
TYPE Original Research

PUBLISHED 19 November 2024

DOI 10.3389/fdata.2024.1427104

OPEN ACCESS

EDITED BY

Ruoming Jin,

Kent State University, United States

REVIEWED BY

Dong Li,

Facebook, United States

Feng Zhang,

China University of Geosciences Wuhan,

China

*CORRESPONDENCE

Zohreh Raghebi

zohreh.raghebi@ucdenver.edu

RECEIVED 02 May 2024

ACCEPTED 31 October 2024

PUBLISHED 19 November 2024

CITATION

Raghebi Z and Banaei-Kashani F (2024)

ActiveReach: an active learning framework for

approximate reachability query answering in

large-scale graphs. Front. Big Data 7:1427104.

doi: 10.3389/fdata.2024.1427104

COPYRIGHT

© 2024 Raghebi and Banaei-Kashani. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

ActiveReach: an active learning
framework for approximate
reachability query answering in
large-scale graphs

Zohreh Raghebi* and Farnoush Banaei-Kashani

Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO,

United States

With graph reachability query, one can answer whether there exists a path

between two query vertices in a given graph. The existing reachability query

processing solutions use traditional reachability index structures and can only

compute exact answers, which may take a long time to resolve in large graphs.

In contrast, with an approximate reachability query, one can o�er a compromise

by enabling users to strike a trade-o� between query time and the accuracy of

the query result. In this study, we propose a framework, dubbed ActiveReach, for

learning index structures to answer approximate reachability query. ActiveReach

is a two-phase framework that focuses on embedding nodes in a reachability

space. In the first phase, we leverage node attributes and positional information

to create reachability-aware embeddings for each node. These embeddings are

then used as nodes’ attributes in the second phase. In the second phase, we

incorporate the new attributes and include reachability information as labels in

the training data to generate embeddings in a reachability space. In addition,

computing reachability for all training data may not be practical. Therefore,

selecting a subset of data to compute reachability e�ectively and enhance

reachability prediction performance is challenging. ActiveReach addresses this

challenge by employing an active learning approach in the second phase to

selectively compute reachability for a subset of node pairs, thus learning the

approximate reachability for the entire graph. Our extensive experimental study

with various real attributed large-scale graphs demonstrates the e�ectiveness of

each component of our framework.

KEYWORDS

reachability query, reachability learning, index learning, graph learning, graph mining

1 Introduction

Graphs have evolved into a general conceptual abstraction that can model complex

connections between objects. Developing a scalable method for the analysis of large-

scale graphs, such as biological, road, and social networks, is a challenging task. An

interesting graph analysis application is to verify whether a vertex is reachable from

another. Reachability queries have been used extensively in diverse applications, including

social networks, biological networks, and communication networks.

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2024.1427104
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2024.1427104&domain=pdf&date_stamp=2024-11-19
mailto:zohreh.raghebi@ucdenver.edu
https://doi.org/10.3389/fdata.2024.1427104
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2024.1427104/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

Given a graph G with vertices V and edges E, one extreme

solution to answer reachability queries is to pre-compute the full

transitive closure of G. The transitive closure (TC) of a graph G =

(V ,E) is a graph TC = (V ,E+) such that for all v, w in V there is

an edge (v,w) in E+ if and only if there is a path from v to w in G.

By pre-computing the TC, one can answer reachability queries very

efficiently. However, TC requires a large space and computing TC is

very time-consuming; hence, using TC is a very expensive solution

for large graphs (Yildirim et al., 2010). On the other extreme, one

can use depth first search (DFS) or breadth first search (BFS) of

the graph. With DFS or BFS, we traverse the input graph from

query source node until the destination node is reached, or it is

found that no path from source to destination exists. This approach

requires no pre-computation but takes O(V + E) time to answer

a query, which is impractical for large graphs. Existing index-

based solutions (Yildirim et al., 2010; Agrawal et al., 1989; Wang

et al., 2006; Chen, 2009; Jagadish, 1990; Veloso et al., 2014; Zhou

et al., 2017; Seufert et al., 2013; Bramandia et al., 2008; Jin et al.,

2009; van Schaik and de Moor, 2011; Jin et al., 2012; Cheng et al.,

2015; Schenkel et al., 2005; Tri-ssl and Leser, 2007) trade off pre-

computation and online search, compromising index construction

time and space for query time. The main purpose of these methods

is to sufficiently pre-compute reachability information to guide

online search for query processing. However, exact reachability

query answering using such index-based solution is still too time-

consuming with high memory usage to be practical in large-scale

graphs for many applications. For such applications, a quick answer

that approximates the query result may be preferred as a practical

compromise. This is particularly useful solution for applications

that do not require exact answers in the first place. Unfortunately,

existing index-based reachability query processing methods spend

several minutes or hours to provide answers, even for moderately

sized graphs (Iyer et al., 2018b; Zhang et al., 2007; Iyer et al.,

2018a).

1.1 Applications

Surprisingly, approximate reachability arises in a variety of

scenarios. In network security, it is just sufficient to have a rough

estimate of the probability of reachability to specific file systems

(Muñoz González et al., 2017). Another application known as

influence maximization, whose main application is viral marketing

(Zhu et al., 2017; Jin et al., 2011), with approximate reachability

we can determine nodes that can be influenced by a given set

of nodes without spending lots of resources to calculate exact

answer (Kempe et al., 2003; Zhao et al., 2011; Iyer et al., 2018b).

In the study of viral disease epidemics, transmission of the virus

from a group of carrier individuals to a group of receivers can

be answered with approximate reachability (Raghebi and Banaei-

Kashani, 2018). Instead of pre-computing the entire reachability

set, we can consume less storage and computation resources to

approximately answer the reachability queries. In mobile networks

and routing applications, we can determine the probability of

receiving a packet from the source node to the destination node

(Ghosh et al., 2007).

Toward this end, in this study we introduce ActiveReach,

a learning-based framework to learn reachability for processing

approximate reachability queries in large graphs. To the best of our

knowledge, we are the first to introduce approximate reachability

queries and propose a learned index for efficiency answering

of such queries. Our proposed learned reachability indexes are

subject to the same advantages and disadvantages as previously

proposed learned index structure (Kraska et al., 2018). However,

we argue that learning index structures that can accurately predict

reachability are particularly a suitable approach for processing

approximate reachability queries.

With ActiveReach, we calculate embeddings for nodes to

preserve reachability information. ActiveReach utilizes three key

types of information to learn reachability. First, ActiveReach

leverages the concept that nodes sharing similar attributes are more

likely to be reachable. For example, in social networks, if two

members exhibit similar interests and attributes, the probability of

them belonging to the same communities and being reachable is

significantly higher (Backstrom et al., 2006). Second, ActiveReach

considers that nodes that are closer in terms of graph distance

are more likely to be reachable (Kempe et al., 2003). Finally,

incorporating reachability information from the graph can enhance

the reachability learning process. ActiveReach is designed based on

these fundamental principles.

ActiveReach is a two-phase framework that computes

embeddings for attributed graphs using position-aware graph

neural networks in the first phase. In the second phase, ActiveReach

utilizes pre-computed embeddings as node attributes and

employs an active learning solution. This solution actively selects

representative pairs of nodes to calculate reachability between

them to be added to the training set to improve reachability

prediction performance. The more effective the method is in

selectively computing reachability given a fixed budget, the better

the learned model will perform. We consider three strategies for

selecting pairs of nodes to be labeled. These strategies include

reachability prediction uncertainty, graph structure information,

and information density in the embedded space.

To summarize, we make the following contributions in this

study:

• We define approximate reachability query.

• We introduce a framework to learn new reachability index

structures for approximate reachability query processing

efficiently.

• We introduce an active learning strategy to select informative

and representative nodes to calculate reachability and label

data.

