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Introduction: Ambient acoustic detection and localization play a vital role

in identifying events and their origins from acoustic data. This study aimed

to establish a comprehensive framework for classifying activities in home

environments to detect emergency events and transmit emergency signals.

Localization enhances the detection of the acoustic event’s location, thereby

improving the e�ectiveness of emergency services, situational awareness, and

response times.

Methods: Acoustic data were collected from a home environment using six

strategically placed microphones in a bedroom, kitchen, restroom, and corridor.

A total of 512 audio samples were recorded from 11 activities. Background

noise was eliminated using a filtering technique. State-of-the-art features were

extracted from the time domain, frequency domain, time frequency domain,

and cepstral domain to develop e�cient detection and localization frameworks.

Random forest and linear discriminant analysis classifiers were employed for

event detection, while the estimation signal parameters through rational-in-

variance techniques (ESPRIT) algorithm was used for sound source localization.

Results: The study achieved high detection accuracy, with random forest

and linear discriminant analysis classifiers attaining 95% and 87%, respectively,

for event detection. For sound source localization, the proposed framework

demonstrated significant performance, with an error rate of 3.61, amean squared

error (MSE) of 14.98, and a root mean squared error (RMSE) of 3.87.

Discussion: The integration of detection and localization models facilitated the

identification of emergency activities and the transmission of notifications via

electronic mail. The results highlight the potential of the proposed methodology

to develop a real-time emergency alert system for domestic environments.

KEYWORDS

ambient acoustic analysis, sound event detection, autonomous monitoring, machine

learning, deep learning, ESPRIT, sound source localization
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1 Introduction

Smart home technology has transformed our living

environments into more secure, convenient, and comfortable

spaces. By integrating advanced monitoring and automation

systems, these technologies detect and respond to external stimuli,

particularly auditory signals. Through acoustic event detection

and sound localization, smart homes can autonomously monitor

activities, identify specific events, and pinpoint sound sources.

This functionality enhances security by detecting potential threats,

such as intrusions or fires, while also improving convenience by

recognizing doorbells, alarms, and voice commands. Furthermore,

by mapping and interpreting the acoustic environment, smart

homes can dynamically adjust their responses to meet the unique

needs of their occupants (Ni et al., 2015).

Detection of sound events in dynamic environments poses

considerable challenges due to the presence of background

noise from sources such as music, conversations, and electrical

appliances, which can obscure target auditory signals (Mesaros

et al., 2021). To improve the clarity of auditory signals, Pre-

processing techniques are employed, including filtering out

extraneous noise and segmenting the signal to ensure adequate

representation of all event types.

Recent studies have leveraged machine learning methods to

analyze infrequent yet critical events, such as fire alarms and

security breaches (Yang et al., 2022; Kim and Jung, 2023). These

investigations utilize a range of acoustic features derived from

time, frequency, and cepstral analysis to train machine learning

models, enabling the identification of characteristics associated

with critical sound events. Notably, research by Mesaros et al.

(2021), highlighted the efficacy of features such as mel-frequency

cepstral coefficients in effectively capturing the essential properties

of various sound events (Ni et al., 2015).

While much of acoustic research has focused on event

detection, the ability to accurately locate the source of sound events

within a home is equally important. Identifying the location of

a sound, such as the room where a fire alarm is sounding or

where glass has broken, provides valuable information for both

the system and users. Sound source localization methods, like

ESPRIT, use time difference of arrival measurements frommultiple

microphones placed throughout the home to determine the sound’s

origin (Jiang et al., 2024; Wang et al., 2024).

Sound localization faces significant challenges in complex

environments where echoes, reverberation, and multiple

simultaneous sound sources are present. Traditional methods

like delay-and-sum beamforming and MUSIC (Rascon and Meza,

2017) have been used, but their performance deteriorates in highly

reverberant or noisy environments. To improve the accuracy in

dynamic home environments, modern approaches integrate these

classical techniques with machine learning models.

Despite advancements in acoustic event detection and

localization, key challenges remain. Most systems focus on

either detection or localization, lacking a unified framework that

can handle both in real time. As Ni et al. (2015) pointed out,

designing algorithms to handle the dynamic nature of sound

events in changing home environments affected by furniture

arrangements, new devices, or occupancy variations is still a

challenge. Additionally, false-positives and -negatives are common

in noisy environments, where non-emergency sounds may be

misclassified as emergencies or true events may be missed due to

overlapping noise. Enhancing feature selection and classification

models, using techniques like recursive feature elimination and

SHAP, can improve accuracy and model explanation to address

these issues. Moreover, there is a lack of systems that integrate these

capabilities with automated alert mechanisms, such as sending

notifications of an emergency event to promptly notify relevant

parties about emergencies (Al-khafajiy et al., 2019). As highlighted

in Stowell et al. (2018), designing algorithms capable of managing

the dynamic nature of sound events in different home contexts

remains a challenge.

Existing research predominantly concentrates on either

acoustic event detection or sound source localization within

smart home environments, but rarely integrates both in a unified

framework, particularly for emergency activities. For instance,

while Valenzise et al. (2007) developed a system for shriek and

gunfire detection and localization in audio-surveillance contexts,

their approach does not extend to smart home environments

or include automated alerting mechanisms via electronic mail.

Similarly, Dennis et al. (2013) combined spectral and spatial

features for sound event detection but did not integrate localization

with emergency alert systems.

We propose a system that addresses the limitations of

current smart home technologies by integrating state-of-the-

art deep learning for event detection together with advanced

localization algorithms, offering a real-time solution that adapts

to complex acoustic environments. This system combines

multiple feature extraction methods and machine learning

models for a precise identification of acoustic events, followed

by the ESPRIT algorithm for sound source localization. A

real-time audio input module continuously monitors the

environment, analyzing sounds and triggering emergency alerts

when necessary. By merging deep learning-based detection with

robust localization, this framework can enhance the accuracy and

responsiveness of smart home systems, improving both safety

and usability.

To stress the current status of home acoustic automation,

Wilhelm and Wahl (2024) highlighted the need for integrated

systems that combine detection and localization for emergency

response in smart homes but noted that such systems are still

underdeveloped.

2 Literature review

The detection and localization of acoustic activities in

home environments have seen significant advancements, driven

by applications in assisted living, home automation, and

safety monitoring. This review examines key developments,

highlighting foundational techniques, advancements in

machine learning and deep learning, challenges in complex

environments, and the integration of detection and

localization systems. A critical evaluation of the existing

studies reveals limitations and gaps that our research aims

to address.
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2.1 Foundational techniques in acoustic
localization

Early research established fundamental principles for sound

source localization (SSL) in complex acoustic environments.

Middlebrooks and Green (1991) pioneered the use of temporal

regularities to enhance SSL by analyzing the temporal structure

of sound sources. By leveraging timing differences in sound wave

arrivals, they improved localization performance. However, their

approach was limited in handling the diversity and overlapping

acoustic events typical in real-world home environment, where

multiple sound sources and reflections complicate accurate

localization.

Building on these foundational methods, Kameoka et al. (2015)

addressed the challenges in urban acoustic activity detection,

emphasizing the need for precise sound differentiation in noisy

environments. Their robust classification models handled diverse

audio signals but were tailored to urban contexts, differing from

indoor environments in sound sources and acoustic properties.

While their work advanced SSL techniques, it did not fully account

for the unique challenges posed by indoor reverberations and the

variability of home soundscapes.

2.2 Advancements in machine learning and
deep learning for acoustic classification

The emergence of machine learning techniques introduced

new possibilities for acoustic classification and localization.

DeVore et al. (2017) applied particle swarm optimization to

enhance support vector machine (SVM) classifiers for recognizing

specific acoustic signals. This optimization improved classification

accuracy, highlighting the importance of feature extraction and

algorithm tuning. However, SVMs may struggle with large-scale

data and complex nonlinear relationships inherent in acoustic

signals, limiting scalability in dynamic home environments.

The advent of deep learning marked a significant shift.

Hyun et al. (2016) introduced a hybrid model combining long

short-term memory (LSTM) networks and convolutional neural

networks (CNNs) to capture both temporal and spatial features

of indoor acoustic activities. Diraco et al. (2019) extended

this approach to monitor changes in older individuals’ daily

routines using one-class SVMs and convolutional autoencoders,

achieving 88% accuracy in detecting deviations.While thesemodels

demonstrated effectiveness, they often lacked interpretability and

required extensive labeled data, posing challenges for deployment

in sensitive environments like smart homes.

