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Background: Leukemia is the 11th most prevalent type of cancer worldwide,

with acute myeloid leukemia (AML) being the most frequent malignant blood

malignancy in adults. Microscopic blood tests are the most common methods

for identifying leukemia subtypes. An automated optical image-processing

system using artificial intelligence (AI) has recently been applied to facilitate

clinical decision-making.

Aim: To evaluate the performance of all AI-based approaches for the detection

and diagnosis of acute myeloid leukemia (AML).

Methods: Medical databases including PubMed, Web of Science, and Scopus

were searched until December 2023. We used the “metafor” and “metagen”

libraries in R to analyze the di�erent models used in the studies. Accuracy and

sensitivity were the primary outcome measures.

Results: Ten studies were included in our review and meta-analysis,

conducted between 2016 and 2023. Most deep-learning models have been

utilized, including convolutional neural networks (CNNs). The common- and

random-e�ects models had accuracies of 1.0000 [0.9999; 1.0001] and 0.9557

[0.9312, and 0.9802], respectively. The common and random e�ects models

had high sensitivity values of 1.0000 and 0.8581, respectively, indicating that

the machine learning models in this study can accurately detect true-positive

leukemia cases. Studies have shown substantial variations in accuracy and

sensitivity, as shown by the Q values and I2 statistics.

Conclusion: Our systematic review and meta-analysis found an overall high

accuracy and sensitivity of AI models in correctly identifying true-positive

AML cases. Future research should focus on unifying reporting methods and

performance assessment metrics of AI-based diagnostics.

Systematic review registration: https://www.crd.york.ac.uk/prospero/#

recordDetails, CRD42024501980.
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1 Introduction

Leukemia is a form of blood cancer that has several unique

features. It is the 11th most prevalent type of cancer worldwide,

accounting for approximately 2.5% and 3.1% of all new cancer

incidences and mortality in 2020, respectively (Bray et al.,

2018; Sung et al., 2021). Acute leukemia can be classified into

two types: myeloid and lymphoid. Acute lymphocytic leukemia

(ALL) is the most prevalent leukemia in children, whereas acute

myeloid leukemia (AML) is the most common malignant blood

malignancy in adults (Okikiolu et al., 2021). Hematologists use

numerous laboratory techniques to detect and diagnose leukemia.

The diagnostic methods begin with a microscopic morphological

inspection of the peripheral blood smear (PBS) and bone marrow

(BM) slides, followed by immunophenotyping and cytogenetic

analysis to further confirm the diagnosis of leukemia (Hegde

et al., 2018; Bain, 2005). Other methods include molecular

cytogenetics, long-distance inverse polymerase chain reaction

(LDI-PCR), and Array-based Comparative Genomic Hybridization

(aCGH). However, owing to the time and cost requirements of

these complicated techniques, microscopic blood tests are the most

common method for identifying leukemia subtypes (Ahmed et al.,

2019).

Traditional blood disorder detection based on visual inspection

of blood smears under a microscope is time-consuming, error-

prone, and restricted by the hematologist’s physical acuity (Amin

et al., 2015). Therefore, an automated optical image processing

system is necessary to facilitate clinical decision-making. Medical

image analysis has gained popularity in the biomedical world

owing to its potential to enhance disease detection, diagnosis,

and decision-making accuracy (Ben-Suliman and Krzyżak, 2018;

Elsayed et al., 2023; Chaurasia et al., 2024; Li et al., 2023).

Several medical image-based and machine-learning algorithms

have been proposed to identify leukemia, reduce the need for

human intervention, and ensure accurate clinical diagnosis (Hegde

et al., 2019; Baig et al., 2022; Bibi et al., 2020; Karar et al., 2022).

Artificial Intelligence (AI) is a broad term for devices that

imitate human intellect. Machine learning (ML), a subset of AI,

refers to teaching computer algorithms to generate predictions

based on experience (Hunter et al., 2022). It includes k-nearest

neighbors (KNN), support vector machine (SVM), random forest,

Extreme Gradient Boosting (XGBoost), and artificial neural

network (ANN) (Yue et al., 2022). Deep learning (DL) is a subset

of ML in which complex architectures similar to the linked neurons

of the human brain are created (Hunter et al., 2022). Deep

neural networks (DNNs), autoencoder networks (AEs), generative

adversarial networks (GANs), recurrent neural networks (RNNs),

and convolutional neural networks (CNNs) are examples of deep

learning methodologies (Patterson and Gibson, 2017). CNN is

among the most widely used deep learning (DL) networks. The

key advantage of CNN over its predecessors is that it automatically

recognizes significant traits without human intervention, making

them the most widely used (Alzubaidi et al., 2021). CNN-

based computerized deep learning algorithms have demonstrated

outstanding performance in the detection, segmentation, and

classification processes involved inmedical imaging (Nasr-Esfahani

et al., 2016). These include multiple predefined architectures with

varying degrees of complexity, such as AlexNet (Krizhevsky et al.,

2017), EfficientNet (Tan and Le, 2019), InceptionNet (Szegedy et al.,

2015), ResNet (He et al., 2016), and DenseNet (Huang et al., 2017).

Our systematic review and meta-analysis aimed to analyze and

cover all AI-based approaches for the detection and diagnosis

of AML. We reviewed multiple recent studies, including DL

techniques, intending to identify the overall accuracy and

sensitivity of these methods using microscopic PBS images.

2 Methods

This systematic review and meta-analysis was conducted

according to The Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) statement guidelines and all steps

were performed with strict adherence to the Cochrane Handbook

of Systematic Reviews and Meta-analysis. It was registered with

PROSPERO under registration number CRD42024501980.

2.1 Search strategy

We conducted a thorough search using relevant keywords,

such as “acute myeloid leukemia,” “artificial intelligence,” “deep

learning,” “machine learning, ” and other related terms. The

medical databases searched included PubMed, Web of Science, and

Scopus from inception until December 2023. No timeframe or

language restrictions were applied.