• We perform an extensive experimental study with various sets

of graph datasets to evaluate the performance of our proposed

solutions for approximate reachability query processing.

The remainder of this study is organized as follows. In Section

2, we review the related work on reachability query processing,

graph embedding, active learning, and index structure learning, in

relation to our proposed algorithm. In Sections 3, 4, we formalize

our problem, and in Section 5, we present our ActiveReach

algorithm. In Section 6, we present our experimental results, and

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

finally, we conclude the study and discuss future directions of this

study in Section 7.

2 Related work

2.1 Reachability query processing

In this section, we present the body of literature on reachability

query processing on graphs. At one extreme, the transitive closure

(TC) of the input graph can be precomputed to answer reachability

queries. With this approach, since reachability between all pairs

of vertices is precomputed, reachability can be answered in O(1).

However, this requires O(n2) storage for large-scale graphs, where

n is the size of the graph vertex set. On the other hand, DFS

(Depth First Search) and BFS (Breadth First Search) can be used

for reachability query processing without pre-computation. These

approaches do not leverage pre-computation and fail to scale

for large graphs. To balance query time and size of the pre-

computed reachability, various families of index-based solutions

are proposed in the literature that maintains a compact version

of the transitive closure (Agrawal et al., 1989; Jagadish, 1990; Jin

et al., 2008; Wang et al., 2006; Jin et al., 2012; Cohen et al., 2002;

Wei et al., 2014; Bramandia et al., 2008; Jin et al., 2009; Sengupta

et al., 2019; Jin and Wang, 2013) and/or improve efficiency of

online search for reachability query processing (Yildirim et al.,

2010; Jin et al., 2008; Seufert et al., 2013; Su et al., 2017; Wei et al.,

2014). Some of these methods are efficient while they use large

memory to be fast, and some of them are slow while memory-

wise efficient. However, in our algorithm, we use a user-defined

parameter to select a portion of the data as the training set and

we apply graph neural networks to learn reachability. We briefly

review these families of index-based solutions for reachability query

processing below.

2.1.1 Interval labeling
A large family of reachability query processing methods relies

on interval labeling, where a complete interval set (related to

tree and non-tree edges) is assigned to each vertex to encode the

set of vertices reachable from each vertex (Agrawal et al., 1989;

Wang et al., 2006; Jin et al., 2012; van Schaik and de Moor, 2011;

Tri-ssl and Leser, 2007; Shirani-Mehr et al., 2012; Raghebi and

Banaei-Kashani, 2018). Comparative studies (Veloso et al., 2014;

Seufert et al., 2013) have shown that while fast in query answering,

the large size of the index structures required for interval

labeling is a major bottleneck in scalability of these methods for

large graphs.

2.1.2 HOP labeling
Another family of reachability methods is based on HOP

labeling (Bramandia et al., 2008). With this approach, TC is

encoded recursively by maintaining the reachability information in

a distributed manner distributed across graph nodes (Bramandia

et al., 2008; Jin et al., 2009; Schenkel et al., 2005; Su et al., 2017;

Jin and Wang, 2013; Wei et al., 2014). With these methods, each

TABLE 1 Comparison of index-based solutions for reachability query

processing.

Method Index
size

Construction
time

Query
time

Approximate

Interval
labeling

High High Low -

Hop
labeling

Medium High Medium -

Online
search

Low Low High -

Backbone Medium High Medium -

ActiveReach Low-high Low-high Low X

vertex records lists of vertices reachable from the vertex (out-

reach) as well as a list of vertices reachable to the vertex (in-

reach). The main drawback of this family of methods is the long

index construction time. Sengupta et al. (2019) and Leskovec

et al. (2005) use random walk to answer reachability query. In

Sengupta et al. (2019), they generate in-reach and out-reach sets

for source and destination query nodes using random walks during

query processing. They do not precompute any index structure

and during query processing apply first-order random walks to

answer reachability queries. They consider that the next node to

be visited is only impacted by the current node. But in many

real-world applications such as web-based graphs, next page visit

is not only based on the previous visit but also impacted by

the sequence of last clicks. This type of relationship is called

higher-order dependencies. The first-order random walk does not

capture higher-order dependencies (Tang et al., 2015; Ou et al.,

2016). In addition, to have an accurate result, this method should

generate long enough random walks so that with a reasonable

number of random walks, two reachable nodes are visited. This

category of methods is very time-consuming to run especially for

sparse graphs.

2.1.3 Fast online search
This family of methods (Yildirim et al., 2010; Seufert et al.,

2013) focuses on speeding up the online search rather than

pre-computing reachability. Toward this end, the online search

methods create partial labeling information for each vertex and

utilize this information to reduce the query time by pruning the

search space. Unlike interval labeling and hop labeling which pre-

compute reachability information comprehensively, in fast online

search only partial reachability information is stored during index

construction to be used during query processing. A prominent

representative in this family is GRAIL (Yildirim et al., 2010). GRAIL

assigns each vertex multiple reduced interval labels where each

interval is generated with random DFS traversal of a graph. The

interval is used to determine whether a vertex can be pruned when

it cannot reach the query target vertex. Wei et al. (2014) and Su

et al. (2017) are another category of research which use k-min-wise

independent permutation and bloom filter labeling, respectively, to

encode in-reach and out-reach set in a way to prune the search

space similar to GRAIL during query processing.

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

2.1.4 Reachability backbone
Methods in this family introduced the concept of reachability

backbone to improve the scalability of the traditional reachability

indexes including interval labeling and hop labeling approaches (Jin

et al., 2012). In this study, the main idea is to identify and pre-

compute reachability information for a subset of the graph (i.e.,

the backbone) that can most inform reachability queries for the

entire graph. SCARAB (Jin et al., 2012) is one of the representatives

of this family. To answer reachability query between two vertices,

SCARAB verifies whether and how query vertices have access to

the backbone vertices and then searches the backbone to resolve

reachability between access points to the backbone. Since the size

of the reduced backbone graph is small, one can use a different

index-based structure to process backbone reachability queries.

For instance, SCARAB uses GRAIL (Yildirim et al., 2010) for

reachability query processing on backbone.

In Table 1, we show comparison summary between traditional

index-based solutions. In this table, “High” refers to the analysis

complexity of O(n2) and above, and “Low” refers to constant

to linear time complexity. For ActiveReach, complexity depends

on the query budget and graph embedding is computed in an

offline manner.

2.2 Graph embedding

Many approaches are proposed to represent graphs in a

low dimensional space, such as Locally Linear Embedding (LLE)

(Roweis and Saul, 2000), IsoMap (Tenenbaum et al., 2000), and

Laplacian Eigenmaps (Belkin and Niyogi, 2001). These approaches

use singular value decomposition (SVD) or principal component

analysis (PCA) as a dimension reduction method to learn node

representation in low dimensional space. More recently, a category

of methods has been introduced, inspired by language models [e.g.,

Skipgram (Mikolov et al., 2013)] to learn node representations for

large-scale graphs. Deepwalk (Perozzi et al., 2014) is one of the

pioneering works in this category, which uses uniform random

walks to transform graph into node sequences and generates

node representations by using the skip-gram model (similar to

word2vec). LINE (Tang et al., 2015) is another method in this

category which defines two functions as first-order proximity

and second-order proximity to capture first-hop and second-hop

relational information between vertices. Node2vec (Grover and

Leskovec, 2016) utilizes random walks in a bias way to learn node

embeddings. The authors study BFS and DFS such as randomwalks

to capture different similarity measures between nodes. Another

study that extends Deepwalk to capture higher order proximity is

HOPE (Ou et al., 2016). HOPE uses Katz (Katz, 1953) and pagerank

(Song et al., 2009) as similarity functions to preserve transitivity

while learning node representations. A comprehensive survey on

graph embedding methods is detailed in this study (Goyal and

Ferrara, 2018). Graph neural networks (GNNs) are also very

popular these days to realize node status propagation on graphs.