Further advancements included methods leveraging spatial

data to improve classification accuracy. Basbug and Sert

(2019) employed spatial pyramid pooling in CNNs, enhancing

performance but increasing computational demands unsuitable for

resource-constrained devices. Mushtaq and Su (2020) proposed an

ensemble of CNNs with data augmentation techniques, achieving

high accuracy rates. However, the computational complexity and

the need for large datasets limited their practicality for real-time

applications in home environments.

2.3 Challenges in complex acoustic
environments

Differentiating sounds in noisy and reverberant environments

remains a significant challenge. Ciaburro and Iannace (2020)

emphasized the difficulty of acoustic activity detection in urban

environment, proposing models tailored to complex noise profiles.

Nzimbakani et al. (2020) developed an SSL method integrating

particle filtering and time–frequency analysis to reduce false

localization in noisy home environments. While effective, these

approaches involved sophisticated signal processing techniques and

high computational costs, hindering real-time application.

Handling overlapping acoustic events is another notable

deficiency. Many systems struggle to differentiate concurrent

sounds or accurately localize sources in reverberant conditions,

reducing effectiveness in real-world scenarios. Bonet-Solà and

Alsina-Pagès (2021) concluded that no single feature extraction

method is universally applicable, emphasizing the need for

adaptable systems that can handle varying acoustic conditions.

2.4 Integration of detection and
localization for emergency events

Despite advancements, there is a lack of integrated frameworks

combining acoustic event detection and localization for emergency

activities in home environments. Min et al. (2018) developed an

emergency sound detection system using deep learning but omitted

localization capabilities. Zhang et al. (2024) presented a real-time

detection and localization system without focusing on emergency

activities or electronic alert communication.

Some studies have begun integrating detection and localization

to enhance smart home responsiveness. Dennis et al. (2013)

combined spectral and spatial features for improved localization

accuracy in real-life recordings. Valenzise et al. (2007) developed

a system for scream and gunshot detection and localization in

audio surveillance, highlighting the importance of such integration

for emergency events. However, these systems were designed

for surveillance contexts and may not directly apply to home

environments due to differing acoustic properties and privacy

concerns.

Thakur and Han (2021) focused on indoor localization to

accurately detect a person’s position, aiming to expedite medical

assistance during emergencies. Using a big-data-driven approach

and machine learning techniques like Random Forests, they

achieved an accuracy of 81.36%. While their method improved

localization, it did not integrate acoustic event detection or

automated alerting mechanisms essential for comprehensive

emergency response.

2.5 Limitations and gaps in current studies

A critical evaluation of existing studies reveals several

limitations:
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• Lack of integrated systems: Most studies focuses on either

detection or localization, rarely combining both for emergency

activities. This separation limits the effectiveness of smart

home systems in providing timely assistance.

• Handling overlapping events: Systems struggle with

concurrent sounds and reverberant conditions, reducing

accuracy and reliability in real-world home environments.

The inability to manage overlapping acoustic events limits the

applicability of these systems in dynamic home environments.

• Lack of automated alerts: Few systems incorporate

mechanisms to convey notifications via electronic means like

email or SMS. The absence of automated alerting diminishes

practical utility during emergencies when immediate

communication is essential.

• Adaptability and scalability: Many models focus on specific

activities or environments without adapting to the dynamic

nature of real homes. The lack of scalability and adaptability

hinders long-term applicability, as home environments and

occupant behaviors change over time.

Despite significant advancements, there remains a critical

research gap in developing comprehensive frameworks that

integrate acoustic event detection and localization for emergency

activities in smart homes, coupled with automated alert

mechanisms. Addressing these deficiencies is essential for

enhancing the practical applicability and reliability of acoustic

monitoring systems in real-world environments.

Our research aims to fill this limitation by proposing a system

that not only detects and localizes emergency acoustic events

but also transmits immediate notifications through electronic

communication channels. By integrating advanced deep learning

techniques for accurate detection with efficient localization

algorithms and an automated alert system, we address the critical

need for timely assistance during emergencies. This approach

enhances responsiveness and safety, particularly for people in need

such as the older people or individuals with disabilities.

3 Research methodology

The methodology of the study for activity detection and

localization, as well as the sending of an emergency signal, is

depicted in the Figure 1.

• Data acquisition and annotation: The study starts with the

acquisition and annotation of an acoustic dataset with strong

labels marking event onset and offset.

• Data pre-processing: The quality of the data is enhanced by

the application of pre-processing stages, signal segmentation,

noise reduction, and dataset balancing.

• Feature extraction: The audio signals are subsequently

effectively defined by extracting features from a variety of

domains.

• Feature selection and development of model: Feature

selection techniques are used to improve performance, and

machine learning and deep learning models are used for even

detection.

• Sound source localization: The pipeline was developed for

sound localization where the ESPIRT model was applied for

the localization of the sounds.

• Integration of system: The framework integrates a real-time

emergency detection system for deployment in diverse

acoustic environments and incorporates sound source

localization with the conventional localization algorithm

ESPRIT to identify activity sources.

In the next section, a more detailed explanation of the methodology

outlined above is provided. The current study adopts a method

based on a literature review and addresses the limitations identified

in our previous study (Lundström et al., 2016). The focus is

primarily on developing data collection protocols, as well as

assessing and validating the recorded acoustic data. This study

provided a comprehensive pipeline for the classification and

localization of daily living activities.

3.1 Data collection

Preliminary studies and data collection were done in

Halmstad Intelligent Home (HINT). This represents a controlled

environment suitable for performing initial experiments. A series

of data collection experiments were performed in the home

environment, where audio data was collected from actual in-use

apartments (hired to tenants by HFAB). This data was used to build

signal processing and machine learning models. HINT has been

equipped with more than 60 sensors, including one “smart home

in a box” kit [1] to detect the current state of the environment

and its occupants. Magnetic switches detect the opening/closing of

doors (label 1 in Figure 2). Contact/touch sensors are positioned in

the sofa and under the seat cushion to detect occupancy (label 2 in

Figure 2). Passive infrared (PIR) sensors are positioned to detect

motion or occupancy in the different areas (label 3 in Figure 2).

Magnetic switches detect the opening/closing of cabinet’s doors

and drawers (label 5 in Figure 2). Load-cells integrated into the bed

frame measure weight and bed entrances and exits, and pressure

sensitive sensors under the mattress detect vital signs (label 6 in

Figure 2). Motor actuators in the adjustable bed enable different

bed positions to be selected (label 6 in Figure 2). A vacuum

cleaner-like robot (label 4 in Figure 2) can navigate autonomously

in the apartment and respond to detected anomalies, such as a fall.

In addition to microphones, and to enhance privacy, thermal

cameras were also used for data annotation purposes. The initial

experimental set-up in the intelligent home laboratory shows

that two care phones as well as a separate four-microphone

setup were deployed. The four-microphone set-up utilizes four

similar microphones to those used in the Carephone, which

will make comparisons more valid. The reason for having two

Carephones is that they are positioned in different rooms.

This will allow us to explore whether a single care phone

(probably in the living room) can sense what is happening in

another room.

In this study, all the activities have been recorded from one

subject in order to standardized the protocol and data analysis as

given below.
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FIGURE 1

Flowchart of the ambient acoustic event detection.

The protocols were as follows:

• Person enters the home.

• Goes to the bedroom and has some rest.

• Goes to the bathroom.

• Goes to the kitchen and open the cabinet.

• Again goes to the bedroom.

The home environment shown in Figure 2 consists

of a bedroom, a corridor, a kitchen, and a bathroom.

Six microphone sensors collected the activities in the

home from one subject for 100 min. The data set size is

100 min with activities randomly placed from 11 classes

mentioned in Figure 3, recording having a sampling rate of

44,000 Hz.

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2024.1419562
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Shabbir et al. 10.3389/fdata.2024.1419562

FIGURE 2

The floor plan of HINT divided into multiple areas. Labels in the figure indicate capabilities.

FIGURE 3

Distribution of di�erent activities across the acoustic data set.