The detailed search strategy can be found in

Supplementary material 1.

2.2 Study selection

Screening was conducted by two independent authors in two

steps: Title/Abstract screening, followed by full-text screening. Any

conflicts were resolved through consensus or group discussion.

Our inclusion criteria were as follows: (1) utilization of

human AML peripheral blood smear samples, (2) employment

of AI techniques for diagnosing/classifying AML, (3) reporting

of performance metrics, recall (sensitivity), and accuracy, which

served as our main outcome measures; and (4) separate metrics

were provided for AML diagnosis, not an overall model accuracy.

Studies that did not meet these criteria were excluded to

ensure a focused and relevant analysis. The exclusion criteria

were as follows: (1) studies that discussed irrelevant topics

or diagnostic methods, such as acute promyelocytic leukemia

(APL), myelodysplastic syndrome (MDS), flow cytometry, protein

detection, or microarray gene algorithms; (2) studies investigating

the accuracy of image segmentation into blasts or leukocyte images

rather than whole images for disease classification; (3) studies with

the outcome of disease prognosis or identifying disease subtypes

(M1, M2, etc.); and (4) studies with incomplete data, case reports,

review articles, editorials, conference/meeting abstracts, guidelines,

and letters.
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2.3 Methodological quality assessment

The degree of bias was assessed using Quality Assessment of

Diagnostic Studies 2 (QUADAS-2). Comprehensively, we identified

four domains: patient selection, index test, reference standard, flow,

and timing. The first three domains were assessed for applicability.

The risk of bias was judged to be “low,” “high,” or “unclear.”

Signaling questions were included to help reach a judgment

regarding the risk of bias.

2.4 Data extraction

Data were extracted independently by two authors using

Microsoft Excel. Any disagreements were resolved by consensus

between the authors. The following data were extracted for each

study: number of patients/samples, total number of images used in

the validation sets after augmentation, classification task (binary

or multiclass), databases used with their reference standards,

use of classifiers, application of transfer learning, and type of

validation used.

In addition, the name of each author, publication year, country

where the study was conducted, type of study (prospective or

retrospective), and the design and algorithm architecture names of

AI systems were also retrieved.

3 Strategy for data synthesis and
statistical analysis

For the meta-analysis, we used the “metafor” and “metagen”

libraries in R to analyze the accuracy of the different models

used in the studies. The dataset for this analysis consisted of 24

models across 10 studies, each employing a variety of classifiers

including CNNs and SVMs. We used both common- and random-

effects models for data analysis and forest plots to improve data

visualization. The random-effects model allowed for the testing of

variability in effect sizes between the studies. The Z-value was used

to determine the statistical significance of the findings along with

the p-value. A larger z-value (in absolute terms) corresponds to a

smaller p-value, indicating that the observed effect is less likely to

occur by chance. The threshold for statistical significance was set

at P < 0.05.

To assess heterogeneity, the I2 statistic was calculated to

quantify the percentage of total variation across studies; values

above 60% indicated high heterogeneity. The H2 statistic, an

estimate of the ratio of total variability to sampling variability, was

additionally quantified alongside the “Q-value” which measures

the degree of variability in the results of different studies where

a high H∧2 value (>1.5) and large Q-value with a low p-value

(p < 0.05) suggests the presence of significant heterogeneity.

The Restricted Maximum Likelihood (REML) method was used

to further evaluate the estimated amount of total heterogeneity

(tau∧2). The standard error (SE) and the square root of Tau∧2

(tau) were used to quantify the uncertainty or variability in the

estimate of the heterogeneity, where a smaller SE and tau indicate

more precise estimates. Heterogeneity was considered statistically

significant when the two-tailed p-value was <0.05.

To evaluate the performance of the AI models, we conducted

a meta-analysis of studies that provided sufficient information on

accuracy and sensitivity. If a study provided several tables or values

for the different algorithms used, each model was treated as an

independent variable.

Funnel plots were generated and visually inspected to check for

publication bias.

4 Results

4.1 Study selection

A total of 2,565 records were recovered, 655 of which were

removed as duplicates. Following title and abstract screening, only

75 articles were deemed acceptable for full-text screening. Finally,

10 studies were eligible and included in our systematic review and

meta-analysis. A detailed PRISMA diagram illustrating the study

selection steps and the full PRISMA checklist are presented in

Figure 1 and Supplementary material 2, respectively.

4.2 Baseline characteristics of included
studies

We evaluated 10 studies (Baig et al., 2022; Bibi et al., 2020;

Karar et al., 2022; Sakthiraj, 2022; Shalini and Viji, 2023; Veeraiah

et al., 2023; Shawly and Alsheikhy, 2022; Kazemi et al., 2016;

Nagiub et al., 2020; Abhishek et al., 2023) On AML detection

that were performed between 2016 and 2023. These studies have

been conducted in various countries including Pakistan, Saudi

Arabia, the United States, India, Iran, and Egypt. They employed

both binary and multiclass classification tasks to distinguish

between different types of leukemia and healthy samples. Two of

these studies (Kazemi et al., 2016; Nagiub et al., 2020) used a

heterogeneous image set, including both PBS and bone marrow

data; however, they met all the necessary inclusion criteria to

participate in our analysis.