In fact, GNN can be defined as a generalization of traditional

convolutional neural network (CNN) models for graph-structure

data. For example, a widely used GNN model, graph convolutional

network (GCN) (Ying et al., 2018), defines the graph convolution

operation on graph nodes. In this study, a graph node collects

node status information from its connected neighbors and update

its own status. GraphSage (Hamilton et al., 2017) is another study

which proposed a method to only sample a fixed size of neighbor

nodes for graph convolution with much lower complexity. Graph

attention network (GAT) (Velic̆ković et al., 2017) also is another

recent work which introduced the attention mechanism into GNN.

GAT introduces weighted aggregation of neighbor status on more

important neighbor nodes. A comprehensive survey on GNN and

its variations is detailed in this study (Wu Z. et al., 2021). In general,

most of these solutions embed two nodes closely only if they are

close and well-connected in the graph. There is another category

of GNNs that leverage position information of nodes to learn their

embeddings (You et al., 2019). This type of GNNs is efficient for

position-aware tasks where the distance of nodes is important (You

et al., 2019).

In contrast with all existing study on graph embedding,

ActiveReach embeds graph nodes in reachability space (rather than

proximity space), where in the embedded space graph nodes reside

in the vicinity of reachable nodes (rather than local nodes) in the

original graph. We demonstrate this by experimentation.

2.3 Index structure learning

Kraska et al. (2018) introduced the idea that traditional index

structures can be improved by learning index structures. The main

idea is to learn the distribution and structure of the data to obtain

a compact index representation. This study demonstrated that

learned models have the potential to provide significant benefits

over traditional index structures. For example, in Mitzenmacher

(2018), it is shown that a Bloom filter can be used as a binary

classifier predicting whether a key exists in a set. In Ortiz et al.

(2018), authors proposed the idea of training a deep learning model

to predict query cardinalities. Instead of using basic traditional

statistics about data distribution to estimate cardinalities, in this

study a model is trained to learn the main properties of the data to

learn sub-query representations used to determine the cardinality

of different types of queries for query planning. To the best of our

knowledge, our study is the first to introduce a learned index for

reachability query processing on graphs.

2.4 Active learning

Active learning is a strategic approach that intelligently selects

specific data points for labeling to optimize model performance.

This method has received extensive attention and study due to

its efficacy in enhancing model accuracy (Settles, 2009). In recent

years, GNNs have become popular in various graph learning tasks,

such as node classification or link prediction, as highlighted in

recent studies (Goyal and Ferrara, 2018). However, a common

challenge arises from the impracticality of labeling all nodes or

edges in many cases, which notably impacts the performance of

GNNs. While active learning has been applied for addressing low

label ratios in various data types such as text and images, adapting

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

it to work effectively with graph-structured data is challenging

(Settles, 2009).

Recently, there has been some research focusing on active

learning in graphs. In Gao et al. (2018) and Cai et al. (2017),

an active learning strategy is introduced for node classification. A

node selection strategy that combines multiple criteria, including

graph structural information and model uncertainty, is introduced.

Another study (Wu Y. et al., 2021) also proposed different selection

criteria and applied a multi-armed bandit method to learn the

weights of the selection metrics dynamically. None of the prior

research has proposed methods for actively selecting informative

pairs of nodes to capture maximum reachability.

3 Problem definition

In this section, we define several concepts, including the

concept of approximate reachability query.

3.1 Exact reachability query

In graph G, a reachability query between pair of vertices (u, v)

returns true to indicate the vertices are reachable if there exists a

path (pu,v) from u to v.

3.2 Transitive closure

Let G = (V ,E) be a graph, where V and E are the set of

vertices and edges, respectively. Matrix A is the reachability matrix

or transitive closure (TC) of G, where if node u can reach node v in

G, then the corresponding element Auv = 1, otherwise Auv = 0.

3.3 Approximate reachability query

Given a graph G, sparsity ratio α, and a pair of nodes (u, v)

in G, approximate reachability query returns the probability that

v is reachable from u. The sparsity ratio α (0 ≤ α ≤ 1) and the

accordingly query budget b (b = α|V|2 distinct pairs of nodes)

are user-defined parameters that determine the number of pair of

nodes to be labeled to enable learning approximate reachability.

With b, user can limit both the memory size and the amount of

time an approximate reachability query processing method can use

to partially pre-compute TC toward learning an index structure to

answer approximate reachability queries on the entire graph G. In

this study, |V|2 is the size of the reachability matrix R of the graph

G. In our implementation, we call the graph generated from the

reachability matrix as reachability grap. We use reachability matrix

and reachability graph interchangeably in the study.

4 Preliminaries

4.1 GCN

Given a graph G = (V ,E) with N nodes vi ∈ V , edges (vi, vj) ∈

E, an adjacency matrix A ∈ RN∗N , a degree matrix Dii =
∑

Aij,

a node feature matrix X ∈ RN∗F , GCN (Kipf and Welling, 2017)

is an efficient variant of convolutional neural networks (CNN),

operates directly on graphs, using their structural data. It can

address the task of node classification within a graph where labels

are only provided for only a limited portion of nodes (semi-

supervised learning). Specifically, the architecture of aggregation is

summarized as

H(l+1) = σ (D̃− 1
2 ÃD̃− 1

2HlW l) (1)

GCN has made two main improvements: A self-connection is

added to each node in the adjacency matrix, and the adjacency

matrix is then normalized based on the degrees.We finally obtained

Ã and D̃. Hl represents the embedding of the nodes in lth layer,W
l

represents the weight matrix for the lth layer, and σ represents the

non-linearity.

4.2 Position-aware embedding

One of the limitations of current GNN architectures is their

inability to encode the positional information of nodes within

the graph structure. This gap is addressed by Position-aware

graph neural networks (P-GNNs). position-aware graph neural

networks (P-GNNs) (You et al., 2019) represent a novel category

of graph neural networks designed to produce node embeddings

by incorporating a node’s distance information relative to all other

nodes in the graph.

This is how P-GNN generates a node’s embedding. P-GNN

initially chooses several node sets known as anchor sets. Next, it

trains a non-linear aggregation method, which utlizes node feature

data from each anchor set and adjusts it based on the distance

between the node and the anchor set. A P-GNN consists of multiple

P-GNN layers. In particular, in the lth P-GNN layer, it begins

by sampling k random anchor sets Si. Every dimension of the

embedding is determined through a process involving three steps:

initially computing the message from each node in the anchor

set using a message computation function F, applying a message

aggregation function, and ultimately subjecting the result to a non-

linear transformation to obtain a scalar, achieved through weights

w and non-linearity σ (You et al., 2019).

5 Baseline solutions

In this section, we outline baseline solutions, including a naive

approach and the adoption of existing reachability processing

methods to provide an approximate version.

• Naive solution: As a naive solution for partial computation of

R with query budget b, one can select b pairs of nodes from

the graph uniformly at random. BFS is then executed between

selected pairs of nodes to compute reachability in the matrix.

This algorithm is referred to as random pair sampling (RP).

• Tree cover: This family of reachability methods uses online

search to answer reachability queries by computing labeling

information to efficiently prune the search space (Yildirim

et al., 2010; Jin et al., 2008; Veloso et al., 2014). One

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

of the representative methods in this category is GRAIL

(Yildirim et al., 2010) which uses min-post labeling directly

on the input graph G. In the experiments, we propose an

approximate solution to select most reachable vertices for

partial computation of R based on the GRAIL approach.

We generate diverse spanning trees which have various

reachability information using multiple DFS traversals with

limited length l. The starting vertex of DFS is selected

randomly. The order of traversal of the children changes

proportional to their sum of indegree and outdegree. We start

DFS traversal within length of l until b elements of matrix R

are computed.