Figure 4 presents the spectral representations of acoustic

activities for 11 distinct classes: “Door Close,” “Hello,” “Door Open,”

“Help,” “Bath,” “Cabinet,” “Oven,” “Glass,” “Walk,” “Tap Water,”

and “Flush.” Each spectrogram provides a comprehensive view of

the time–frequency characteristics unique to these activities. The

spectrograms reveal prominent peaks, corresponding to moments

of high-energy acoustic activity, with signal intensities reaching up

to 0 dB and significant frequencies spanning from approximately

0 Hz up to 4,096 Hz. These peaks highlight essential temporal and

spectral features that are critical for distinguishing and classifying

specific activities.

Lower intensity regions, typically observed within the range of

–50 to –70 dB, represent periods of reduced acoustic activity or

background noise. Activities such as “Door Close” and “Cabinet”

exhibit distinct, high-energy bursts at frequencies between 500

and 2,000 Hz, indicating characteristic sound events. In contrast,

continuous activities such as “Tap Water” and “Flush” show energy

distributed more diffusely across a broader range, with prominent

components below 1,000 Hz. The “Hello” and “Help” classes,

associated with speech, display complex patterns with significant

energy up to 3,000 Hz, while the “Glass” and “Walk” classes show

more scattered energy across the entire range, often extending

beyond 3,000 Hz.

The spectrograms emphasize how the distribution of energy

varies across different activities. For example, “Oven” and “Door

Open” display more isolated, periodic high-energy sections

between 1,000 and 2,500 Hz, whereas “Walk” and “Flush”

include widespread, lower-energy components spanning the entire

frequency band up to 4,096 Hz. These detailed representations

enable the identification of unique acoustic signatures associated

with each activity.

While these spectrograms inherently capture both signal

and noise, the subsequent sections will briefly outline the

application of de-noising techniques, such as Wiener filtering, to

enhance the signal-to-noise ratio. This approach aims to optimize

feature extraction and improve the clarity of acoustic data,

thereby facilitating more effective analysis in diverse real-world

environments. This visual and frequency-based examination

underscores the importance of recognizing activity-specific

acoustic patterns for robust activity detection.

3.1.1 Annotation
Annotations were labeled by human experts who listened to

the audio data and identified the activity signals, determining their

starting and ending points. The metadata is shown in Table 1,
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FIGURE 4

Spectrograms for di�erent acoustic activities, including “Door Close,” “Hello,” “Door Open,” “HELP,” “Bath,” “Cabinet,” “Oven,” “Glass,” “Walk,” “Tap

Water,” and “Flush,” showcasing the frequency and amplitude patterns over time for each class.

showing the onset starting point of the signal and offset ending

point of the signal concerning the class name.

3.1.2 Noise removal
Wiener filtering is a statistical method that is frequently

employed in acoustic signals to reduce noise while preserving its

important signal characteristics (Bentler, 2005). This is because

it can reduce the mean square error (MSE) between the original

and denoised signals. This adaptive filter can estimate the power

spectral densities of each signal and noise while selectively

reducing noise while preserving essential signal components,

as it operates on the assumption that both signal and noise

exhibit stable statistical characteristics over time. Wiener filtering
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TABLE 1 Details of collected acoustic activities including file name, onset,

o�set, and activity label.

File name Onset
(seconds)

O�set
(seconds)

Label

Final Track.wav 19.037045 20.188752 Door close

Final Track.wav 22.221177 23.169641 Hello

Final Track.wav 23.305136 24.050359 Door open

Final Track.wav 40.783989 41.359842 HELP

Final Track.wav 42.477676 43.087403 HELP

dynamically adjusts to noise and signal characteristics, balancing

noise suppression with signal fidelity, in contrast to alternative

methods such as spectral subtraction, which can introduce median

filtering, which struggles with frequency-specific noise, and wavelet

thresholding, which may lead to distortion. This characteristic is

particularly advantageous in audio processing, as demonstrated

by our comparative spectrogram analysis. Figure 5 displays the

spectrograms of four acoustic activity samples: “Door Close,”

“Hello,” “Walk,” and “Cabinet,” with each activity shown in its

original (noisy) form alongside its denoised counterpart processed

using Wiener filtering. The spectrograms illustrate the significant

differences in frequency distribution and intensity across these

activities, with peaks reaching up to 0 dB in energy-rich segments

and noise levels typically ranging between –50 and –60 dB. The

application of Wiener filtering markedly enhances signal clarity,

reducing background noise to below –70 dB while preserving

the structural integrity of the original sound. This enhancement

facilitates a clearer distinction of key acoustic features, essential

for accurate analysis and classification. Such denoising proves

effective for high-quality signal processing, striking a balance

between signal preservation and noise reduction, thus solidifying

its role as a reliable method for acoustic data analysis in complex

environments.

3.1.3 Data splitting
To construct the model with an 80% to 20% ratio, the data was

divided into training and testing sets and subjected to 10-fold cross-

validation. It is crucial to investigate the issue of imbalanced data,

which occurs when the distribution of classes in the dataset is highly

skewed or unequal, resulting in a majority class and one or more

minority classes (Patel et al., 2020). In the context of sound activity

detection and localization, imbalanced data can lead to biased

algorithms that favor the majority class, ultimately resulting in poor

performance for minority classes. The issue of unequal data can

be addressed through the implementation of various approaches,

including the over-sampling of the minority class, the under-

sampling of the majority class, or a combination of both (Haque

et al., 2014). One prominent over-sampling strategy employed

in this study is the synthetic minority over-sampling technique

(SMOTE), which creates synthetic samples for the minority class by

interpolating between extant minority samples (Haque et al., 2014).

Compared to its alternatives, such as straightforward random

over-sampling and under-sampling, SMOTE offers significant

advantages in scenarios involving imbalanced datasets. While

random over-sampling merely duplicates existing minority class

samples, leading to over-fitting and a lack of new information,

SMOTE enriches the feature space by generating diverse, synthetic

data points. Conversely, under-sampling the majority class risks

eliminating valuable information and could worsen the imbalance.

By leveraging SMOTE, we not only enhance the representation

of minority classes but also provide the model with a more

informative training set that reflects the complexities of the data,

thereby enhancing performance across all classes.

3.2 Feature extraction

3.2.1 Cepstral domain features
Cepstral domain features are features derived from a signal’s

cepstral representation. They are widely used in machine learning

and signal processing applications, especially audio and voice

analysis as mentioned in the one of recent studies (Sharma et al.,

2020). The inverse Fourier transform of the signal’s spectrum

logarithm yields the cepstrum. It is a measurement of the rate of

change in various spectrum bands. The cepstral domain is widely

used in speech and audio processing because it is particularly

helpful in isolating the source and filter properties of signals. For

example, MFCCs. It is the feature we extracted in our study from

the cepstral domain.

3.2.1.1 MFCC

To capture the phonetically significant aspects of speech,

filters are linearly spaced at low frequencies, and at the point

where frequencies are high, logarithmically utilized. The critical

bandwidths of the human ear fluctuate with frequency, which is

the basis for MFCC features. The mel-frequency cepstrum, which

is close to the response of the voicing system of human beings,

expresses this more precisely than the linearly spaced frequency

bands employed in the typical spectrum (Sharma et al., 2020).

The processes involved in obtainingMFCC characteristics from

an audio source are as follows:

• Make a signal’s Fourier transformation using a windowed

extracted signal.

• Utilizing triangular overlapping windows, project the derived

spectral powers onto the mel scale.

• Consider the list of mel log powers’ discrete cosine transforms

as a signal.

Equation 1 shows that the mathematical extraction for MFCCs

is:

ci =
Nf
∑

n=1

Sn cos

[

i (n− 0.5)
π

Nf

]

(1)

where

• ci = cy(i) = ith MFCC coefficient.

• Nf Denotes triangular filters numbers in the filter bank.

• Sn is output of log energy outcomes nth filter coefficient.

• L shows MFCC coefficients, which we are interested in

calculating.
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FIGURE 5

Comparison of original (noisy) and denoised spectrograms for various classes: “Door Close,” “Hello,” “Walk,” and “Cabinet,” illustrating the

e�ectiveness of noise reduction in enhancing acoustic signal clarity.
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3.2.2 Frequency domain features
In signal processing and machine learning, frequency domain

features are features taken from a signal’s frequency domain

representation. These properties are acquired using techniques

such as the Fourier or wavelet transforms to convert the time-

domain signal into the frequency domain. The spectrum or

frequency domain representation sheds light on the signal’s

periodic components. Depending on the analytic technique

and various frequency domains, information may be recovered,

including wavelet coefficients, power spectral density, and

reflection coefficients. These characteristics are widely utilized in

audio signal processing and analysis applications. The frequency

domain feature we used in our study is discussed below (Sharma

et al., 2020).

