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E�cient enhancement of
low-rank tensor completion via
thin QR decomposition

Yan Wu and Yunzhi Jin*

Yunnan Key Laboratory of Statistical Modeling and Data Analysis, Yunnan University, Kunming, China

Low-rank tensor completion (LRTC), which aims to complete missing entries

from tensors with partially observed terms by utilizing the low-rank structure

of tensors, has been widely used in various real-world issues. The core tensor

nuclear norm minimization (CTNM) method based on Tucker decomposition is

one of common LRTC methods. However, the CTNM methods based on Tucker

decomposition often have a large computing cost due to the fact that the general

factor matrix solving technique involves multiple singular value decompositions

(SVDs) in each loop. To address this problem, this article enhances the method

and proposes an e�ective CTNM method based on thin QR decomposition

(CTNM-QR) with lower computing complexity. The proposed method extends

the CTNM by introducing tensor versions of the auxiliary variables instead of

matrices, while using the thin QR decomposition to solve the factor matrix rather

than the SVD, which can save the computational complexity and improve the

tensor completion accuracy. In addition, the CTNM-QR method’s convergence

and complexity are analyzed further. Numerous experiments in synthetic data,

real color images, and brain MRI data at di�erent missing rates demonstrate that

the proposed method not only outperforms in terms of completion accuracy

and visualization, but also conducts more e�ciently than most state-of-the-art

LRTC methods.

KEYWORDS

auxiliary variable tensor, tensor nuclear norm minimization, thin QR decomposition,

Tucker decomposition, Tucker rank

1 Introduction

With the rapid development of human needs and Internet technology, the scale of data

acquired by people has expanded. Tensor data, such as third-order color images, fourth-

order video sequences, and hyperspectral images, are now ubiquitous. At present, tensors

are widely used in machine learning (Bai et al., 2021; Panagakis et al., 2021), computer

vision (Kajo et al., 2019), image processing (Miao et al., 2020), etc., and are better at

expressing the complex internal structure of higher-order data than vectors and matrices.

However, due to data transmission and storage limitations, practical applications often face

missing or corrupted observation tensor entries, which directly affect the quality of tensor

analysis. Consequently, utilizing the observation part for missing tensor completion is a

prominent research topic.

Conventional methods of completion involve matrixization or vectorization of

the tensor, which leads to dimensionality catastrophe in addition to destroying the

spatial structure of high-order data. The aim of low-rank tensor completion (LRTC),
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a multidimensional expansion based on low-rank matrix

completion (LRMC) (Candes and Recht, 2012; Xu et al., 2021), is

to estimate missing terms (Zhou et al., 2018) by utilizing spatial

correlation between tensor terms. LRTC is crucial for tensor

processing and analysis. Several researches (Kolda and Bader, 2009;

Liu et al., 2013; Zhao et al., 2020) have demonstrated that there is

a significant quantity of redundant information in natural tensor

data, which is typically low-rank or virtually low-rank, such as

photos and videos. Figure 1 displays the distribution of singular

values for the three channels of the color image. It can be observed

that the majority information of the image is stored in only a few

of the bigger singular values, its low rank structure is notable. This

tensor property encourages the development of low-rank tensor

estimation and completion problems, and it has been proactively

applied in real-world problems like multi-channel image and

video completion (Liu et al., 2013; Su et al., 2022), audio source

separation (Yoshii et al., 2018), etc.

In the two-dimensional case, the rank is a strong tool for

capturing global information about the data, but the definition

of the tensor rank is not as explicit as that of the matrix, and

the fundamental issue is that the definition of the tensor rank is

not unique. The CANDECOMP/PARAFAC (CP) tensor rank is

defined as the minimum number of rank-1 tensors needed in the

CP decomposition. Nevertheless, CP rank determination is an NP-

hard problem (Hillar and Lim, 2013), and there isn’t always an

optimal low CP rank approximation, which may result in a poor

fit in real-world applications (Qiu et al., 2022). Another is the

Tucker rank derived from the Tucker decomposition, defined as a

vector composed of the ranks of mode unfolding matrices, which

is extensively employed in LRTC driven by its superior compute-

ability. In recent years, tensor train (TT) rank (Oseledets, 2011),

tubal rank (Zhang and Aeron, 2016; Zhou et al., 2018), tensor ring

(TR) rank (Yuan et al., 2019a), tensor tree rank (Liu et al., 2019b),

etc. have also been successively proposed to provide an effective way

to deal with the LRTC problem.