• 2-Hop labeling: As explained in Section 2, hop labeling

methods (Yano et al., 2013; Jin and Wang, 2013; Wei

et al., 2014) utilize intermediary vertices for recursively

encoding reachability. We adopt and adapt this approach

for partial computation of R by executing multiple depth

limited BFS traversals from selected nodes u and compute the

corresponding element in matrix R if reachability to any of its

children v is not computed yet. If vertex v is reachable from a

node whose reachability is already computed, v is pruned.

• Landmark: This family of methods reduces the size of

the original graph by extracting recurrent reachability

information to form a reachability backbone. We select

SCARAB as a representative method from this family (Jin

et al., 2012). To introduce an approximate backbone-based

method, we extract the reachability backbone based on the

concept of vertex cover. The vertex cover of the input graph

G is a set of vertices S, where for each edge (u, v) ∈ E, we

have ({u, v} ∩ S) 6= ∅ (Cheng et al., 2012). A vertex cover S

is called a minimum vertex cover if it is the smallest vertex

cover among all vertex covers of G. To compute b elements

of the reachability matrix R, we first compute a 2-approximate

minimum vertex cover S of the input graph G, and then, we

perform BFS onG to determine reachability between each pair

of vertices u, v ∈ S until b elements of matrix R are computed.

• Forest fire sampling: In Forest Fire sampling (Leskovec et al.,

2005), we enhance the sampling process by prioritizing

vertices with higher degrees, contrasting with the naive

approach of random pair sampling. This method begins

by randomly selecting a vertex v and then probabilistically

including some of its outgoing edges to neighboring nodes.

The number of selected neighbors is chosen from a geometric

distribution with a mean of
pf

(1−pf)
, where pf is called the

burning probability. We adopt this sampling method as

follows. We define the probability for a vertex i to be selected

to be proportional to its Pagerank score (Song et al., 2009) in

the graph and this process continues until the query budget is

exhausted.

6 ActiveReach

Figure 1 depicts our proposed framework for approximate

reachability query processing, dubbed ActiveReach. Transitive

closure of G can be represented as a reachability graph,

where reachability prediction means predicting links between

nodes within this graph. Reachavility graph is constructed

from transitive closure, where if node u can reach node v

in G, then the corresponding element is 1, otherwise 0. The

end-to-end solution works as follows. We begin by partially

populating the reachability graph which allows us to predict

reachability for the entire graph. To compute the reachability

graph partially, given a query budget one can randomly select

pairs of nodes from the original graph to calculate reachability

(baseline solution). After computing partial reachability graph, we

can then use graph embedding techniques to learn the embedding

of the nodes in the partial reachability graph, which we call

“reachability embedding.” Finally, we can use link prediction

methods to predict reachability for the remaining portion of

the graph.

However, the baseline solution described above has two issues.

First, the reachability graph only provides connectivity data, lacking

sufficient information for reachability learning. In particular, the

reachability graph does not have information about node attributes

in the original graph, not about placement of the nodes in

the original graph, both of which are important for accurate

reachability estimation.

For example, in social networks, as demonstrated in Grover

and Leskovec (2016), nodes with similar attributes show a higher

probability of reachability due to homophily. Moreover, there

is likely a decrease in the probability of reachability as the

distance between nodes increases in the original graph. To this

end, in Phase 1 of our proposed solution, we enhance the

reachability graph by incorporating nodes’ attributes and positional

information as shown in Figure 1a. Second, random selection of

the pairs of nodes to generate the partial reachability graph is

not an effective sampling approach to inform the link prediction

methods that predict the reachability during the query time.

Instead, in the second phase of ActiveReach, we propose an

active learning solution to intelligently select the most informative

pairs of nodes to capture maximum amount of reachability

information from the selected pairs to best inform prediction of

the links in the reachability graph during query time, as illustrated

in Figure 1b.

To further elaborate, with ActiveReach, we learn reachability

indexes in two phases. First, given an attributed graph G, we apply

P-GNN to learn node embedding utilizing node’s attributes and

positional information in G as shown in Figure 1a. The generated

embedding is used as the node’s attributes in the reachability

graph. Second, starting from a reachability graph with new node’s

attributes and small set of initial labeled pair of nodes, we apply

a graph embedding (GCN) to learn reachability. In each iteration,

we leverage active learning to select informative pair of nodes

to calculate reachability if the query budget is not reached as

shown in Figure 1b. With ActiveReach not only we can learn an

index to predict approximate reachability between pairs of query

nodes but also generate a reachability embedding space where each

node in G is represented by a vector in the embedded space. The

reachability embedding space can be used for other downstream

learning tasks beyond approximate reachability query processing.

In general, we collect our training set (based on the query budget)

in the active learning manner and learn reachability. During online

query processing, we return the probability of reachability for a

given pair of nodes. Next, we explain each phase in detail.

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

FIGURE 1

ActiveReach overview: (a) Attributed graph as input and generating reachability aware embedding using position-aware embedding. Here, the

vectors correspond to the original nodes’ attributes. (b) Reachability graph utilizes GCN to predict reachability and leveraging active learning to select

informative pairs of nodes to generate the partial reachability graph. The vectors assigned to nodes here represent the new attributes generated from

the position-aware embedding.

6.1 Reachability aware attributes

The reachability graph, derived from the reachability matrix,

lacks sufficient information on its own. Reachability graph is not

aware of nodes’ attributes and positional data. Since reachability

computation requires positional awareness, employing structure-

aware GNNs proves inefficient for this task. To improve this, we

utilize P-GNN to enrich nodes in the reachability graph with new

attributes preserving their positional information in the original

attributed graph G. In the first phase, P-GNN combines both

node attributes and positional data to generate reachability-aware

embedding for each node to enhance reachability learning in the

second phase.

6.2 Active learning strategy

To compute reachability matrix given query budget b, we need

to select b pairs of nodes to calculate reachability and generate

a training data set. Since computing reachability is time and

memory expensive, we propose an active learning strategy to

intelligently choose the pairs of nodes to label them to capture

maximum reachability information from the graph with a fixed

query budget b shown in Figure 1b. The more informative pair of

nodes selected, the higher the accuracy of the generated reachability

index in approximate reachability query answering. To compute

reachability and label pair of nodes, we use BFS as simplicity.

Any reachability computation method suitable for a given graph

structure can be used in this step.

6.2.1 Model prediction uncertainty
In this study, we explore uncertainty, a widely adopted

technique in active learning literature. By employing uncertainty

metrics, we can select pairs of nodes where our classification model

shows the highest uncertainty. Entropy calculates a measure of

TABLE 2 Statistics on real datasets.

Datasets Nodes Edges Avg degree Features

Cora 19,793 126,842 6.4 1,433

PubMed 19,717 88,648 4.4 500

Flicker 89,250 899,756 10 500

Yelp 716,847 13,954,819 19.4 300

Reddit 232,965 114,618,780 492 602

DBpedia 8,099,955 71,527,515 8.8 15

uncertainty in predicting reachability for node pairs vi and vj.

Information entropy is calculated as follows:

entropy(vi, vj) =
C∑

c=1

P(Yijc = 1)log(P(Yijc = 1)) (2)

where P(Yijc = 1) is the probability of path vi, vj belonging to class c

predicted by path prediction. The larger value for entropy indicates

our model is more uncertain about reachability of vj from vi.

6.2.2 Embedded space information
One challenge to select the most informative pairs of nodes

only based on the model uncertainty is that we might find

noises and outliers which are not representative. Using uncertainty

metrics may lead us to explore unrepresentative regions of the

graph. Here, we introduce a selection measurement based on

the reachability embedding space. This parameter selects pairs

of nodes which are most representative in the embedded space.