3.2.2.1 Spectral centroid

The spectral centroid (SC) is a measurement used to define

a spectrum during digital data processing. It is calculated by

averaging the frequencies in the signal and applying weights based

on their magnitudes. The spectral centroid is commonly used in

music information retrieval and is typically a trustworthy predictor

of the “brightness” of a sound (Butt, 2012). The spectral centroid

for a signal “y” may be obtained using Equation 2:

centroid[t] =
∑

m F[m, t] · freq[m]
∑

j F[j, t]
(2)

where “F” is a magnitude spectrogram and “freq” is the array of

frequencies (e.g., FFT frequencies in Hz) of the rows of “F.”

3.2.3 Time domain features
Time domain features are properties obtained from a signal’s

time-based representation and are widely used in fields such as

machine learning and signal processing (Butt, 2012). In this section,

time domain features considered in this study such as RMS, STFT,

and Mel-spectrogram are explained.

3.2.3.1 RMS

The signal’s root mean square (RMS) value is used to calculate

the signal’s magnitude. It is calculated by squaring the result after

determining the square root of the average of the signal’s squared

values. The RMS value, which may be used to determine an audio

source’s power, is often employed when comparing the loudness of

different audio sources.

xRMS =

√

√

√

√

1

n

n
∑

i=1

x2i (3)

In the above Equation 3,
√

is used to represent the square root

function, 1
n is used to represent division,

∑n
i=1 is used to represent

the summation from i = 1 to n, and x2i represents the square of

each value xi.

3.2.4 Time-frequency domain features
Features in the time–frequency domain are obtained by jointly

representing a signal in the frequency and time domains. These

characteristics are often used when analyzing non-stationary

signals whose frequency content fluctuates over time. Below is the

time–frequency domain feature we are using in our study.

3.2.4.1 Chroma STFT

Chroma features are an unusual and powerful representation

of music audio, dividing the whole spectrum into 12 bins to reflect

the 12 distinct chroma of the musical octave. Since notes that are

exactly one octave apart are detected as being very similar in music,

knowing how to distribute chroma without knowing its precise

location (i.e., the original octave) may still provide significant

musical details regarding the audio and thus yield a strong and

compact representation.

Chroma[n, t] =
1

Z

∑

m

|X[m, t]| · chroma_map[m, n] (4)

In the above Equation 4:

• n represents the chroma bin (0 to 11).

• t represents the time frame.

• X[m, t] represents the complex spectrum at binm and time t.

• chroma_map[m, n] is 1 if bin m belongs to chroma n, and 0

otherwise.

• Z is a normalization factor (for example, the sum of the

magnitudes of all spectra).

3.2.4.2 Mel-spectrogram

A mel-spectrogram is produced by translating the frequencies

of a spectrogram to the mel scale. Listeners interpret the tones

on the mel scale to be evenly spaced away from one another. The

reference point between this scale and traditional measurement of

frequency is produced by delivering a tone at 1,000 Hz that is 40 dB

beyond the listener’s threshold and has a perceived pitch of 1,000

mels. The listener perceives greater pauses to produce similar pitch

increments over 500 Hz.

MelSpec[n, t] = log

(

1+
1

N

N
∑

k=1

|X[k, t]|2 ·mel_filter[n, k]

)

.

(5)

In the above Equation 5:

• n represents the Mel bin.

• t represents the time frame.

• X[k, t] represents the complex spectrum at bin k and time t.

• mel_filter[n, k] is the Mel filter response for Mel bin n at

frequency bin k.

• N is the total number of frequency bins.

• log is the natural logarithm.

3.3 Machine learning models

Three machine learning models, namely logistic regression,

linear discriminant analysis (LDA), and Random Forest Extra

Trees, have been developed in this study to classify acoustic
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activities. These are the most frequent ML models applied in

the different applications of acoustic activity classification in the

various applications (Bansal and Garg, 2022).

3.3.1 Extra Trees
Extra Trees is an ensemble strategy that boosts accuracy and

stability by integrating the forecasts of several decision trees. More

trees introduce more randomness into the tree-building process

than past tree-based techniques, which can increase generalization

and reduce over-fitting. Extra Trees, also known as Extremely

Randomized Trees, is an ensemble learning algorithm similar to

Random Forest. It combines multiple decision trees in a slightly

different way.

3.3.2 Linear discriminant analysis
Linear discriminant analysis (LDA) may reduce dimensionality

by decreasing noise and processing complexity, thereby enhancing

classification performance.

LDA equation is as follows. In Equation 6,

WT · X
σ 2

=
µ1 − µ2

σ 2
+ ln

(

P(X|ω1)

P(X|ω2)

)

(6)

where W is the weight vector, X is the input data vector,

µ1,µ2 are class means, σ 2 is the within-class variance, and

P(X|ω1), P(X|ω2) are class-conditional probability densities.

3.3.3 Logistic regression
Logistic regression is ideal for measuring predictability. The

probabilistic technique determines the likelihood that input

matches a given class. It provides readability, simplicity, robustness,

and rapid learning utilizing likelihood estimates. The logistic

regression equation is as follows in Equation 7:

P(Y = 1|X) =
1

1+ e−(β0+β1X1+β2X2+...+βnXn)
(7)

The probability of Y being 1, given the input vector X, is

modeled using logistic regression, with β0 to βn as coefficients. The

sigmoid function ( 1
1+e−z ) ensures the output lies between 0 and 1.

3.3.4 Random forest
Random forest is a machine-learning algorithm that usually

works well with high-dimensional problems and allows for non-

linear interactions between predictors. However, the availability

of linked predictors has been demonstrated to influence its

capability to identify powerful predictors. The Random Forest-

Recursive Feature Elimination approach (Random Forest RFE-

SHAP) addresses this issue with limited data.

3.4 Deep learning models

We chose to employ RNN, LSTM, and RCNN in our work

on classifying audio activities in the domestic environment. These

deep learning methods are ideally suited for numerous acoustic

classification challenges, including speech recognition, audio event

detection, and acoustic scene classification.

3.4.1 Recurrent neural network
Three layers comprise the recurrent neural network (RNN)

model, built using the sequential API. The first layer, SimpleRNN,

has 64 units and uses the activation function of ReLU. The

second and third levels, dense layers, have 32 and 12 units each

and use the ReLU and softmax activation functions. The model

is built utilizing the optimizer known as Adam, accuracy for

performance assessment, and sparse categorical cross-entropy for

loss computation. Then, the model is trained using 20% of the

training data as a validation set for 100 epochs with a batch size of

32. The model is then tested on a test set, and the results, including

the test loss and accuracy, are printed.

The output of a Simple RNN unit at time t is calculated using

Equations 8 and 9:

ht = tanh
(

Whh · ht−1 +Wxh · xt + bh
)

(8)

where Whh and Wxh are weight matrices, ht−1 is the previous

hidden state, xt is the input vector, and bh is the bias.

yt = Why · ht + by (9)

whereWhy is the weight matrix, ht is the hidden state, and by is

the bias.

3.4.2 Long short-term memory
The long short-term memory (LSTM model) uses the

sequential API, starting with a 64-unit LSTM layer. The next two

dense layers, using the ReLU and softmax activation functions,

respectively, have 32 and 12 units each. The model’s construction

uses the Adam optimizer, accuracy for performance evaluation,

and sparse categorical cross-entropy. Then, it is trained over 100

iterations with a batch size of 32 using 20% of the training data as a

validation set. The model is then put to the test on a test set, and the

results are reported along with the test loss and accuracy. The LSTM

unit at time t is calculated using the following Equations 10–14:

Forget gate: 1. Forget gate:

ft = σ
(

Wf · [ht−1, xt]+ bf
)

(10)

The forget gate at time t, ft , is the sigmoid function applied to

the weighted sum of the previous hidden state (ht−1), current input

(xt), and bias (bf ).

2. Input gate:

it = σ
(

Wi · [ht−1, xt]+ bi
)

(11)

The input gate at time t, it , is the sigmoid function applied to

the weighted sum of the previous hidden state (ht−1), current input

(xt), and bias (bi).