Owing to the nonconvex nature of the rank function,

contemporary LRTC approaches predominantly employ the tensor

nuclear norm as a convex substitute for the rank function.

Liu et al. (2013) pioneered the definition of the tensor nuclear

norm, modeled the LRTC as a convex optimization problem, and

suggested three efficient algorithms to solve the LRTC problem.

Shang et al. (2017) introduced a novel method for fuzzy dual

nuclear norm minimization. In a related development, Bengua

et al. (2017) leveraging the TT rank, proposed the SiLRTC-TT and

TMac-TT models. These algorithms have significantly contributed

to addressing the LRTC problem. Nevertheless, the majority of

algorithms relying on tensor nuclear norm minimization (TNNM)

encounter challenges associated with the elevated computational

expense incurred by multiple SVDs. In addressing this issue, Liu

et al. (2014a) formulates a novel tensor completion approach

by imposing nuclear norm constraints on the factor matrices

of CP decomposition. Shi et al. (2017) presented a tensor

rank estimation approach based on l1-regularized orthogonal CP

decomposition. Liu (2013) builds upon the TNNM, introduces the

Tucker decomposition, and proposes a Core Tensor Nuclear Norm

Minimization (CTNM) completion model.

While the CTNM model reduces the computational burden to

a certain degree, the introduction of the Tucker decomposition

inevitably involves the iterative solution of the factor matrix. A

higher-order expansion of the matrix SVD to the tensor, the Higher

Order SVD (HOSVD) (De Lathauwer et al., 2000a; Chao et al.,

2021) was first proposed. De Lathauwer et al. (2000b) introduced

the Higher-Order Orthogonal Iteration (HOOI) approach, which

initializes the HOSVD solution, to boost approximation accuracy.

These factor matrix solution techniques also involve multiple SVDs

of tentor matricizations in the loop iterations, which surely places

some computing strain on the CTNM model and contributes to

its still-relatively-slow convergence rate. Building upon the insights

from Shi et al. (2015), we adopt the thin QR decomposition,

as opposed to HOOI, to address the factor matrix. We propose

an efficient CTNM-QR model that circumvents the necessity for

SVD in factor matrix resolution, thereby enhancing the algorithm’s

computational productivity. The principal contributions of this

article are as follows:

(1) An enhanced CTNM-QRmodel is proposed, via introducing

tensor versions of the auxiliary variables instead of matrices,

while using the thin QR decomposition to solve the factor

matrix instead of HOOI, which avoids the computation

of multiple SVDs in each loop and minimizes the

computational cost to a certain extent, thus speeding up the

process.

(2) The complexity and convergence performance of the

proposed method are analyzed. Compared with the

state-of-the-art LRTC methods, the proposed method

saves computational complexity, and is consistent with

the generalized higher-order orthogonal iteration (gHOI)

algorithm (Liu et al., 2014b) in terms of the algorithm’s

primary computational cost.

(3) The CTNM-QR model is applied to synthetic tensors, color

images, and medical MRI scans for completion, validating

the accuracy and efficacy of the enhanced algorithm.

The rest of the paper is organized as follows. We give the

tensor notation and review some related work in Section 2. In

Section 3, the proposed CTNM-QR method is described in detail,

and the convergence and complexity of the CTNM-QR method

are analyzed. In Section 4, we offer experimental analysis and

completion results to validate the proposed algorithm. Finally, the

paper is summarized in Section 5.

2 Notations and background

In this section, we introduce some notation and background of

the tensor and tensor completion. Throughout this article, we use

lowercase letters to denote vectors, e.g., a, b, uppercase letters for

matrices, e.g., A,B, and uppercase fancy letters for tensors of order

three and above, e.g.,A,X. The ith element of a vector a is denoted

as ai, the element of a matrix A with index (i, j) is denoted as aij,

and the elements of a N-order tensor X ∈ R
I1×I2×···IN are denoted

as xi1 ,i2 ,··· ,iN .
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FIGURE 1

Illustration of the low-rank property of natural color image. (A) A three-dimensional low rank color image X with dimensions 800× 600× 3 (taken

from https://www.pexels.com/jacquemay dominique). (B) Singular value distribution of the first channel X(:, :, 1). (C) Singular value distribution of the

second channel X(:, :, 2). (D) Singular value distribution of the third channel X(:, :, 3).