Information density is higher in the dense regions of embedded

space. Computing reachability between nodes from each dense

region has reachability information from parts of graphs with

different reachability patterns. To this end, we first apply K-means

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

FIGURE 2

Reachability prediction performance (F1).

on the embeddings of all unlabeled nodes and second calculate the

Euclidean distance between each node of the cluster and the cluster

center. The pairs of nodes closer to the center of their clusters are

selected. Here, we show how we calculate distance of node vi to the

center of embedding cluster (CC).

distance(vi) =
1

1+ Euc(embedvi ,CCvi)
(3)

density(vi, vj) = distance(vi)+ distance(vj) (4)

where Euc() is the Euclidean distance, embedvi is the embedding of

node vi and CCvi is the center of the cluster that vi belongs to. After

the computation of node distances to their respective clusters in the

embedded space, we select pairs of nodes vi and vj characterized by

the highest distance sum.

6.2.3 Graph structure
To select nodes which are most informative in terms of

reachability in graph, we select the pairs of nodes based on their

importance based on the graph structure. For instance, reachability

between nodes locate on multiple shortest paths is very critical. The

graphical structure is then calculated to measure representativeness

for unlabeled pair of nodes. There are various metrics in the

literature (Song et al., 2009) measuring the importance of nodes

(e.g., degree, PageRank, closeness, and betweenness centrality). In

this study, we use betweenness of nodes to show how they are

important in the graph. Betweenness centrality (Kintali, 2008) of

a node vi is the number of the shortest paths that vi is part of.

betweenness(vi) =
σvi

σ
(5)

centrality(vi, vj) = betweenness(vi)+ betweenness(vj) (6)

where σvi is the number of shortest paths vi belongs to, and σ is all

the shortest paths. After computing betweenness, we select pairs of

nodes vi and vj characterized by the highest betweenness sum.

6.2.4 Combination of di�erent criteria
To have a fair comparison between different selection criteria

and make scores comparable, we need to normalize scores. To this

end, we convert them into percentiles as in Zhang et al. (2016).

Denote Percentile (u,v) as the percentile of pair of nodes in terms

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

FIGURE 3

Index construction time.

of each metric. We define the selection criteria to select the pair of

nodes for labeling as follows:

α ∗ Pentoropy + β ∗ Pdensity + γ ∗ Pcentrality (7)

where α + β + γ = 1.

6.2.5 Complexity analysis
Using position-aware embedding in phase 1, typically each

anchor set contains m nodes, therefore there are O(mnlog2n)

message communications because every node communicates with

O(log2n) anchor sets in a graph with n nodes and e edges. Based on

the You et al. (2019), for each anchor set, we only aggregate message

from the node closest to a given node v which eliminates the factor

m in the complexity of position-aware embedding, reducing the

complexity to O(nlog2n) (You et al., 2019). In phase 2, the number

of communications is O(ne) for the graph embedding. K-means

time complexity is O(n2). The overall complexity is O(ne).

7 Experimental evaluation

In this section, we will first present our experimental

methodology, and then, we will review our experimental results

focusing on reachability prediction performance, ablation study,

and parameter sensitivity analysis for the proposed solution.

7.1 Datasets

We performed our experiments using both real and synthetic

datasets. Specifications of the selected real datasets are illustrated in

Table 2.

• Cora This dataset is a citation graph (Sen et al., 2008). Each

document is represented as a node, and if one document cites

another, there is a citation between them. A bag-of-words

embedding for each document is used as a feature set.

• Pubmed This dataset is also a citation graph (Sen et al., 2008),

where each citation link between documents is represented

as an edge. Each document in the graph is equipped with a

bag-of-words embedding, serving as its node features.

• Flicker In the Flickr dataset (Zeng et al., 2020), each node

corresponds to a user, while an edge denotes a follow

relationship between two users. Node features are derived

from the 500 most common tags associated with their photos.

• Yelp dataset denotes an active user on Yelp (Zeng et al., 2020),

where edges between nodes indicate friendship relationships.

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

FIGURE 4

Index size.

Node features have details from user reviews. Utilizing

word2vec (Mikolov et al., 2013), the reviews are transformed

into 300-dimensional vectors and used as node features.

• Reddit Reddit1 In this graph, nodes represent posts from

users, and an edge is assigned between two nodes if the

corresponding users have posts on the same topic. This data is

from Reddit posts in September 2014. The embedding of the

post title, the score of the posts, and the number of comments

on each post are combined and used as features for each node.

• DBpedia For DBpedia,2 each vertex represents an entity, and

each edge denotes a relationship between two entities. The

keywords of each entity are embedded and used as features.

7.2 Query budget b

We choose the query budget b between 5% to 30% of |V2| for

a given dataset. With smaller values of b, the performance of the

algorithms will be lower.

1 Available at: http://snap.stanford.edu/graphsage/ (accessed December

2017).

2 Available at: https://www.dbpedia.org/ (accessed December 2016).

7.3 Alternative solutions

We evaluate performance of ActiveReach comparing with

representative index-based solutions from the related study (Zhang

et al., 2023). We discussed the adapted version of traditional

index-based solutions in Section 5. We use index-based solutions

to complete reachability matrix given a query budget b. We

then apply GCN (Ying et al., 2018) on the reachabity graph to

generate embeddings. Here, we explain the parameters we used for

baseline solutions.

• Tree cover: We use fast online search (GRAIL) with random

selection of starting nodes and DFS length l = 40.

• 2-Hop labeling: We use 2-hop labeling with random selection

of starting nodes and BFS length of l = 20.

7.4 Reachability prediction performance

To evaluate the performance of ActiveReach, first we measure

reachability prediction performance. For GCN, we follow the

experimental setup used in state-of-the-art semi-supervised graph

embedding methods (Ying et al., 2018). The number of initially

labeled pairs of nodes is set as 40, as used in Ying et al. (2018).

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
http://snap.stanford.edu/graphsage/
https://www.dbpedia.org/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

FIGURE 5

Di�erent active learning strategies.

FIGURE 6

Position-aware embedding and attributes.

We used the setups from You et al. (2019) to implement position-

aware embedding for the attributed graphs. In particular, after

generating embeddings, we learn a classifier that can receive the

embedded vectors of two nodes and predict the existence of a path

between them in the original graph. The probability of reachability

is generated by our classifier. To achieve this, after learning the

reachability embedding of vertices, given two nodes u and v, we

predict the existence of a path between them (pathu,v) by learning

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

TABLE 3 Statistics on synthetic datasets.

Datasets Nodes Edges Avg Dag

rand10m 10M 20M 2

rand10m 10M 50M 5

rand10m 10M 100M 10

a classifier f (x), where x is the set of features for pathu,v. We use

Hadamard (Grover and Leskovec, 2016) as a binary operator for

concatenating the embedding vectors. Random Forest with 100

trees and a maximum depth of 10 is used as the classifier. We

consider threshold of 0.5 for our binary classifier. BFS is used

to compute reachability for the pair of nodes selected from the

active learning strategy. Note that each method is executed 100

times, and average result is reported. In this experiment, we show

how increasing the query budget impacts reachability accuracy.

Figure 2 illustrates the results for each dataset. We do not show

results for the Pubmed dataset because its results are similar to

those of the Cora dataset. From the figure, ActiveReach shows

the best performance across all datasets, especially for the Cora

dataset, which has a very large number of attributes per node. For

the Reddit dataset which has a very high average degree (dense

dataset), ActiveReach performs very well. This is because in dense

datasets, most nodes have access to distant nodes due to the

high average degree, increasing the chance to learn reachability

information from neighbors. From the Figure, we also observe

that tree cover (GRAIL) has the best performance among index-

based and sampling solutions and it does so with a small DFS

length. GRAIL does not work well for the Cora data set which

is sparse. Overall, 2-hop labeling does not perform well because

it uses its query budget mostly traversing a local neighborhood

especially for dense datasets. In addition, Baseline, Landmark,

and ForestFire are among the worst performing methods to

capture reachability information with all datasets. Landmark only

computes reachability between minimum vertex covers and graph

embedding cannot predict the reachability of pairs of nodes with

limited neighborhood information. In addition, Forest Fire is

not able to capture enough reachability information from nodes

located far apart in the input graph, especially in sparse graphs.