3. Cell state:

C̃t = tanh
(

WC · [ht−1, xt]+ bC
)

(12)
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The cell state at time t, C̃t , is the hyperbolic tangent of the

weighted sum of the previous hidden state (ht−1), current input

(xt), and bias (bC).

4. Output gate:

ot = σ
(

Wo · [ht−1, xt]+ bo
)

(13)

The output gate at time t, ot , is the sigmoid function applied to

the weighted sum of the previous hidden state (ht−1), current input

(xt), and bias (bo).

5. Hidden state:

ht = ot · tanh(C̃t) (14)

The hidden state at time t, ht , is the element-wise product of

the output gate (ot) and the hyperbolic tangent of the cell candidate

(C̃t).

3.4.3 Recurrent convolutional neural network
This model’s input layer, reshape layer, bidirectional LSTM

layer, two dense layers, and output layer. The input layer accepts

a one-dimensional array of 159 features, and a two-dimensional

array is then created using the reshape layer. A 64-unit bidirectional

LSTM layer, which processes the input forward and backward,

receives the data after it has been reshaped. As a result, the model

can account for context for each time step in the past and the

future. Following a GlobalMaxPooling1D layer and a dense layer

with 32 units utilizing the ReLU activation function, the LSTM

layer’s output is transmitted through. Twelve units with a softmax

activation function comprise the final output layer appropriate

for multi-class classification problems. The model’s construction

uses the Adam optimizer, sparse categorical cross-entropy for loss

computation, and accuracy for performance assessment. Then, it

is trained using 20% of the training data as a validation set for 100

epochs with a batch size of 32. The model is then tested on a test set,

and the results, including the test loss and accuracy, are printed.

3.5 Sound source localization

In this developed framework, we are dealing with a multi-

path environment, in which sound can come from multiple

microphones. An object (person) can add multiple paths of the

same sound. One path is the direct path and the second is caused

by the reflection of the object. In this case, the direction of the

array plays a significant role in dealing with array signal processing.

The traditional algorithms deal with the direction of arrival (DOA)

based on maximum likelihood methods, subspace methods, and

delay-and-sum and minimum variance distortionless response

(MVDR) methods (Molaei et al., 2024). The machine learning-

based method works well when the signal-to-noise ratio is low, but

it’s computationally very complex, At the same time the, sub-space

method also works well and is computationally efficient. However,

the most frequent techniques used due to the advantage of the

orthogonality of subspace were ESPRIT and MUSIC. It is worth

mentioning that ESPRIT-based approaches can have a maximum

number of uncorrelated sources in terms of the size of sub-arrays

(Hu et al., 2014). On the other side, the computational complexity

in terms of quantitative comparison shows less computational

complexity as compared to other localization algorithms, which

ultimately minimize the amount of resources required to execute

that algorithm (Molaei et al., 2024). Other localization methods

like beam-forming (Priyanka, 2017), time of arrival (Xu et al.,

2011), Time difference of arrival (Motie et al., 2024), multiple signal

classification and machine learning approach (Ziauddin, 2024),

ESPRIT offers high accuracy for DOA estimation in favorable

conditions, particularly with closely spaced sources. Moreover, it

works well with array data and leverages spatial correlation.

To identify sound sources and calculate signal parameters,

we have applied a high-resolution subspace-based method called

ESPRIT (Estimation of Signal Parameters using Rotational

Invariance Techniques) (Cobos et al., 2017) The ESPRIT approach

uses the rotational invariance property of the signal subspace to

estimate the sound sources’ DOA. This method is extremely useful

when high-resolution localization is required, as in the fields of

robotics and array processing. In ESPRIT, there are two main

phases.

To calculate the signal subspace, ESPRIT calculates the eigen

decomposition of a spatial covariance matrix obtained from several

sensors. The eigenvectors that correspond to the largest eigenvalues

make up the signal subspace, providing details on the sound sources

DOA.

Estimating the signal parameters, ESPRIT solves a least-squares

problem for calculating the signal parameters, such as frequencies

and DOAs, using the rotational invariance property of the signal

subspace. Compared to other high-resolution techniques like

MUSIC (Multiple Signal Classification), ESPRIT has the advantage

of not requiring a search across the whole spatial domain, reducing

computing complexity and speeding up execution times.

4 Results

In this study, we have proposed an integrated framework

for classifying activities, localizing acoustic events, and sending

the emergency signal if an emergency activity is detected in the

intelligent home environment. Multiple state-of-the-art machine

learning and deep learning classifiers have been applied for the

detection of activities, as well as the ESPRIT algorithm to localize

acoustic events. The following performance measure metrics were

considered to evaluate the significance of the results: Average

Accuracy, Precision, Recall, F1-Sore, RMSE, and MSE. These are

the most frequent metrics used in the literature to assess the

significance of ML and DL models.

The results are shown in Table 2. The classifier with the highest

accuracy is the Random Forest (95.02%), as shown in Figure 6.

This is followed by the LDA (87.68%) in Figure 7, the Extra

Tree (85.71%) in Figure 8, and finally, logistic regression (83.54%),

shown in Figure 9. This shows that the Random Forest classifier

is the most successful out of all the evaluated models. However,

the performance variations across the classifiers suggest that the

classifiers selection and calibration for a given job may need some

work.

A more thorough activity-level classification analysis of the

classifiers performance in various tasks is given in Table 3. Among
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TABLE 2 Results of activity detection using machine learning algorithms.

ML classifier Accuracy Precision Recall F1-score Rmse Mse

Random forest 95.02% 81% 80% 80% 1.58 2.49

LDA 87.68% 78% 76% 77% 1.72 2.97

LR 83.54% 86% 84% 84% 1.22 1.48

Extra tree 85.71% 89% 86% 87% 1.50 2.24

FIGURE 6

Confusion matrix for the best Random Forest Classifier, achieving an accuracy of 95.02%, precision of 0.81, recall of 0.80, and an F1-Score of 0.80.

the actions are doors closed, Hello, Help, Door Open, Bath,

Cabinet, Oven, Glass Walk, Tap Water, and Flush. The classifier’s

performances differ for each task; some tasks are classified more

correctly by certain classifiers than by others. For example, the best

classifier for the “Hello” task was the Extra Tree classifier with a

100% detection, whereas the best classifier for the “Help” task was

the Logistic regression classifier with a 100% detection. The detailed

activity level results are presented in Table 3.

The results of the deep-learning algorithms are shown in

Table 4. The RCNN classifier, with an accuracy of 81.90%, is

presented in Figure 11, outperforming the LSTM (81.01%) in

Figure 12 and the RNN (75.95%) shown in Figure 13. This implies

that the LSTM classifier is the most successful out of all the

evaluated models. However, the performance variations across the

classifiers suggest that the classifier selection and calibration for a

given job may need some work. A more detailed overview of the

deep learning classifiers’ performance in detection tasks is given in

the Table 5. Among the actions are doors closed, Hello, Help, Door

Open, Bath, Cabinet, Oven, Glass Walk, Tap Water, and Flush.

The classifiers’ performances differ for each task; some tasks are

classified more correctly by certain classifiers than by others. For

example, the “Door Close” task was most accurately classified by

the RNN classifier, whereas the LSTM classifier most accurately

classified the “Hello” task.

Figure 6 represents the confusion matrix of Random Forest

performance. The image depicts the 100% detection of Oven and

Tap Water with more than 95% overall accuracy, showing the

effectiveness of Random Forest classifier in the acoustic activities

or event detection in the home environment.

Figure 7 represents the confusion matrix of logistic regression

performance with more than 83% overall accuracy showing a great

deal with logistic regression as getting an 80%+ accuracy in this

task is hard. Figure 7 also depicts the superior performance of

the classifier where logistic regression gained 86% precision, 84%

recall, and 84% F1-Score and can be utilized in the real-time AAL

applications.

Figure 8 represents the confusion matrix of linear discriminant

analysis performance with more than 87% overall accuracy

showing a great deal with linear discriminant analysis as

getting an 80%+ accuracy as this task of ambient acoustic

classification is hard. We can also see that the precision,

recall, and F1-Score of the linear discriminant analysis approach

were 78%, 76%, and 77%, respectively, while the accuracy

was 87.68%.
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FIGURE 7

Confusion matrix for the best Logistic Regression classifier (no shrinkage), achieving an accuracy of 83.54%, precision of 0.86, recall of 0.84, and an

F1-Score of 0.84.