Regarding the type of AI algorithm used, most studies have

depended on DL algorithms. Specifically, CNNs were used in seven

studies (Baig et al., 2022; Bibi et al., 2020; Sakthiraj, 2022; Shalini

and Viji, 2023; Shawly and Alsheikhy, 2022; Nagiub et al., 2020;

Abhishek et al., 2023), GANs in two (Karar et al., 2022; Veeraiah

et al., 2023), and SVM in one (Kazemi et al., 2016). For the

selection of datasets, five studies (Bibi et al., 2020; Karar et al.,

2022; Sakthiraj, 2022; Shalini and Viji, 2023; Nagiub et al., 2020)

depended on images from online datasets such as the American

Society of Hematology Image Bank (ASH-bank) and the Acute

Lymphoblastic Leukemia Image Database for Image Processing

(ALL-IDB). At the same time, the rest of the studies either used

local data images from hospitals, and laboratories, or another

online dataset (namely, The Kaggle site) (Shawly and Alsheikhy,

2022).

The classification was mostly multi-class classification to

stratify images into AML, ALL, normal, or other leukemia types,

while only three studies performed binary classification (Shawly

and Alsheikhy, 2022; Kazemi et al., 2016; Nagiub et al., 2020).

Transfer learning was utilized in four studies, and classifiers

in five studies. Detailed characteristics of the included studies,
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FIGURE 1

The Preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 flow chart depicting the screening process for included

studies.

including the study design, chosen dataset, number of images used

(while applying image augmentation or not), and name of the AI

algorithm tested, among others, can be found in Tables 1, 2.

Table 3 summarizes the definitions, advantages, and limitations

of different AI models included in our study.

4.3 Assessment of the potential for bias
(Quality)

Quality assessment using the QUADAS-2 tool revealed an

overall low risk of bias and a low risk of applicability concerns, with

some unclarity regarding the flow and timing domains (Figure 2).

4.4 Data synthesis and meta-analysis

4.4.1 Accuracy
The common effect model yielded an accuracy of 1.0000

[0.9999; 1.0001], whereas the random-effects model yielded an

accuracy of 0.9557 [0.9312; 0.9802]. In the random-effects model,

the estimate of the overall accuracy was 0.9557 with a standard error

of 0.0125. The z-value was 76.5840, and the p-value was <0.0001,

indicating that the overall accuracy was significantly different from

chance (Figure 3).

The test for heterogeneity resulted in aQ-value of 410.1247 with

28 degrees of freedom, indicating significant heterogeneity among

the studies (p < 0.0001). The I2 and H2 statistics were 100.00%

and 94,583.49, respectively, suggesting a high level of heterogeneity.

Furthermore, heterogeneity among studies was quantified using

tau∧2 and tau. The Tau∧2 value was 0.0043 with a standard error

(SE) of 0.0012, and the tau (square root of the estimated Tau∧2

value) was 0.0659.

These results demonstrate the potential of artificial intelligence

in detecting leukemia with high accuracy. However, the high

level of heterogeneity suggests that the accuracy may vary

depending on the specific characteristics of the study, such

as the type of classifier used and whether transfer learning

was employed.
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TABLE 1 Characteristics of the included studies.

References Country Classification task
(binary or
multi-class)

Databases/datasets Design Reference
standard of
database

AML
samples/patient
count

Number after data
augmentation/image
selection

Baig et al. (2022) Pakistan Multi (AML vs. ALL vs. MM) Leukemia Diagnostics at
Munich University Hospital,
ISBI 2019 public dataset and
MiMM_SBILab Dataset.

Retrospective (hospital data
and online dataset)

Expert-based and
diagnoses per
standard guidelines

118 patients 307 AML random images

Bibi et al. (2020) Pakistan, Saudi
Arabia

Multi (AML vs. ALL vs. MM) ASH image bank and
ALL-IDB

Retrospective (online dataset) Peer-reviewed
images by
hematologists and
expert oncologists

55 samples 1,194 AML

Karar et al. (2022) Saudi Arabia Multi (AML vs. ALL vs.
Healthy)

ASH image bank and
ALL-IDB

Retrospective (online dataset) Peer-reviewed
images by
hematologists and
expert oncologists

77 AML No augmentation

Sakthiraj (2022) USA Multi (AML vs. ALL vs. CML
vs. CLL vs. Healthy)

ASH image bank Retrospective (online dataset) Peer-reviewed
images by
hematologists

56 AML samples 1,198 AML

Shalini and Viji
(2023)

India Multi (AML vs. ALL vs. CML
vs. CLL vs. Healthy)

ASH image bank and
ALL-IDB

Retrospective (online dataset) Peer-reviewed
images by
hematologists and
expert oncologists

104 blood smear images No augmentation

Veeraiah et al.
(2023)

India, Saudi
Arabia

Multi (AML vs. ALL vs. CML
vs. CLL)

N/A N/A N/A 301 AML random images No augmentation

Shawly and
Alsheikhy (2022)

Saudi Arabia Binary (AML vs. ALL) The Kaggle site Retrospective (online dataset) Expert oncologists 1,016 AML images (for
validation)

No augmentation

Kazemi et al. (2016) Iran Binary (AML vs. normal) Shariati Hospital pathology
laboratories (9 males and 8
females, aged 16–69 years old)

Prospective Clinical, blood, and
bone marrow
examination.

27 peripheral blood smear
and bone marrow slides of
AML patients

165 AML images

Nagiub et al. (2020) Egypt Binary (AML vs. normal) AML-IDB from the
Hematology Unit,
Department of Clinical
Pathology, Assiut University
Hospitals, Egypt (from 2017
to 2019)

Prospective (hospital data) Clinical data
(clinical history and
examination) and
laboratory data
(morphological,
cytochemical, and
immunophenotyping
assessment)
according to
hematologist’s
experience

206 AML images No augmentation

Abhishek et al.
(2023)

India Multi (AML vs. ALL vs. CML
vs. CLL vs. Healthy)

The Hematology section, the
Department of Pathology,
AIIMS Patna

Prospective (between May
2019 and February 2022)

Two experts’
opinions consensus

19 patients 250 AML images

ALL, Acute Lymphoblastic Leukemia; AML, Acute Myelogenous Leukemia; MM, Multiple Myeloma; CML, Chronic myeloid leukemia; CLL, Chronic Lymphocytic Leukemia; N/A, Not available; ASH-bank, The American Society of Hematology (ASH) Image Bank;

ALL-IDB, Acute Lymphoblastic Leukemia Image Database for Image Processing; AML-IDB, AML Image Database; AIIMS, All India Institute of Medical Sciences.
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TABLE 2 Types of models used and their specifications.

