (Gaignard et al., 2023) is an online tool that helps
assess how FAIR a digital resource’s metadata is. It has two main
features: “Check” which evaluates metadata and gives suggestions

for improvement, and “Inspect” which helps users directly enhance
their metadata quality. Using Semantic Web technologies, FAIR-
Checker automatically checks various FAIR metrics and lets users
know what metadata is missing or needed to make their resource
more FAIR.

FOOPS! (Garijo et al., 2021) is a web service that evaluates
FAIRness of OWL ontology or SKOS [Simple Knowledge
Organization System (Tomaszuk and Szeremeta, 2020)] thesaurus.
It runs 24 checks across the different FAIR principles, looking
at things like whether the ontology has a persistent identifier,
uses open protocols, references other vocabularies, and provides
clear documentation.

O’FAIRe is a framework for evaluating the FAIRness of
ontologies (Amdouni et al., 2022). It utilizes 61 questions primarily
focused on metadata descriptions, leveraging standard metadata
properties to enhance the FAIRness of semantic resources.

Data workflow tools are software applications or platforms
designed to streamline and automate the processes involved in
managing, processing, and analyzing research data throughout
its lifecycle.

MOLGENIS Research is an open-source web application
designed to facilitate the collection, management, analysis,
visualization, and sharing of large and intricate biomedical datasets.
One of its notable features is its user-friendly interface, enabling
users without advanced bioinformatics skills to work with complex
data effectively. This tool caters to the diverse needs of biomedical
researchers, providing a comprehensive platform for handling
various aspects of data management and analysis in the field (van
der Velde et al., 2019).

KNIME (see https://www.knime.com) provides a user-friendly
environment that simplifies the creation of analytic models and
task automation without the need for coding. The platform’s no-
code/low-code approach lowers the barriers to entry for data
science, granting users access to advanced algorithms applicable to
large datasets. KNIME’s flexibility is enhanced by its support for
various programming languages, enabling users to script custom
algorithms through built-in integrations with languages such as R,
Python, Java, and others. This versatility allows for customization
to meet specific analytical needs. KNIME is widely used in life
sciences (Fillbrunn et al., 2017). KNIME-CDK (Beisken et al.,
2013) is a set of functionalities within KNIME that focuses on
molecule-related operations, including conversion to and from
common formats, generation of molecular signatures, fingerprints,
and properties. Leveraging the capabilities of the Chemistry
Development Toolkit (CDK), KNIME-CDK utilizes the Chemical
Markup Language (CML) for persistence, providing a robust
and versatile framework for handling chemical and molecular
data within the KNIME analytics platform. This integration
enhances KNIME’s capabilities in cheminformatics and molecular
data analysis.

iRODS (integrated rule-oriented data system) offers a
rule-based system management approach, simplifying data
replication and enhancing data protection. In contrast to the
metadata provided by traditional file systems, iRODS features a
comprehensive metadata system that enables users to customize
application-level metadata according to their specific needs. This
flexibility and rule-based management make iRODS a powerful
solution for efficiently handling and protecting data, particularly in
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scenarios that require advanced data management and replication
capabilities (Chiang et al., 2011).

In bioinformatics, Taverna workflows find common application
in high-throughput omics analyses, such as proteomics or
transcriptomics, as well as in evidence gathering methods involving
text mining and data mining. Taverna provides scientists with
access to a diverse set of tools and resources, numbering in the
thousands, freely available from various life science institutions.
Despite no longer being actively supported, Taverna continues to
serve as a valuable tool in the field of life science informatics,
offering a versatile platform for the design and execution of
complex computational workflows (Wolstencroft et al., 2013).

The ISA (Investigation-Study-Assay) Software Suite (Rocca-
Serra et al., 2010) is a collection of open-source software
tools designed to facilitate the management, curation, and
exchange of experimental metadata in life sciences research.
The suite is particularly focused on providing solutions for
representing metadata related to genomics and other high-
throughput experiments. The ISA Software Suite is widely used in
the life sciences community. Researchers and data curators often
use ISA-Tab files to describe their experiments before submitting
data to public repositories.

The ODAM Software Suite serves as an experimental
platform for managing data tables, aiming to enhance the
accessibility and reusability of research data with minimal input
from data providers (Jacob et al., 2020). Tailored for user-
friendly management of experimental data tables, ODAM offers
a structured model for organizing both data and metadata,
streamlining data handling and analysis processes. Additionally,
ODAM aligns with FAIR principles, promoting data dissemination
by fostering interoperability and reusability for both human users
and automated systems. This framework enables comprehensive
exploration and extraction of datasets, facilitating their utilization
in entirety or selectively as per requirements (see https://inrae.
github.io/ODAM/).