Overall, ActiveReach which utilizes nodes’ attributes, position-

aware embedding, and active learning strategy performs better.

ActiveReach uses its budget to cover representative nodes from

various parts of the graph while capturing enough local reachability

information. This demonstrates that both local and global graph

structure as well as nodes’ attributes are essential to characterize the

graph reachability, as expected.

In addition, we compare the time it takes for each method to

partially compute matrix R. Figure 3 shows that ActiveReach takes

more time due to the position-aware embedding and active learning

strategy. From index-based solutions, tree cover (GRAIL) takes

longer to compute R especially in dense graphs. Landmark and

Forest Fire spend longer to compute the matrix for sparse datasets

in comparison with dense datasets. It is worth noting that the query

time, or inference time, is minimal and remains unaffected by the

query budget.

We also evaluate memory consumption during execution of

these methods; the results of this experiment are shown in Figure 4.

Tree cover (GRAIL), 2-hop labeling, and Landmark have larger

memory footprints compared to other methods. For instance,

creating multiple tree-cover in GRAIL and minimum vertex-cover

in Landmark, which are both time and memory consuming, are at

the core of these algorithms.

7.5 Active learning performance

As mentioned before, ActiveReach intelligently selects

representative pairs of nodes to complete the reachability matrix.

We consider different combinations of active learning strategies

as shown in Figure 5 while fixing the query budget at 0.05%|V2|.

As illustrated in the figure, we cannot preserve enough reachability

information with only using graph structural information.

Structural information works well only for dense graphs such

as Reddit and DBpedia datasets. With utilizing embedded

information especially for sparse graphs (Cora), better results are

achieved. The reason is that in sparse graphs such as Cora, nodes’

attributes and position information from nodes apart from each

other are very important to learn reachability which are captured

from the embedding strategy. In datasets with a small number

of attributes such as DBpedia, the embedding strategy has less

impact in comparison with the structural strategy. In addition,

it is worth mentioning that depending on the graph structure,

active learning strategies can vary significantly. For instance, the

choice of clustering method is crucial in sparse graphs, while

computing betweenness centrality can be challenging in dense

graphs. ActiveReach offers flexibility for users to choose the

optimal query budget and active learning strategy according to the

specific application and characteristics of the input data.

In Figure 6, we show the impact of node’s attributes

and position-aware embedding on the reachability

prediction performance.

The figure illustrates that our method does not work well

without nodes’ attributes especially for sparse graphs such as Cora.

Nodes’ attributes preserve similarity for distant nodes which is

hard to capture their reachability information in sparse graphs.

However, the impact of nodes’ attributes is less for dense graphs

such as Reddit. In addition, position-aware embedding preserves

distance of nodes and this information is essential for graphs

with large diameter such as DBpedia. Leveraging position-aware

embeddings works very well for community graphs such as Reddit

which reachable nodes are closer to each other. Adding attributes

works best for citation networks that encode keyword embeddings

as a similarity measure to preserve reachability.

7.6 Parameter sensitivity study

With our next experiment, we evaluated the impact of the data

parameters and method parameters. For this experiment, we use

the synthetic dataset explained in Table 3 to have more control on

the graph structure.

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

FIGURE 7

Parameter sensitivity: (a) accuracy vs. graph density, (b) accuracy vs. dimension, and (c) accuracy vs. threshold.

FIGURE 8

Parameter sensitivity: (a) Impact of graph structure for sparse graph. (b) Impact of graph structure for medium dense graph. (c) Impact of graph

structure for very dense graph.

Figure 7 illustrates how changing (Figure 7a) graph density

and (Figure 7b) number of dimensions of the embedding space

affects the accuracy. We fix the query budget at 0.05%|V2| and use

RandomForest with 100 trees and a max depth of 10. In Figure 7a,

we show how performance changes for datasets with different

densities. As most of the query budget is used for local traversal

in dense datasets, with smaller query budgets path prediction

accuracy is higher in comparison with sparse datasets. We also

observe that with larger query budgets, accuracy is higher for

sparse dataset. In Figure 7b, we also observe that performance

tends to saturate once the number of dimensions of the embedded

space reaches approximately 128. In Figure 7c, we also show that

how changing the prediction threshold or confidence and query

budget impact the accuracy. This figure shows that by increasing

the threshold and decreasing the query budget, F1 decreases.

Prediction threshold or confidence can be defined as a user-defined

parameter. Obviously as the user-defined threshold increases, the

performance bar is higher for our solution and the F1 score will

decrease. We also show that the notion of the query budget is

orthogonal to the concept of prediction confidence. While the

prediction confidence is generated at the inference time (online),

the query budget determines the time the user would like to invest

in construction of the index (off line). Of course, the larger the

query budget and the investment, the higher prediction confidence

is expected. The threshold can be adjusted depending on the

application’s sensitivity to reachability predictions. For example, in

applications such as influence maximization, lower confidence may

be acceptable, while virus propagation detection requires higher

confidence levels.

We also examine how different graph structures affect the

performance of path prediction. As illustrated in Figure 8a, in

sparse graphs, pagerank and betweenness preserve reachability

better than degree. The reason is that with small average degree,

the neighbor reachability information is not enough. As the density

increases (Figure 8b) the impact of node betweenness is higher than

pagerank. However, in very dense graphs as illustrated in Figure 8c,

node degree shows the importance of nodes and can preserve

reachability information similar to pagerank.

8 Conclusion and future work

In this study, we introduced ActiveReach, an approximate

reachability query processing method. With our proposed

method, we learn an index structure to answer approximate

reachability queries by partially precomputing reachability

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

information represented by the sparse transitive closure of the

input graph. ActiveReach leverages position-aware embedding

and nodes’ attributes to preserve reachability and intelligently

selects pair of nodes to label during training. Our experimental

results demonstrate the efficacy and efficiency of ActiveReach in

answering approximate reachability queries in real large graphs

with limited resources (time and memory). In the future, we

plan to extend our proposed framework to process various

types of reachability queries including reachability search and

top-k reachability.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

ZR: Conceptualization, Investigation, Writing – original draft,

Writing – review & editing. FB-K: Conceptualization, Writing –

original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. We

appreciate the funding support received from the Department of

Education under the GAANN P200A180007 project, that enabled

this research.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Agrawal, R., Borgida, A., and Jagadish, H. V. (1989). Efficient management of
transitive relationships in large data and knowledge bases. SIGMOD Rec. 18, 253–262.
doi: 10.1145/66926.66950

Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X. (2006). “Group formation
in large social networks: Membership, growth, and evolution,” in Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06 (New York, NY, USA: Association for ComputingMachinery), 44–54.
doi: 10.1145/1150402.1150412

Belkin, M., and Niyogi, P. (2001). “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Proceedings of the 14th International Conference on
Neural Information Processing Systems: Natural and Synthetic, NIPS’01 (Cambridge,
MA, USA: MIT Press), 585–591. doi: 10.7551/mitpress/1120.003.0080

Bramandia, R., Choi, B., and Ng, W. K. (2008). “On incremental maintenance
of 2-hop labeling of graphs,” in Proceedings of the 17th International Conference
on World Wide Web, WWW ’08 (New York, NY, USA: ACM), 845–854.
doi: 10.1145/1367497.1367611

Cai, H., Zheng, V. W., and Chang, K. C.-C. (2017). Active learning for graph
embedding. arXiv preprint arXiv:1705.05085.