References AI Model
(SVM, CNN,
etc.)

Algorithm
architecture
name

Transfer
learning

Classifier Validation Dataset Main outcomes and conclusion

Baig et al. (2022) Hybrid CNN
models

CNN-1, CNN-2 Yes 5 types: SVM,
Bagging
ensemble, total
boosts, RUSBoost,
and fine KNN

N/A -Acute lymphoblastic
leukemia: 293 sample
-Acute myeloid leukemia:307
sample
-Multiple Myeloma:301
sample

This research developed an automated diagnosis tool for
ALL, AML, and MM. The dataset was pre-processed where
they found that the output images had already been
segmented. Two CCN models were trained in parallel to
extract features. The CCA Fused approach is used to
concatenate these derived features. The classifier receives
fused vectors (SVM, Bagging ensemble, total boost,
RUSBoost, Fine KNN). Using the Bagging ensemble design,
it achieved a 97.04 percent accuracy. As a result, pathologists
may find that this procedure aids in effective diagnosis.

Bibi et al. (2020) CNNmodels
(ResNet-34 and
DenseNet-121)

ResNet-34 and
DenseNet-121

Yes Not needed IV -ALL:
Before augmentation: 181
After augmentation: 1,079
- AML
Before augmentation: 55
After augmentation: 1,194
- CLL
Before augmentation: 38
After augmentation: 840
- CML
Before augmentation: 57
After augmentation: 1,243

In the proposed framework, an IoT-enabled microscope
uploads the blood smear images to the leukemia cloud.
Leukemia is diagnosed by using the ResNet-34 or
DenseNet-121 models. It is observed that the diagnosing
power of ResNet-34 and DenseNet-121 supersedes all the
previous approaches. By using data augmentation
techniques, ResNet-34 and DenseNet-121 both process large
numbers of image patterns. After diagnosis, the result is sent
to the doctor’s computer where s/he provides medical care
based on the test report through the IoMT framework.
Furthermore, the proposed framework facilitates the
patients in pandemics such as COVID-19.

Karar et al. (2022) Auxiliary
classifier with
Generative
Adversarial
Network model
(AC-GAN)

AC-GAN No Not needed Cross-validation -ALL: 179
-AML: 77
-Normal: 189

The proposed IoMT framework utilizes cloud computing
services to provide accurate online leukemia tests, saving
hematological efforts and lowering the required computing
resources. An advanced deep learning architecture, the
AC-GAN model, was developed to identify leukemia and its
two sub-classes. Compared with previous works, the
semi-supervised AC-GAN model showed promising
classification results for acute leukemias.

Sakthiraj (2022) Hybrid
Convolutional
Neural Network
with Interactive
Autodidactic
School
(HCNN-IAS)
algorithm

HCNN-IASO No Softmax-CNN
layer classifier
(based on
ResNet-34 and
DenseNet-121)

IV -Before augmentation:
Healthy: 190
CML: 58
CLL: 30
AML: 56
ALL: 182
-After augmentation:
Healthy: 1,291
CML: 1,244
CLL: 845
AML: 1,198
ALL: 1,082

The proposed approach is used to generate results and to
accurately identify and detect them. The data augmentation
technique involved is utilized to practice big datasets and
thus it processes large Leukemia images. The features from
Leukemia datasets are extracted by using our proposed
HCNN and further the attention layer in the HCNN is
exploited to fuse the extracted features. The softmax layer of
HCNN acts as a classifier and therefore it classifies the
leukemia dataset into several subtypes. Furthermore, the
accuracy of classification is optimized by utilizing Interactive
autodidactic school optimization techniques. Finally, the
optimized outcomes are sent to the medical
institution/hospital via an IoMT platform for further
processing. Based on the results retrieved, the
physician/doctor provides a diagnosis to the patients.

(Continued)
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TABLE 2 (Continued)

References AI Model
(SVM, CNN,
etc.)

Algorithm
architecture
name

Transfer
learning

Classifier Validation Dataset Main outcomes and conclusion

Shalini and Viji
(2023)

Hybrid Squeeze-
and-Excitation
Networks
(SENet)-based
CNN

SENet-CNN No Not needed IV The dataset included ALL,
AML, CALL, CML, and
healthy. Specifications of each
category weren’t mentioned.

The SENet-CNN models are used to determine the leukemia
diagnosis. Images of stained blood smears were segmented
into WBC nuclei, and then the article extracted pertinent
features to identify leukemia. The proposed SENet-CNN
method’s accuracy of 99.98% is more than that of the existing
classification methods.

Veeraiah et al.
(2023)

Mayfly
optimization with
Generative
Adversarial
Network
(MayGAN)

MayGAN No Not needed IV -Acute lymphoblastic
leukemia (ALL): 294
-Acute myeloid leukemia
(AML): 301
-Chronic lymphocytic
leukemia (CLL): 304
-Chronic myelogenous
leukemia (CML):301

This research created an automatic diagnosis tool for four
classes. Utilizing the suggested methods, the dataset was
pre-processed to reduce noise and blurriness and improve
image quality. This work discovered that the output photos
had already been segmented during pre-processing. The
strategy is valid and avoids the need for image segmentation.
It is found that the proposed MayGAN achieves 99.8% of
accuracy, 98.5% of precision, 99.7% of recall, 97.4% of
F1-score, and 98.5% of Dice Similarity coefficient (DSC).