The Open Science Framework (Foster and Deardorff, 2017)
functions as a facilitative tool, advocating for open and centralized
workflows in the research lifecycle. It supports the comprehensive
capture of various facets and outcomes of the research process,
encompassing the development of research ideas, study design,
storage and analysis of collected data, as well as the creation and
publication of reports or papers.

OpenBIS stands as an open-source software framework
designed for the development of user-friendly, scalable, and robust
information systems tailored for handling data and metadata from
biological experiments. It empowers users to gather, integrate,
share, publish data, and establish connections to data processing
pipelines. With the flexibility to be extended and customized,
openBIS accommodates various data types acquired through
diverse technologies (Bauch et al., 2011).

OpenRefine is a robust and freely available open-source tool
crafted for managing unruly data. It serves multiple purposes,
including cleaning and refining data, transforming it from one
format to another, and augmenting it through web services and
external data sources (Petrova-Antonova and Tancheva, 2020).

Researchers use Elsevier’s Pure data repository to simplify
and promote the data deposit process. Pure, as a Research
Information Management System (Conte et al., 2017), is designed
to be user-friendly and turnkey. Its deep integration into the

Research Intelligence portfolio, along with external Open Access
databases andOpenData repositories, facilitates actionable analysis
across sources for improved decision-making and evidence-
based execution of research strategy (see https://www.elsevier.com/
products/pure).

SciCat (see https://scicatproject.github.io) is a scientific data
management and annotation tool designed to implement a
FAIR data management policy. As a fully open-source project,
SciCat allows for easy extension of functionality through the
RESTful OpenAPI.

Galaxy (Afgan et al., 2018) serves as a widely adopted
web-based scientific analysis platform, catering to a global
community of tens of thousands of scientists engaged in
analyzing extensive biomedical datasets, including genomics,
proteomics, metabolomics, and imaging. The platform is designed
to tackle key challenges in data-driven biomedical science,
emphasizing universal accessibility for researchers, ensuring the full
reproducibility of analyses, and simplifying the communication of
analyses to facilitate seamless reuse and extension.

4 Discussion

4.1 Future requirements for data
stewardship tools

Very large quantities of data are being generated in scientific
research and medicine, which presents challenges in terms of
ensuring data accuracy and preventing the spread of false
information. These challenges have implications for both scientific
research and society at large. Therefore, it is essential to
establish mechanisms to address these risks and safeguard against
potential harm (Mons et al., 2017). It is crucial to improve
the infrastructure and methods for “distributed learning” and
ensure that the algorithms and services used are compatible
with accurate and reliable metadata, and ideally, with FAIR data.
The focus should be on the policy of distributing the data as
widely as possible while centralizing it only when necessary
(Mons et al., 2017). Also, while data continues to grow in
volume, complexity, and diversity, one of the most important
future requirements for data stewardship tools is scalability.
Tools must be able to handle large and complex datasets. To
fully use the potential of artificial intelligence in research and
innovation, it is essential to ensure that data is made FAIR,
which involves automating operations that support findability,
accessibility, interoperability, and reusability (Schultes et al., 2022).
There are tools that measure progress toward FAIR research
data such as F-UJI (Devaraju and Huber, 2021) and FAIRshake
(Clarke et al., 2019), but the demand for tools that can help
ease the process of making data FAIR is quite high (Devaraju
and Huber, 2021). Another requirement worth mentioning is the
need to improve integration and interoperability. As data becomes
more heterogeneous and the number of data sources grows, it
can be challenging to integrate data from different sources or
to compare data coming from different research (Watford et al.,
2019). The lack of standards in the naming and measuring units
is one of many problems of data integration. This requires the
development of data integration tools and standards that can
facilitate data interoperability.

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2024.1428568
https://inrae.github.io/ODAM/
https://inrae.github.io/ODAM/
https://www.elsevier.com/products/pure
https://www.elsevier.com/products/pure
https://scicatproject.github.io
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Aksenova et al. 10.3389/fdata.2024.1428568

5 Conclusion

The subject of data stewardship tools is fast developing, and
there are a wide range of alternatives available to aid researchers in
managing, sharing, and reusing research data. These instruments
cover a broad variety of functionalities and are intended for use
by researchers at different points in the research data lifecycle.
Although there are more tools available than ever before, there
are still open challenges that must be solved, including the need
for standardization and interoperability among tools as well as
for more efficient and automated workflows. Additionally, it is
anticipated that new data stewardship tools will continue to appear
as data volume and complexity increase, and that existing tools will
need to be updated and improved to keep up with shifting data
management requirements.
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