FIGURE 8

Confusion matrix for the best LDA classifier (no shrinkage), showing an accuracy of 87.68%, precision of 0.78, recall of 0.76, and an F1-Score of 0.77.

Figure 9 presents the confusion matrix of Extra Tree Classifier

performance showing that it has achieved more than 85% accuracy

showing the effectiveness of acoustic events detection with the

Extra Tree Classifier. The figure also shows that the Extra Tree

Classifier algorithm’s F1-Score, recall, and precision were 89%, 86%,

and 87%, respectively. Cohen’s Kappa score showed a high degree

of agreement, which was 84%. The RMSE and MSE have respective

values of 1.50 and 2.24. The explained variance and R square were

both 0.75.

Figure 10 shows the confusion and performance

metrics, respectively. The figures showing the calibrated

classifier approach achieved an accuracy of 84.76%, with

comparable precision, recall, and F1-Score values of

87%, 85%, and 86%, respectively. The Cohen’s Kappa

score was 82%, which is a high level of agreement.

The difference between the RMSE and the MSE

was 1.58. The explained variance and R square were

both 0.72.
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FIGURE 9

Confusion matrix for the Extra Tree Classifier in acoustic activity classification, achieving an accuracy of 85.71%, precision of 0.89, recall of 0.86, and

F1-Score of 0.87.

4.1 Deep learning results

Figure 11 presents the confusion matrix of LSTM showing

that LSTM has gained more than 81% accuracy, representing the

strength of LSTM for AED in a home environment. It also shows

the precision, recall, and F1-Score for the LSTM approach, which

is employed in deep learning models, were each 74%, 81%, and

77%, respectively, for an accuracy of 81.01%. Cohen’s Kappa score

showed a high degree of agreement, which was 78%. The difference

between the RMSE and the MSE was 1.46. R square and variance

have 72% values each.

Figure 12 presents the confusion matrix of RNN showing that

RNN has obtained more than 75% accuracy representing the

performance of RNN for AED in a home environment. The RNN

approach was accurate with an accuracy of 75.95%, precision of

70%, recall of 76%, and F1-Score of 72%. The Cohen’s Kappa

score was 72%, which is very congruent. The RMSE and MSE have

respective values of 1.88 and 3.54. R square and variance explained

both had values of 54%.

Figure 13 depicts the confusion matrix of RCNN, showing that

RCNN has obtained more than 81% accuracy, representing the

performance of the RCNN algorithm in the home Environment.

The RCNN model’s accuracy was 81.90%, with corresponding

values of 82% precision, 83% recall, and 82% F1-Score. Cohen’s

Kappa score showed a high degree of agreement, which was 79%.

The RMSE and MSE have respective values of 1.81 and 3.27. The

explained variance and R square were both 61%. The study also

used the ESPRIT algorithm for localizing the sources of activities.

We obtained a comparatively low error rate of 3.62% shown in

Table 6 and in Figure 14. It exhibited higher RMSE (3.87) and MSE

(14.99) values due to the small data.

TABLE 3 Classification of activity levels using machine learning models.

Activities Random
forest

LDA Logistic
regression

Extra tree

Door close 80% 78% 88.9% 87.5%

Hello 75% 77% 60% 100%

Help 66% 86% 100% 81.2%

Door open 68.8% 76.5% 90% 90%

Bath 75% 50% 50% 20%

Cabinet 82% 72% 81% 96%

Oven 100% 100% 100% 100%

Glass walk 50% 33% 50% 67%

Tap water 92% 73% 78% 100%

Flush 100% 100% 100% 100%

4.2 Emergency signal

Predicted class labels: [“HELP,” “Door close,” and “Door Open”]

An emergency Email has been sent to ******@students.au.edu.pk.

The above message was the output from our final framework

when tested on a sample recording with four classes from our test

data set. The activity we have trained our system to consider as

an emergency activity, “HELP,” was also included in that sample

data. The framework has correctly identified the activities, and

on encountering “HELP,” it has successfully sent an emergency

signal via electronic mail. The sent signal is presented in Figure 15

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2024.1419562
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Shabbir et al. 10.3389/fdata.2024.1419562

TABLE 4 Results of activity detection using deep learning models.

DL classifier Accuracy Precision Recall F1-score Rmse Mse

LSTM 81.01% 74% 81% 77% 1.46 2.14

RCNN 81.90% 83% 82% 82% 1.81 3.27

RNN 75.95% 70% 76% 72% 1.88 3.54

Residual DCNN 81.01% 74% 81% 77% 1.46 2.14

TABLE 5 Classification of activity levels using deep learning models.

Activities RNN LSTM RCNN

Door close 78% 82% 80%

Hello 100% 100% 100%

Help 91% 91% 80%

Door open 78% 80% 89%

Bath 10% 30% 30%

Cabinet 70% 78% 91%

Oven 100% 100% 92%

Glass walk 40% 20% 50%

Tap water 60% 12% 93%

Flush 71% 71% 100%

describing the emergency activity and the angles where it is detected

in the Intelligent Home.

5 Comparison with state-of-the-art
methods

Different experiment environments, data, and evaluation

methods are applied to classify different numbers of events in

the home environment in previous literature. Hence, it is quite

difficult to make a direct comparison between different algorithms

and methods in the existing literature due to differences in the

framework of the home environment. However, we have attempted

to compare our study with the methods described in the most

recent five studies closely aligned with our framework, as described

in Table 7 (Pandya and Ghayvat, 2021; Mondal and Barman, 2022;

Giannoulis et al., 2019; Chin et al., 2021; Wu et al., 2023; Sasou

et al., 2018). Most of the studies focused on one task at a time

classification of the acoustic events or localization, and had complex

architecture, which needed a lot of resources as well as a dedicated

setup.

1. Foundational machine learning and initial advancements

Early SED research focused on machine learning models

with limited complexity and adaptability. For instance, Sasou

et al. (2018) aimed at improving sound event detection through

noise reduction but lacked detailed classification metrics and

comprehensive validations. These early models were effective for

simple scenarios but were not scalable to real-world environments.

In contrast, our study used a comprehensive approach by using

multiple machine learning classifiers, including Random Forest,

which achieved an average accuracy of 95.02%. This surpasses the

initial models that focused only on localization without a robust

classification framework. Our use of multiple models provided

better adaptability and comprehensive performance evaluations.

2. Neural network applications and early deep learning

approaches

Giannoulis et al. (2019) emphasized sound detection with a

neural network achieving an 87.7% accuracy. This was a significant

milestone that demonstrated the potential of neural networks

for SED. Similarly, Chin et al. (2021) used a context-aware

framework for specific event detection, achieving a 74.6% accuracy.

While these studies proved the efficacy of neural networks, their

performance was limited by event diversity and comprehensive

validations.

Our findings position the Random Forest classifier as a superior

performer in machine learning-based SED, while the RCNN

emerged as the best deep learning model with an average accuracy

of 81.90%. Compared to the 87.7% achieved by Giannoulis et al.

(2019), our model did not reach higher percentages in pure

accuracy but excelled in terms of Precision, Recall, and F1-Score,

highlighting its reliability in detecting true positive cases, which is

crucial for emergency scenarios.

3. Hybrid architectures and state-of-the-art benchmarks

In 2021, Pandya andGhayvat (2021) used LSTM–CNNhybrids,

achieving a 76.9% accuracy on benchmark datasets. Their work

set new standards by demonstrating that hybrid models could

enhance detection capabilities and our study has attained 81%

accuracy with the simple LSTM due to noise removal from signal

and picking the right feature using recursive feature elimination

technique Similarly, Mondal and Barman (2022) presented the

GTDNN algorithm with an 88.5% accuracy for detecting 11

types of events, showcasing practical application potential with

a 94.7% real-time detection rate. Mondal and Barman (2022)

attained higher accuracy than our SED system, but the result

was not validated with other metrics, showing the limitation of

their study in understanding the model performance in real world

environment.This indicates our model’s potential for generalizing

on unseen data with reliable accuracy, which is vital for real-world

applications.