Shawly and
Alsheikhy (2022)

8-layer CNN AlexNet No SVM IV 10,500 blood samples: 70% of
the dataset for training
purposes, 15% testing, and
15% validation. The dataset
included ALL, AML, and
healthy.

The proposed method can detect and classify ALL and AML
cancer with high precision and accuracy as proved by the
conducted experiments. Hence, it can be used in hospitals
and healthcare centers to support and assist hematologists
and laboratory technicians in their tasks. In addition, the
developed algorithm reaches an accuracy of nearly 99% in
detection and classification.

Kazemi et al.
(2016)

SVM Binary and
multi-SVM

No Not needed k-fold
cross-validation

-ALL: 750
-AML: 750

The proposed methods are relatively simple yet this
algorithm demonstrates satisfactory performance for the
diagnosis between AML patients and normal persons and
also for the detection of prevalent subtypes of AML. Hence,
the proposed algorithm can be used as an assistant
diagnostic tool for pathologists.

(Continued)
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TABLE 2 (Continued)

References AI Model
(SVM, CNN,
etc.)

Algorithm
architecture
name

Transfer
learning

Classifier Validation Dataset Main outcomes and conclusion

Nagiub et al.
(2020)

Pre-trained CNN
models

Alexnet, VGG16,
GoogleNet,
ResNet101, and
Inception-v3.

Yes Not needed IV −206 images of patients with
leukemia
-206 images of healthy normal
controls.

The statistical measures of the Inception-v3 performance
revealed promising results. The sensitivity, specificity, and
accuracy of Inception-v3 reached 99.98% for detection and
classification performed between the two classes in the data
set: normal control and leukemia. Inception-v3 required
only 0.2273 s to test each image in AML-IDB. Thus,
Inception-v3 is recommended as a robust automated
method for leukemia detection. It can act as a second
opinion in the disease diagnosis after a manual evaluation of
the disease by a hematologist to increase the consistency of
the laboratory practice on the daily diagnostic routine.

Abhishek et al.
(2023)

Pre-trained CNN
models

MobileNet,
DenseNet121,
ResNet152V2,
VGG16,
Xception, and
InceptionV3

Yes SVM, RF, and
FCL

5-fold
cross-validation

The database had 1,250
images. There are 250 images
of each class (normal, CLL,
ALL, CML, and AML.)
Microscopic images of two
sub-types of ALL (T-ALL and
B-ALL) and images of six
sub-types of AML (M0, M1,
M2, M3, M4, and M5) were
included

Pre-trained VGG16 along with SVM helped in achieving an
accuracy of 81%. When LTCL of VGG16 is also fine-tuned, it
helps in better classification of acute Leukemia along with
chronic ones. Hence, the overall classification accuracy of
classifiers also improved on the combined dataset. FCL as a
classifier achieved an accuracy of 80% whereas SVM as a
classifier achieved an accuracy of 84%. The features
responsible for classifying an image to a particular class are
visualized with the help of class-specific heatmaps generated
by the Grad-CAM technique.

CNN, Convolutional Neural Network; SVM, Support Vector Machine; KNN, K-nearest Neighbor; CCA, Canonical Correlation Analysis (CCA); IV, Internal Validation; ALL, Acute Lymphoblastic Leukemia; AML, Acute myelogenous leukemia; CML, Chronic

Myelogenous Leukemia; CLL, Chronic Lymphocytic Leukemia; MM, Multiple Myeloma; IoT, Internet of Things; IoMT, Internet of Medical Things; AML-IDB, AML Image Database; RF, Random Forest; FCL, Fully Connected Layers; LTCL, Last Three Convolutional

Layers; N/A, Not available.
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TABLE 3 Advantages and limitations of di�erent AI models.

Model Definition Advantages Limitations References

CNN- The convolutional neural network
is a machine learning model
effective in image recognition

-Accuracy
-Efficiency and Automation

-Need large training datasets
-Need powerful
computational approaches
-High computational cost
-Generalizability issues

Salehi et al., 2023; Sayyad
et al., 2023

Bagging ensemble
model

Bagging uses multiple models for
prediction. Each model is trained
on a subset of the data set, and the
predictions are averaged or
combined

-Reduce overfitting
-Stable and generalizable
model

-Poor sensitivity to outliers
-High computational cost
-High bias

Mohammed and Kora, 2023;
Ziyadullaev et al., 2024

Total boost model Boosting is a method for creating
an accurate classifier from simpler
classifiers

-Accuracy
-Generalizability

-Overfitting -Power
consumption

Ohn-Bar and Trivedi, 2016;
Chaudhary et al., 2024

KNN K Nearest Neighbors
(KNN)models are memory-based
models that are used for regression
and classification tasks

-Simplicity
-Efficient for large datasets
-Flexible

-Computational Complexity
-Sensitive to noisy data

Farid et al., 2022; Acito, 2023

SVM Support Vector Machine is a
machine-learning model used in
classification

-Few model parameters
-Simplicity and flexibility in
classification
-Effective for non-linear
classification

-High computational cost
-Kernel selection problems
-Performance issues in the
unbalanced datasets

Cervantes et al., 2020; Bhavsar
and Panchal, 2012; Shammi
et al., 2023; Diana et al., 2023

LPBoost Linear programming boosting
algorithm combines weak
classifiers through linear
programming to obtain a linear
combination

-Good at classification -Computational cost -Time
consuming

Zhang et al., 2021; Liu and
Vemuri, 2011

RUSBoost RUSBoost algorithm combines
random under-sampling and
boosting techniques

-Simplicity
-Short model training time
-Suitable for imbalanced data

-Data loss during model
development

Tanha et al., 2020; Seiffert
et al., 2008

DenseNet DenseNet is a deep-learning
algorithm consisting of multiple
layers

-Easy to train
-Improved gradients and
information flow
-Reduced overfitting

-Slow training time -High
computational cost

Zhou et al., 2022; Wang et al.,
2020; Huang et al., 2022

ResNet Residual Neural Network (ResNet)
is an artificial neural network used
for image recognition