Chen, Y. (2009). “General spanning trees and reachability query evaluation,”
in Proceedings of the 2Nd Canadian Conference on Computer Science and
Software Engineering, C3S2E ’09 (New York, NY, USA: ACM), 243–252.
doi: 10.1145/1557626.1557665

Cheng, J., Shang, Z., Cheng, H., Wang, H., and Yu, J. (2012). “K-reach:
who is in your small world,” in Proceedings of the VLDB Endowment, 5.
doi: 10.14778/2350229.2350247

Cheng, Y., Yuan, Y., Chen, L., and Wang, G. (2015). “The reachability query
over distributed uncertain graphs,” in 2015 IEEE 35th International Conference on
Distributed Computing Systems, 786–787. doi: 10.1109/ICDCS.2015.109

Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. (2002). “Reachability and
distance queries via 2-hop labels,” in Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’02 (Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics), 937–946.

Gao, L., Yang, H., Zhou, C.,Wu, J., Pan, S., andHu, Y. (2018). “Active discriminative
network representation learning,” in Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18 (International Joint Conferences
on Artificial Intelligence Organization), 2142–2148. doi: 10.24963/ijcai.2018/296

Ghosh, J., Ngo, H. Q., Yoon, S., and Qiao, C. (2007). “On a routing problem within
probabilistic graphs and its application to intermittently connected networks,” in IEEE

INFOCOM 2007 - 26th IEEE International Conference on Computer Communications,
1721–1729. doi: 10.1109/INFCOM.2007.201

Goyal, P., and Ferrara, E. (2018). Graph embedding techniques,
applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94.
doi: 10.1016/j.knosys.2018.03.022

Grover, A., and Leskovec, J. (2016). “Node2vec: scalable feature learning for
networks,” in Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery andDataMining, KDD ’16 (NewYork, NY, USA: ACM), 855–864.
doi: 10.1145/2939672.2939754

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing Systems, 30.

Iyer, A. P., Liu, Z., Jin, X., Venkataraman, S., Braverman, V., and Stoica, I. (2018a).
“Asap: fast, approximate graph pattern mining at scale,” in OSDI’18 (USA: USENIX
Association), 745–761.

Iyer, A. P., Panda, A., Venkataraman, S., Chowdhury, M., Akella, A., Shenker, S.,
et al. (2018b). “Bridging the gap: towards approximate graph analytics,” in GRADES-
NDA’18 (New York, NY, USA: Association for Computing Machinery), 745–761.
doi: 10.1145/3210259.3210269

Jagadish, H. V. (1990). A compression technique to materialize transitive closure.
ACM Trans. Datab. Syst. 15, 558–598. doi: 10.1145/99935.99944

Jin, R., Liu, L., Ding, B., and Wang, H. (2011). Distance-constraint
reachability computation in uncertain graphs. Proc. VLDB Endow. 4, 551–562.
doi: 10.14778/2002938.2002941

Jin, R., Ruan, N., Dey, S., and Xu, J. Y. (2012). “Scarab: Scaling reachability
computation on large graphs,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12 (New York, NY,
USA: Association for Computing Machinery), 169–180. doi: 10.1145/2213836.
2213856

Jin, R., and Wang, G. (2013). Simple, fast, and scalable reachability oracle. CoRR,
abs/1305.0502.

Jin, R., Xiang, Y., Ruan, N., and Fuhry, D. (2009). “3hopp: a high-
compression indexing scheme for reachability query,” in Proceedings of the
2009 ACM SIGMOD International Conference on Management of Data,
SIGMOD’09 (New York, NY, USA: ACM), 813–826. doi: 10.1145/1559845.
1559930

Jin, R., Xiang, Y., Ruan, N., andWang, H. (2008). “Efficiently answering reachability
queries on very large directed graphs,” in Proceedings of the 2008 ACM SIGMOD

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://doi.org/10.1145/66926.66950
https://doi.org/10.1145/1150402.1150412
https://doi.org/10.7551/mitpress/1120.003.0080
https://doi.org/10.1145/1367497.1367611
https://doi.org/10.1145/1557626.1557665
https://doi.org/10.14778/2350229.2350247
https://doi.org/10.1109/ICDCS.2015.109
https://doi.org/10.24963/ijcai.2018/296
https://doi.org/10.1109/INFCOM.2007.201
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/3210259.3210269
https://doi.org/10.1145/99935.99944
https://doi.org/10.14778/2002938.2002941
https://doi.org/10.1145/2213836.2213856
https://doi.org/10.1145/1559845.1559930
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Raghebi and Banaei-Kashani 10.3389/fdata.2024.1427104

International Conference on Management of Data, SIGMOD ’08 (New York, NY, USA:
ACM), 595–608. doi: 10.1145/1376616.1376677

Katz, L. (1953). A new status index derived from sociometric analysis.
Psychometrika 18, 39–43. doi: 10.1007/BF02289026

Kempe, D., Kleinberg, J., and Tardos, E. (2003). “Maximizing the spread of influence
through a social network,” in Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’03 (New York, NY, USA:
Association for Computing Machinery), 137–146. doi: 10.1145/956755.956769

Kintali, S. (2008). Betweenness centrality: algorithms and lower bounds. CoRR,
abs/0809.1906.

Kipf, T. N., and Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis, N. (2018). “The case
for learned index structures,” in Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18 (New York, NY, USA: Association for Computing
Machinery), 489–504. doi: 10.1145/3183713.3196909

Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005). “Graphs over time: densification
laws, shrinking diameters and possible explanations,” in Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD
’05 (New York, NY, USA: ACM), 177–187. doi: 10.1145/1081870.1081893

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. (2013). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 3781.

Mitzenmacher, M. (2018). “A model for learned bloom filters and optimizing
by sandwiching,” in Advances in Neural Information Processing Systems (Curran
Associates, Inc.), 464–473. doi: 10.1007/978-1-4614-8265-9_751

Mu noz González, L., Sgandurra, D., Paudice, A., and Lupu, E. C. (2017). Efficient
attack graph analysis through approximate inference.ACMTrans. Priv. Secur. 20, 1–30.
doi: 10.1145/3105760

Ortiz, J., Balazinska, M., Gehrke, J., and Keerthi, S. S. (2018). “Learning
state representations for query optimization with deep reinforcement learning,” in
Proceedings of the Second Workshop on Data Management for End-To-End Machine
Learning, DEEM’18 (New York, NY, USA: Association for Computing Machinery).
doi: 10.1145/3209889.3209890

Ou, M., Cui, P., Pei, J., Zhang, Z., and Zhu, W. (2016). “Asymmetric transitivity
preserving graph embedding,” in Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD’16 (New York, NY, USA:
ACM), 1105–1114. doi: 10.1145/2939672.2939751

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “Deepwalk: Online learning of social
representations,” in Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery andDataMining, KDD ’14 (NewYork, NY, USA: ACM), 701–710.
doi: 10.1145/2623330.2623732

Raghebi, Z., and Banaei-Kashani, F. (2018). “Efficient processing of probabilistic
single and batch reachability queries in large and evolving spatiotemporal contact
networks,” in 2018 IEEE International Conference on Big Data (Big Data), 556–561.
doi: 10.1109/BigData.2018.8622578

Roweis, S. T., and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. Science 290, 2323–2326. doi: 10.1126/science.290.5500.2323

Schenkel, R., Theobald, A., and Weikum, G. (2005). “Efficient creation and
incremental maintenance of the hopi index for complex xml document collections,”
in 21st International Conference on Data Engineering (ICDE’05), 360–371.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-
Rad, T. (2008). Collective classification in network data. AI Magazine 29:93.
doi: 10.1609/aimag.v29i3.2157

Sengupta, N., Bagchi, A., Ramanath, M., and Bedathur, S. (2019). “Arrow:
approximating reachability using random walks over web-scale graphs,” in
2019 IEEE 35th International Conference on Data Engineering (ICDE), 470–481.
doi: 10.1109/ICDE.2019.00049

Settles, B. (2009). Active learning literature survey. Technical Report.