4. Advancements with CRNN models and specific

applications

Wu et al. (2023) demonstrated the strength of CRNN models,

achieving 83.01% accuracy for event detection, specifically in

robotic applications. This approach underscored the versatility and

adaptability of CRNNs for specialized tasks. In comparison, our

RCNN, achieving an 81.90% accuracy with a focus on emergency

detection and localization underscores its practical application,

especially when coupled with our superior Random Forest classifier

for broader classifications.
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FIGURE 10

Confusion matrix of a calibrated classifier for acoustic activity classification, achieving an accuracy of 84.76%, precision of 0.87, recall of 0.85, and an

F1-Score of 0.86.

FIGURE 11

Confusion matrix of an optimized LSTM model for acoustic activity classification, showing an accuracy of 81.01% with strong recall 0.81 and

F1-Score 0.77.

6 Discussion

Our study, which focused on using acoustic signals for activity

classification and localization, offers significant advancements over

earlier approaches. Unlike conventional sensor technologies that

rely on visual data or direct user involvement, our acoustic-

based framework offers a passive solution that respects privacy,

requires minimal infrastructure, and can cover large areas. This
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FIGURE 12

Confusion matrix of an optimized RNN model for acoustic activity classification, showing an accuracy of 75.95%, with a recall of 0.76 and an

F1-Score of 0.72.

FIGURE 13

Confusion matrix for the best RCNN classifier achieving an accuracy of 81.90%, precision of 0.83, recall of 0.82, and F1-Score of 0.82.

advantage sets our approach apart from studies such as Pandya

and Ghayvat (2021) shown in Table 7, which used visual sensing

to classify activities, thereby introducing potential privacy concerns

and higher setup costs. Our approach, in contrast, mitigates these

challenges by leveraging sound as the primary data source, which

not only reduces privacy risks but also lowers the cost of system

deployment.

Additionally, compared to studies like Chin et al. (2021) and

Wu et al. (2023) as mentioned in Table 7, which faced limitations in

the number of activities covered and achieved lower F1-Scores, our
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TABLE 6 Localization results using the ESPRIT algorithm.

Metric Value

Error rate 3.62%

Mean squared error (Mse) 14.99

Root mean squared error (Rmse) 3.87

FIGURE 14

Pie chart illustrating ESPRIT localization results, showing an error

rate of 3.62, Rmse of 3.87, and Mse of 14.99.

methodology improves upon these aspects. Specifically, our system

can detect and classify a wider range of activities with high accuracy.

The Random Forest classifier, which achieved a remarkable 95.02%

average accuracy, performs better than the classifiers in these

studies, which were restricted by fewer activities and smaller

datasets. Our results show that our framework delivers more

reliable performance, both in terms of accuracy and robustness,

when compared to earlier work.

However, as with many of the studies highlighted in Table 8,

our framework faces challenges, particularly in dealing with

environmental noise and the scalability of the system across

diverse real-world scenarios. Studies like Giannoulis et al. (2019)

and Sasou et al. (2018) discussed the limitations posed by room

acoustics and ambient noise, which can degrade model accuracy.

While our approach incorporates techniques like Wiener filtering

and data augmentation to mitigate noise, these methods are not

always sufficient in highly variable environments. In this regard,

integrating multimodal data sources, such as combining audio with

motion or temperature sensors, could help improve reliability and

reduce the impact of noise, as suggested in Mondal and Barman

(2022) and Yang et al. (2022). The detailed results of these research

works are presented in Table 8. This would allow our system to

adapt more effectively to noisy or uncontrolled environments,

enhancing its overall performance and scalability.

Moreover, the localization component of our framework,

utilizing the ESPRIT algorithm, performs exceptionally well with

a localization error rate of just 3.62%. This is particularly

advantageous when compared to studies like Mohaimenuzzaman

et al. (2023), as its results demonstrate in Table 8. Their study

explored edge computing for local data processing but faced

difficulties due to limited computational power for real-time

recognition. The ESPRIT algorithm’s low error rate demonstrates

its potential for real-world applications, allowing for both accurate

activity classification and precise localization without the heavy

computational demands often associated with deep learning-based

systems.

In terms of scalability, challenges similar to those identified

in Chin et al. (2021) and Thottempudi et al. (2024) persist,

particularly when adapting models to real-world conditions as

shown in Table 8. These studies noted that models often struggle

to generalize across diverse environments, especially in noisy

settings. Although our framework has made significant progress in

managing these challenges, there is still room for improvement.We

anticipate that incorporating more advanced data pre-processing

techniques, such as noise suppression and the use of larger, more

varied datasets, could improve the robustness and scalability of our

system. Additionally, continuing to explore methods for domain

adaptation, as discussed in Devagiri et al. (2024) and its findings

are added in Table 8, could further help in ensuring that our system

performs well in a range of real-world scenarios.

In conclusion, while our approach provides a strong foundation

for activity detection and localization in acoustic settings, it

also shares common limitations with prior research, such as

sensitivity to environmental noise and challenges with real-time

processing. The studies discussed in Table 8 offer valuable insights

that can guide our framework’s future development, particularly

in improving robustness, scalability, and multi-modal integration.

By addressing these challenges, we can further enhance the

effectiveness and applicability of the system in real-world smart

home environments, particularly for emergency detection and

alerting applications. In the next sections, certain solutions are

discussed that can enhance the efficiency of our proposed system

when incorporated into our framework, further improving the

developed model.

6.1 Multi-modal sensing for activities
classification

Multi-modal sensing, which integrates acoustic data with

other sensor types (e.g., motion, temperature, pressure), offers

the potential to dramatically enhance activity detection accuracy,

particularly in loud surroundings. As demonstrated by Mondal

and Barman (2022), shown in Table 8, combining audio with

motion sensors gives a more robust solution for human activity

recognition, especially when faced with environmental noise.

However, combining several sensors brings a number of challenges:
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FIGURE 15

Emergency activity detection and emergency email sent.

TABLE 7 Comprehensive comparison of SED approaches in recent and earlier studies.

References Events
classified

Model Accuracy Localization Complexity Noise
robustness

Validation

Wu et al., 2023 Footstep ID/

Localization

CRNN/SVM 83.01% (CRNN) Yes High Moderate No

Mondal and Barman, 2022 11 GTDNN 88.5% (94.7%

real-time)

No High Moderate Yes

Chin et al., 2021 4 NN 74.6% No Low Limited No

Pandya and Ghayvat, 2021 22 LSTM-CNN 76.9% No High Moderate No

Giannoulis et al., 2019 Room SAD NN 87.7% Yes Moderate Limited No

• Data fusion: Combining data from different sensors requires

complex data fusion techniques to synchronize and blend the

information properly.

• Increased cost and complexity:Multi-modal sensing systems

tend to be more expensive and require additional computer

resources for processing, perhaps making them less practical

for large-scale implementation in households.

• Real-time processing:As stated by Yang et al. (2022) shown in

the Table 8, the necessity to interpret input frommany sensors

in real-time adds computing overhead, which might influence

the performance of activity recognition systems.

Overall, while multi-modal sensing has the potential

to improve robustness, its implementation comes with

higher system complexity, cost, and resource needs. These

limitations must be carefully considered when evaluating

multi-modal techniques for real-world implementation in

smart homes.

6.2 Edge computing in smart home
systems

Edge computing has been offered as a potential option

to enhance the privacy, efficiency, and scalability of activity

recognition systems. By processing data locally on edge devices

rather than transmitting it to the cloud, edge computing reduces

latency and assures that sensitive data is not transferred over the

Internet, thus preserving user privacy. However, the possibility of

incorporating edge computing in smart home systems for acoustic

activities classification remains an unsolved problem, especially

considering the following challenges:

• Limited computational resources: Edge devices often have

limited processing power and memory, making it challenging

to run complex deep learning models that are often necessary

for high-accuracy activity recognition. As observed by

Mohaimenuzzaman et al. (2023), mentioned in Table 8, edge
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devices may struggle with the computing needs of real-time,

high-accuracy auditory recognition.

• Model optimization: Studies such as Wu et al. (2023), shown

in Table 8, indicate that while edge computing can reduce

latency, achieving sufficient processing power on edge devices

requires significant optimization of the models utilized. This

may include decreasing the model size or compromising

on the complexity of the algorithms, which could influence

overall system performance.

• Scalability and deployment: Deploying edge computing

solutions at scale in varied household environments

pose problems relating to hardware heterogeneity,

device compatibility, and network infrastructure.