-Accuracy
-Ability to extract and
categorize critical elements
from images

-Prone to overfitting
-Degradation problems

Duta et al., 2021; Ebrahimi
and Abadi, 2021

AC-GAN Auxiliary Classifier Generative
Adversarial Network is a generative
network that is used for various
learning problems

-Simplicity
-Accuracy
-Suitable for imbalanced data
sets
-Generates high-quality
images

- Low intra-class diversity
-Interpretability problems
-High computational cost

Mudavathu et al., 2018;
Gomathi et al., 2024; Hou
et al., 2022

HCNN-lASO -The Least Absolute Shrinkage and
Selection Operator (LASSO) is a
machine-learning tool
-Hierarchical CNN is an effective
model for knowledge transfer using
its hierarchical structure

-Solve multicollinearity
problems
-Enhanced interpretation
-Feature extraction
-Suitable for large-scale
images
-Robustness

-Computational complexity
-Problems with
feature selection

Kim et al., 2019; Xi et al., 2023
Khalajzadeh et al., 2013; Zhao
et al., 2024

SENet SENet is a convolutional neural
network structure that uses
Squeeze-and-Excitation Networks
to increase interconnections of
channels and function

-Reduced overfitting
-Enhanced model
performance
-Flexibility

-Computational cost Pragy et al., 2019; Liu et al.,
2018; Hu et al., 2018

GAN Generative Adversarial Networks
(GANs) are generative AI models
that generate and classify data

-Suitable for complicated data
-Enhance categorization

-Model training
consumes time -Gradient
vanishing -Instability issues

Sharma et al., 2024

AlexNet AlexNet is a CNN-based approach
used for image categorization

-High efficiency
-High speed
-Robustness

-High computational cost Amanollah et al., 2023

(Continued)
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TABLE 3 (Continued)

Model Definition Advantages Limitations References

VGG Visual Geometry Group is a
multiple-layer deep neural network
architecture

-Simplicity
-Feature learning ability

-Limited scalability -Larger
parameters need
large memory -High
computational cost

Guan et al., 2019; Zhou et al.,
2021; Zakaria and Mohmad
Hassim, 2023

GoogleNet - GoogLeNet is a deep learning
structure that combines and
extracts features from the input

-Extract rich image features
-High accuracy

-High
computational performance
-Model’s implementation
consumes time

Chen et al., 2023

Inception Inception is a convolutional
architecture that extracts features
from images

-Suitable for complex
structures
-Accuracy

-Complex -Difficult
to modify -Underfitting

McNeely-White et al., 2020;
Jing et al., 2023

RF A random forest is a supervised
machine learning that consists of
several trees

-Suitable for large datasets
-High accuracy
-Flexibility
-Fast to train

-Overfitting -Not suitable for
unbalanced data -Sensitive
to hyperparameters

Zhu, 2020

CNN, Convolutional Neural Network; KNN, K-Nearest Neighbors; SVM, Support Vector Machine; LPboost, Linear Programming Boosting; RUSBoost, Random Under-sampling Boost;

ResNet, Residual Network; AC-GAN, Auxiliary Classifier Generative Adversarial Network; HCNN, Hierarchical Convolutional Neural Network; LASSO, Least Absolute Shrinkage and Selection

Operator; GAN, Generative Adversarial Network; VGG, Visual Geometry Group; RF, Random Forest.

FIGURE 2

Quality Assessment of included studies using QUADAS-2 tool.

4.4.2 Sensitivity
In this meta-analysis, both the common and random effects

models yielded high sensitivity values of 1.0000 and 0.8581,

respectively, suggesting that the machine learning models used in

the studies were effective in correctly identifying true positive cases

of leukemia. In the random-effects model, the overall sensitivity

was estimated to be 0.8581 with a z-value of 18.33 and a p-value

of< 0.0001, which indicates that this sensitivity significantly differs

from chance (Figure 4). Several models achieved 100% sensitivity

in the diagnosis of leukemia such as KNN, LPboost, Inception,

and DenseNet-based models. The VGG16+RF and the fine-tuned

VGG16+RF models in Abhishek et al. (2023) had the lowest

sensitivity (12% and 20%, respectively).

The test for heterogeneity yielded a Q-value of 3,919.31

with 28 degrees of freedom. A p-value of 0 indicates significant

heterogeneity among the studies, suggesting that the variability

in study outcomes is due to real differences in effect sizes rather

than chance. The I2 statistic was 99.3%, indicating a high level

of heterogeneity, which was further confirmed by an H2 value

of 11.83.

Furthermore, the Tau∧2 was 0.0633, with an SE of 0.0012 and

tau of 0.2516, which provided additional information about the

heterogeneity among the studies.

4.5 Publication bias

Funnel plots were created to detect potential biases or

systematic heterogeneity. The asymmetry observed in the plots

suggests potential publication or other bias, indicating that smaller
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FIGURE 3

Forest plot for analyzing the accuracy of the di�erent models used across the studies. CI, confidence interval.

studies with positive outcomes are more likely to be published.

Several studies appeared outside the funnel shape. This may be

due to a small sample size, poor study design, or heterogeneity

(Figures 5, 6).

5 Discussion

Our meta-analysis aimed to analyze the diagnostic accuracy

of AI methods in identifying and diagnosing AML, which

revealed significant findings regarding the performance

of machine-learning models in such detection. Both the

common effects and random effects models demonstrated

high accuracy, with values of 1.0000 and 0.9557 respectively.