Seufert, S., Anand, A., Bedathur, S., and Weikum, G. (2013). “Ferrari:
flexible and efficient reachability range assignment for graph indexing,” in 2013
IEEE 29th International Conference on Data Engineering (ICDE), 1009–1020.
doi: 10.1109/ICDE.2013.6544893

Shirani-Mehr, H., Banaei-Kashani, F., and Shahabi, C. (2012). Efficient reachability
query evaluation in large spatiotemporal contact datasets. Proc. VLDB Endow. 5,
848–859. doi: 10.14778/2311906.2311912

Song, H. H., Cho, T.W., Dave, V., Zhang, Y., andQiu, L. (2009). “Scalable proximity
estimation and link prediction in online social networks,” in Proceedings of the 9th

ACM SIGCOMM Conference on Internet Measurement, IMC ’09 (New York, NY, USA:
Association for Computing Machinery), 322–335. doi: 10.1145/1644893.1644932

Su, J., Zhu, Q., Wei, H., and Yu, J. X. (2017). Reachability querying: can it be even
faster? IEEE Trans. Knowl. Data Eng. 29, 683–697. doi: 10.1109/TKDE.2016.2631160

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., andMei, Q. (2015). “Line: large-scale
information network embedding,” in Proceedings of the 24th International Conference
on World Wide Web (ACM). doi: 10.1145/2736277.2741093

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global
geometric framework for nonlinear dimensionality reduction. Science 290:2319.
doi: 10.1126/science.290.5500.2319

Tri-ssl, S., and Leser, U. (2007). “Fast and practical indexing and querying of very
large graphs,” in Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’07 (New York, NY, USA: ACM), 845–856.
doi: 10.1145/1247480.1247573

van Schaik, S. J., and de Moor, O. (2011). “A memory efficient reachability data
structure through bit vector compression,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’11 (New York, NY, USA:
ACM), 913–924. doi: 10.1145/1989323.1989419

Velic̆ković, P., Cucurull, G., Casanova, A., Romero, A., Lió, P., and Bengio, Y.
(2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

Veloso, R. R., Cerf, L., Meira, W., and Zaki, M. J. (2014). “Reachability queries in
very large graphs: A fast refined online search approach,” in EDBT.

Wang, H., He, H., Yang, J., Yu, P. S., and Yu, J. X. (2006). “Dual labeling: answering
graph reachability queries in constant time,” in 22nd International Conference on Data
Engineering (ICDE’06), 75–75. doi: 10.1109/ICDE.2006.53

Wei, H., Yu, J. X., Lu, C., and Jin, R. (2014). Reachability querying: an
independent permutation labeling approach. Proc. VLDB Endow. 7, 1191–1202.
doi: 10.14778/2732977.2732992

Wu, Y., Xu, Y., Singh, A., Yang, Y., and Dubrawski, A. (2021). Active learning for
graph neural networks via node feature propagation. arXiv preprint arXiv:1910.07567.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021). A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Lear. Syst. 32, 4–24.
doi: 10.1109/TNNLS.2020.2978386

Yano, Y., Akiba, T., Iwata, Y., and Yoshida, Y. (2013). “Fast and scalable reachability
queries on graphs by pruned labeling with landmarks and paths,” in Proceedings of
the 22nd ACM International Conference on Information and Knowledge Management,
CIKM ’13 (New York, NY, USA: Association for Computing Machinery), 1601–1606.
doi: 10.1145/2505515.2505724

Yildirim, H., Chaoji, V., and Zaki, M. J. (2010). Grail: Scalable reachability index for
large graphs. Proc. VLDB Endow. 3, 276–284. doi: 10.14778/1920841.1920879

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J.
(2018). “Graph convolutional neural networks for web-scale recommender systems,” in
Proceedings of the 24th ACMSIGKDD International Conference on Knowledge Discovery
Data Mining (ACM). doi: 10.1145/3219819.3219890

You, J., Ying, R., and Leskovec, J. (2019). “Position-aware graph neural networks,”
in International Conference on Machine Learning.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V. (2020). Graphsaint:
graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931.

Zhang, C., Bonifati, A., andÖzsu,M. T. (2023). “An overview of reachability indexes
on graphs,” inCompanion of the 2023 International Conference onManagement of Data,
SIGMOD ’23 (New York, NY, USA: Association for Computing Machinery), 61–68.
doi: 10.1145/3555041.3589408

Zhang, S., Yang, J., and Cheedella, V. (2007). “Monkey: approximate graph mining
based on spanning trees,” in 2007 IEEE 23rd International Conference on Data
Engineering, 1247–1249. doi: 10.1109/ICDE.2007.368984

Zhang, Y., Lease, M., and Wallace, B. C. (2016). “Active discriminative text
representation learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence. doi: 10.1609/aaai.v31i1.10962

Zhao, X., Sala, A., Zheng, H., and Zhao, B. Y. (2011). Fast and scalable analysis of
massive social graphs. arXiv preprint arXiv:1107.5114.

Zhou, J., Zhou, S., Yu, J. X., Wei, H., Chen, Z., and Tang, X. (2017). “Dag reduction:
fast answering reachability queries,” in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17 (New York, NY, USA: ACM),
375–390. doi: 10.1145/3035918.3035927

Zhu, R., Zou, Z., and Li, J. (2017). Towards efficient top-k reliability search on
uncertain graphs. Knowl. Inf. Syst. 50, 723–750. doi: 10.1007/s10115-016-0961-9

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2024.1427104
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1007/BF02289026
https://doi.org/10.1145/956755.956769
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1007/978-1-4614-8265-9_751
https://doi.org/10.1145/3105760
https://doi.org/10.1145/3209889.3209890
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1109/BigData.2018.8622578
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1109/ICDE.2019.00049
https://doi.org/10.1109/ICDE.2013.6544893
https://doi.org/10.14778/2311906.2311912
https://doi.org/10.1145/1644893.1644932
https://doi.org/10.1109/TKDE.2016.2631160
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1145/1989323.1989419
https://doi.org/10.1109/ICDE.2006.53
https://doi.org/10.14778/2732977.2732992
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1145/2505515.2505724
https://doi.org/10.14778/1920841.1920879
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3555041.3589408
https://doi.org/10.1109/ICDE.2007.368984
https://doi.org/10.1609/aaai.v31i1.10962
https://doi.org/10.1145/3035918.3035927
https://doi.org/10.1007/s10115-016-0961-9
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	ActiveReach: an active learning framework for approximate reachability query answering in large-scale graphs
	1 Introduction
	1.1 Applications

	2 Related work
	2.1 Reachability query processing
	2.1.1 Interval labeling
	2.1.2 HOP labeling
	2.1.3 Fast online search
	2.1.4 Reachability backbone

	2.2 Graph embedding
	2.3 Index structure learning
	2.4 Active learning

	3 Problem definition
	3.1 Exact reachability query
	3.2 Transitive closure
	3.3 Approximate reachability query

	4 Preliminaries
	4.1 GCN
	4.2 Position-aware embedding

	5 Baseline solutions
	6 ActiveReach
	6.1 Reachability aware attributes
	6.2 Active learning strategy
	6.2.1 Model prediction uncertainty
	6.2.2 Embedded space information
	6.2.3 Graph structure
	6.2.4 Combination of different criteria
	6.2.5 Complexity analysis

	7 Experimental evaluation
	7.1 Datasets
	7.2 Query budget b
	7.3 Alternative solutions
	7.4 Reachability prediction performance
	7.5 Active learning performance
	7.6 Parameter sensitivity study

	8 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