Mohaimenuzzaman et al. (2023), as mentioned in Table 8,

claim that edge computing could increase performance in

controlled situations, its scalability across diverse houses and

smart devices needs further research.

While edge computing offers privacy and efficiency benefits,

further research is needed to optimize models for resource-

constrained devices and test their real-world scalability. The

processing limits of edge devices remain a significant problem in

smart home activity identification.

6.3 Scalability and generalization of activity
recognition models

Scalability and generalization of activity recognition models

are another significant difficulty. While the model performs well

in controlled situations, real-world scenarios include diversity in

room layouts, noise levels, and user behaviors. This issue is explored

extensively in the literature, where studies like Thottempudi et al.

(2024) and Chin et al. (2021) shown in Table 8 indicate that models

trained in one environment often fail to transfer effectively to

others. Our study similarly showed a performance decrease when

themodel was evaluated in situations that differed from the training

data.

• Diverse environments: The performance of the model was

dramatically lowered in larger rooms or locations with higher

background noise. This shows that training on more diverse

datasets, which depict a wide range of real-world situations,

will be important to increase generalization.

• Adaptation to new environments: Continual learning and

domain adaptation strategies, as mentioned by Devagiri

et al. (2024), shown in Table 8, could assist in addressing

these problems by allowing the model to adjust to changing

surroundings over time.

Improving the generalization capabilities of activity recognition

models will require a combination of more diversified datasets and

sophisticated strategies for domain adaptation.

7 Future work

Although our analysis of acoustic event detection and

localization in smart home shows promising results, there are still

TABLE 8 Feasibility of existing solutions to enhance our framework.

References Proposed
solution

Key findings &
challenges

Mondal and

Barman, 2022

Multimodal Sensing

(Audio + Motion)

Advantages: Improved

accuracy in noisy environments.

Challenges: Data fusion

complexity, high cost, more

resources needed.

Challenges:High cost, complex

fusion, resource demands.

Yang et al., 2022 Multimodal Sensing

(Audio + Motion,

etc.)

Advantages: Robust detection

with multiple sensors.

Challenges: Real-time

processing overhead from

synchronization.

Challenges:High real-time

processing needs.

Mohaimenuzzaman

et al., 2023

Edge Computing

(Local data

processing)

Advantages: Reduced latency,

enhanced privacy.

Challenges: Limited

computational power for

real-time recognition.

Challenges: Resource

constraints, struggles with

real-time tasks.

Wu et al., 2023 Edge Computing

(Optimized models)

Advantages: Reduced latency,

efficient local processing.

Challenges: Need for model

optimization, trade-offs in

complexity.

Challenges:Model complexity

compromises efficiency.

Thottempudi et al.,

2024

Scalability Advantages: Identifies

challenges in real-world

environments.

Challenges: Poor performance

in noisy, large environments.

Challenges: Performance drop

in noisy environments.

Chin et al., 2021 Scalability (Cross-

environment

evaluation)

Advantages: Importance of

diverse datasets.

Challenges: Adapting models

from controlled to real-world

Environments.

Challenges: Limited

generalization across

environments.

Devagiri et al., 2024 Scalability (Domain

adaptation)

Advantages: Continual learning

for environmental adaptation.

Challenges: Experimental,

real-world domain adaptation

challenges.

Challenges: Domain adaptation

still experimental.

several limitations of this study. First, our study is based on a single

smart home data with one person in the house. Due to the limited

availability of data, we were not able to test the framework on

multiple homes or dynamic environments. The limitation can be

fulfilled upon the availability of the data.

The second limitation is the use of the conventional algorithm

ESPRIT for sound localization. Although it has produced better
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results than expected, there are still certain limits that open up

new avenues for future research. The main obstacle is the use

of traditional microphone arrays for sound detection, which are

effective but have scalability and flexibility issues. We suggest

investigating sophisticated neural network models trained with

information from sound sensors positioned in key areas to get

over these obstacles and maybe boost the effectiveness of sound

localization. Without the need for large microphone arrays, such

models may be able to understand intricate sound patterns and

the acoustics of their surroundings, resulting in more precise and

effective sound localization.

To validate the developed models and enhance their

generalization ability, the authors can utilize publicly available

datasets that comprise a broad range of acoustic events

and environments. By selecting diverse datasets such as the

UrbanSound dataset or ESC-50, the authors can conduct cross-

dataset evaluations, training their models on one dataset and

testing them on another to assess robustness and performance.

Implementing domain adaptation techniques, such as fine-tuning

and transfer learning, will further enable the models to modify

to the unique characteristics of distinct datasets. Comprehensive

performance metrics–such as accuracy, precision, and F1-Score–

should be employed to provide a comprehensive evaluation of the

models. Additionally, comparing the models’ performance against

state-of-the-art approaches will help emphasize their strengths and

areas for refinement. This validation process will not only reinforce

the models’ efficacy across varied acoustic contexts but also identify

limitations that need to be addressed in future work, ensuring a

continuous feedback cycle for model enhancement.

In addition to the challenges in sound localization, the

discipline of acoustic event detection could significantly

benefit from adaptable learning techniques. By integrating

reinforcement learning into the acoustic event detection

framework, models can dynamically adjust to variations

in sound characteristics and contexts. This adaptability

allows for real-time refinement based on feedback from

misclassifications, considerably augmenting the model’s ability

to distinguish between comparable acoustic events effectively.

Employing such techniques not only addresses the issue of

misclassification across different activities but also reduces false

predictions, thereby increasing overall classification accuracy.

Furthermore, the utilization of publicly available datasets in

combination with adaptable learning strategies will provide

opportunities for the models to generalize better across diverse

environments, ultimately leading to more robust acoustic event

detection systems.

Additionally, new directions for study in acoustic event

detection and localization within smart home environments

are opened up by the integration of location estimation sensor

technologies. This method promises to improve localization

systems’ accuracy and efficiency while also being scalable

and adaptable to a variety of situations. Future research is

expected to explore these possibilities using machine learning’s

advantages to overcome the shortcomings of existing approaches

and advance scientific understanding in this field. Moreover,

there is some confusion between different events during

classification. Since there is overlap between different event

gestures, it may lead to false-positives and-negatives. In

future work, the focus should be on de-noising techniques,

as proposed in recent studies (Othman et al., 2022; Iqbal,

2023), which can help overcome the misclassification of

different events.

8 Conclusion

The study’s findings provide insightful information on how

different deep learning and machine learning classifiers perform

when identifying and localizing acoustic activity. Random Forest,

LDA, logistic regression, Extra Tree, LSTM, RCNN, and RNN are

the classifiers developed for activity detection and classification

from acoustic sound as well as the assessment of performance

of the ESPRIT algorithm for localization. Out of all the

machine learning classifiers, the Random Forest classifier has

achieved the highest accuracy with an average accuracy of

95.02% for the acoustic activity classification. However, the other

classifier, logistic regression, had the highest recall and average

precision of 86% and 84% respectively, indicating its increased

dependability in detecting true positive cases and minimizing

false negatives with logistic regression. Conversely, the RCNN

classifier has the maximum average accuracy (81.90%) as well

as the greatest rates of precision, recall, and F1-Score among

all deep learning classifiers. Lower RMSE and MSE values for

the LSTM classifier suggest the model has well detected the

pattern of different acoustic activities, suggesting that the model

has a good generalizing ability on unseen data. Additionally,

the ESPRIT algorithm yielded encouraging results, with an

error rate of 3.62%. The lower error rate for localization

with ESPRIT suggests the algorithm’s superior performance and

its implications in real-world applications for joint acoustic

activity detection and localization. Similarly, it presents the

emergency event detected by the Random Forest algorithm and

activity located by the ESPRIT Algorithm when we tested the

system on the help signal taken as a testing sample from

our dataset.

In conclusion, our study has shown the superiority of Random

Forest as the best machine learning classifier, RCNN as the best

deep learning classifier, and the ESPRIT technique for acoustic

source localization. By configuring these parameters, an emergency

alert system in the real world can detect and locate sound

activity while also transmitting emergency signals. The study also

discovered that our approach to work should be dictated by its

particular needs. It also emphasized the necessity for more studies

to discover new approaches and enhance current ones, particularly

in raising the precision of deep learning models and localization

outcomes using large data sets. These discoveries are crucial

for developing more advanced and effective systems to locate

and detect sound activity, particularly for promptly delivering

emergency warnings.
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