However, there was significant heterogeneity among the

studies, as indicated by a Q-value of 410.1247 and I2 statistic

of 100%. Additionally, both models showed high sensitivity

for correctly identifying true-positive cases of leukemia,

with values of 1.0000 and 0.8581, respectively. Nevertheless,

sensitivity also demonstrated significant heterogeneity among

the studies, as shown by a Q-value of 3,919.31, and an I2 statistic

of 99.3%.

The significant heterogeneity in the accuracy results suggests

that the accuracy of each model may vary depending on the specific

characteristics of each study, such as the type of classifier used and

whether transfer learning is employed. Baig et al. (2022) initially

tested two CNN models for proper identification of AML from

ALL or healthy cells. Subsequently, they applied multiple classifier

models using fusion methods, such as the Bagging Ensemble and

the RUSboost, aiming to combine the complex feature vectors of

CCN-1 and CNN-2, thus improving the prediction performance.

On the other hand, other studies, such as Bibi et al. (2020), Kazemi

et al. (2016), and (Nagiub et al., 2020) only focused on the main ML

model used without any further classifications, where they yielded

satisfactory results. Suchmixed approaches have resulted in varying

ranges of accuracy and subsequent overall heterogeneity.

Remarkably, Baig et al. (2022) used traditional ML models.

This was justified by the need to minimize the computation

of the network used. Training a deep learning network can

take several hours or even days, whereas traditional machine

learning models require a few minutes. The use of a DL

model such as a CNN while training it using a traditional ML

classifier displayed quite remarkable results compared to DL. This

can be attributed to the limited dataset sizes, where training

complex DL models usually requires larger datasets (Sarker,

2021). Furthermore, leukemia microscopic images can be complex,

containing nuanced morphological and textural characteristics that

may be difficult for DLmodels to extract reliably. Such factors could

potentially contribute to traditional MLmethods, which sometimes

outperform DL methods.
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FIGURE 4

Forest plot for analyzing the sensitivity of the di�erent models used across the studies. CI, confidence interval.

FIGURE 5

Precision funnel plot of the estimated e�ects from studies on artificial intelligence model performance accuracy.

Transfer Learning was another common variable among the

included studies. Some authors prefer to work with pre-trained

models to speed up the results and generate faster outcomes.

In particular, one model is that of Abhishek et al. (2023),

who tested multiple pre-trained CNN models and subsequently

chose the top-performing model (VGG16) for further fine-tuned

analysis. However, other studies preferred to train their models

from scratch, including Shalini and Viji (2023) who trained a

squeeze-and-excitation network (SENet)-based CNN model on a

hybrid dataset of blood smear images by combining both the ASH-

bank and the ALL-IDB to complement the data. Heterogeneity is

further magnified through these vast differences between testing

models; however, this is expected due to the continuous evolution

of the ML and DL worlds. Notably, most studies demonstrated

closely related statistics, except for the models used by Abhishek

et al. (2023), which demonstrated lower values for both accuracy
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FIGURE 6

Precision funnel plot of the estimated e�ects from studies on artificial intelligence model performance sensitivity.

and sensitivity. However, this most likely cannot be attributed

to transfer learning as a concept in general, as various other

studies have used it, and the results are promising. A possible

rationale for the poor performance of these models could be

the variation in the training dataset domain between the CNN

models and the deep transfer learning dataset. Their study involved

deep transfer learning using a microscopic blood smear dataset;

therefore, there is a potential for negative transfer because the

pre-trained CNN models were trained on the ImageNet dataset,

which only comprises real-life images, resulting in the overall low

accuracy of the models.

A few important elements that can have a significant

impact on the AI model performance are feature extraction,

data augmentation, data source and size, and model design.

For instance, traditional machine learning techniques frequently

depend on domain-specific feature engineering, in which experts

manually identify and extract pertinent features from data (Gibert

et al., 2022). On the other hand, deep learning models can

automatically learn features by utilizing the hierarchical structure of

the network; nevertheless, the model architecture and training data

affect the quality of the learned features (Gibert et al., 2022). Ideally,

a combination of both approaches could significantly enhance

detection systems, as previously mentioned by Baig et al. (2022).

Finally, image augmentation was a common factor in almost half of

the included studies (Baig et al., 2022; Bibi et al., 2020; Sakthiraj,

2022; Kazemi et al., 2016; Abhishek et al., 2023) and performed

better in training their sets on a larger number of samples. This

helped to increase the diversity and size of the training dataset,

which is an important aspect for DL models to yield better results.

Additionally, the origin of the data, whether from one or more

sources, can also have an impact on how well the model handles

variances and real-world situations. Over half of the included

studies utilized online datasets, which could have been beneficial

in enhancing their sensitivity and accuracy, as they included data

from multiple sources rather than a single area/hospital.

Internet of Medical Things (IoMT) is a common term observed

in three studies included in our review (Bibi et al., 2020; Karar

et al., 2022; Sakthiraj, 2022). It is essentially a medical device

that communicates with Wi-Fi and smart computer networks

(Ud Din et al., 2019). Smart medical gadgets use sensors and

computational resources to provide healthcare in various settings,

including homes, clinics, hospitals, healthcare facilities, and basic

communities (Khan et al., 2020). Consequently, they are linked

to cloud platforms for data analyses and processing. Linking

patients to doctors and securely transferring medical data reduces

the strain on health systems, allowing for the accurate remote

examination, diagnosis, and treatment of many disorders (Awan

et al., 2021; Almogren et al., 2021). Bibi et al. developed a model

utilizing ResNet-34 and DenseNet-121, with promising accuracy

(Bibi et al., 2020). Karar et al. (2022) established a GAN classifier

integrated within an IoMT framework for multiclass classification

of ALL, AML, and normal blood images. Finally, the last study

(Sakthiraj, 2022) used a hybrid Convolutional Neural Network

with an interactive autodidactic school (HCNN-IAS) algorithm,

which has multi-performance effects in terms of feature extraction,

fusing, and classification operations. The proposed methodology

allowed for higher classification accuracy in terms of the detection

of different leukemia classes, with an accuracy of approximately

99%. All these approaches utilizing the IoMT architecture allow

doctors to provide medical care based on test results supplied to

their computers after diagnosis, which in turn is of promising value

for optimized patient care.

Different methods of outcome reporting are one noticeable

concern that varied across the studies. For instance, some studies

reported the area under the curve (AUC) and false positive rate,

whereas others produced results in terms of precision and F-

1 scores. Therefore, it is necessary to define precise reporting

guidelines for diagnostic accuracy studies evaluating AI procedures

to unify the reporting methods among similar studies and to aid

in performing homogenousmeta-analyses. Examples of anticipated

work in progress include STARD-AI (Sounderajah et al., 2020)

and TRIPOD-AI (Collins and Moons, 2019). The QUADAS-2

assessment tool was used to systematically assess the risk of bias

and applicability in diagnostic accuracy studies. However, this tool

was not specifically designed for DL diagnostic accuracy studies.

The unique nature of ML and DL studies requires the creation

of a novel specific and unified quality assessment tool for all

healthcare-related AI tools (Aggarwal et al., 2021).

AI has been used for image diagnosis in similar studies in which

comparable findings were found. For instance, Sampathila et al.

(2022) tested a CNN model for diagnosing ALL, and the results

showed a high performance, as evidenced by an accuracy of 95.54%,

specificity of 95.81%, and sensitivity of 95.91%. Additionally,

Ghaderzadeh et al. (2021) performed a systematic review of studies
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classifying leukemia usingML on PBS images and found an average

accuracy of >97%. Furthermore, Rawat et al. (2017) introduced

a computer-assisted classification framework using SVM, which

achieved a maximum accuracy of 99.5% for screening AML and

ALL blast cells. Deep convolutional networks are also used in

detecting the ratio of WBCs in peripheral blood smear analysis.

The proposed model relied on hyperspectral imaging technology

(HSI), which combines conventional imaging and spectroscopy to

produce 3-dimensional data. The model achieved 97.72% accuracy

in the WBC classification (Wang et al., 2021). Wang et al.

(2017) developed an AI-based model to identify lymphoblast and

lymphocytes and diagnose ALL. The model combined spectral and

spatial information achieving 92.9% accuracy (Wang et al., 2017).

This highlights the potential of AI models in the diagnosis of

different types of leukemia.

However, all of these studies focused on detecting either

ALL alone or leukemia in general, with no prior meta-analyses

evaluating the diagnostic accuracy of whole PBS images for AML.

This highlights the uniqueness of our analysis in both the detection

of AML and the use of whole images rather than leukocyte/blast-

cell images.

6 Limitations and strengths

Our study has several limitations. First, a high level of

heterogeneity was observed between the included studies. This

is probably because of the continuous change in the ML

and AI worlds, where multiple methods of data augmentation,

classification, transfer learning, and feature extraction are used.

The varying sample sizes and number of images used between

studies are another limitation that could affect the results. Most

of the included studies additionally utilized ASH-bank as the main

dataset for model training; thus, the generalizability of our findings

regarding diagnostic performance in different clinical settings is

limited. Another drawback is that the counts needed to reconstruct

the 2 × 2 tables of results for each study were not always provided;

thus, analysis of more diagnostic metrics, such as specificity, was

limited. Moreover, one of the main differences between these

studies was the application of a data augmentation technique to

the training and testing sets. Such an application can result in a

misleadingly higher accuracy than the genuine value; therefore, the

results are not always realistic. Finally, the potential publication bias

was presented, where most of the models with positive results are

likely to be the ones published disregarding others that might affect

our interpretation of the overall AI accuracy.

On the other hand, to the best of our knowledge, this is the first

systematic review with a meta-analysis specifically on the accuracy

of AI models in diagnosing AML. Previous studies have frequently

focused on single-cell classification or used preprocessed images,

limiting applications to real-world situations. Our focus on the

analysis of whole PBS images mitigated this issue and enhanced

overall accuracy.

7 Conclusion and future directions

In conclusion, our systematic review and meta-analysis found

an overall high accuracy and sensitivity of AI models in correctly

identifying true-positive cases of Acute Myeloid Leukemia. This

is the first study to compare artificial intelligence-related studies

discussing the diagnosis of AML in particular rather than ALL or

Leukemia diagnoses in general.

Future research should focus on assessing multiple

performance measures to assess every possible outcome related

to the tested model. The unification of accuracy, sensitivity, and

specificity for each cancer type, rather than an overall average,

would be more valuable in allowing for the proper critical appraisal

of each model in terms of properly identifying AML.

Additionally, additional work related to the advancement

of DL-based diagnostic tools as an IoMT approach is highly

intriguing. Cancer treatment is a complicated process and the

ability to diagnose samples through an accurate IoMT device with

fewer hospital visits, especially during epidemics and pandemics

like the recent COVID-19, would be extremely beneficial,

especially if the future models delve deeper into the diagnosis of

different subtypes.

8 Summary

Leukemia is the 10th most common type of cancer globally,

and acute myeloid leukemia (AML) is the most commonmalignant

blood cancer in adults.

Microscopic blood testing is the most common method used to

identify leukemia subtypes. An automated optical image processing

system employing artificial intelligence (AI) has recently been

used to aid clinical decision-making, although its performance and

accuracy remain unclear.

We aimed to assess the effectiveness of all AI-based techniques

in the detection and diagnosis of AML using a systematic review

and meta-analysis.

We discovered that AI models are often quite accurate and

sensitive for properly recognizing true-positive cases of AML.

Future research should focus on harmonizing AI-

based diagnostic reporting techniques with performance

assessment criteria.
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