2.1 Tensor concepts and terminology

In this subsection, we first introduce some fundamental tensor

concepts and terminology. An extensive review of tensors are

discussed in Kolda and Bader (2009).

For the definition of a tensor, there are several definitions at

different abstraction levels (Boumal, 2023). Here, an Nth-order

tensor is defined as a multidimensional array with N dimensions

(N > 2), which is an extension of a matrix to higher order. Here, N

represents the order of the tensor and the number of dimensions

of the tensor, also known as modes. Analogous to the rows and

columns of a matrix, we can create subarrays by fixing some of the

given tensor’s indices. A fiber of a tensor is a vector created by fixing

all but one index of a particular mode (Filipović and Jukić, 2015). A

third-order tensor X has row, column and tube fibers, denoted by

x(:, j, k), x(i, :, k), x(i, j, :), respectively. A slice of a tensor is defined

as a two-dimensional matrix, obtained by fixing all but the indices

of two particular modes, e.g., a third-order tensor with horizontal,

lateral, and frontal slices, denoted by x(i, :, :), x(:, j, :), and x(:, :, k),

respectively.

We can also transform a tensor into a matrix via reordering

the elements of an Nth-order tensor, known as matricization,

unfolding or flattening. The mode-n unfolding of an Nth-order

tensor X ∈ R
I1×I2×···×IN is obtained by keeping the nth mode

fixed and concatenating the slices of the rest of the modes into one

long matrix, denoted by X(n), which is an In ×
∏

j6=n Ij matrix for

n = 1, 2, · · · ,N, where the symbol
∏

is continued product. The

tensor element (i1, i2, . . . , iN) is mapped into the element
(
in, j

)
of

the matrix X(n), where

j = 1+
N∑

k=1,6=n

(ik − 1) Jk, Jk =
k−1∏

m=1,6=n

Im.

The mode-n product of a tensor X ∈ R
I1×I2×···×IN with a

matrixU ∈ R
J×In is denoted asX×nU ∈ R

I1×···×In−1×J×In+1×···×IN .

If there exists a series of distinct modes, the order of multiplication

in the mode-n product is independent, that is,

X×m A×n B = X×n B×m A(m 6= n).

According to the mode-n unfolding of the tensor, we have the

following formula

Y = X×n U ⇔ Y(n) = UX(n).

The inner product of two tensors X ∈ R
I1×I2×···×IN and Y ∈

R
I1×I2×···×IN with the same size is denoted as a sum of the products

of the corresponding elements, that is,

〈X,Y〉 =
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .
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By an extension of the matrix property, the Frobenius norm of

the tensorX ∈ R
I1×I2×···×IN is defined as the square root of the sum

of the squares of all elements:

‖X‖F =
√
〈X,X〉 =

√√√√
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

x2i1i2···iN .

The distance between the tensor X and Y is defined as ‖X− Y‖F .
The Kronecker product of two matrices A ∈ R

I×J and B ∈
R
K×L is denoted by A ⊗ B, and yields a matrix of size (IK) × (JL),

defined as:

A⊗ B =




a11B a12B . . . a1JB

a21B a22B . . . a2JB
...

...
. . .

...

aI1B aI2B . . . aIJB



.

2.2 Tensor decomposition

Tensor decomposition refers to expressing a tensor as a

sequence of elementary operations on other simple arrays. There

are many tensor decompositions. We introduce two major

tensor decompositions, including CANDECOMP/PARAFAC (CP)

decomposition (Cattell, 1944) and Tucker decomposition (Tucker,

1963).

For a given tensor A ∈ R
I1×I2×···×IN , the CP decomposition

is defined as the factorization of A into the minimum number of

linear combinations of rank-1 tensors:

A =
R∑

r=1

λra
(1)
r ◦ · · · ◦ a(N)

r ,

where “◦” denotes the outer product of vectors, and a
(k)
r ∈ R

Ik (k =
1, 2, · · · ,R) is the factor vector.

The Tucker decomposition is based on an extension of the

CP decomposition, a form of higher-order principal component

analysis. The Tucker decomposition of the tensor A is expressed

as:

A ≈ C×1 U1 × · · · ×N UN ,

where C ∈ R
R1×R2×···×RN is the core tensor and denotes the degree

of interaction between the different components, and Un ∈ R
In×Rn

is the nth-mode factor matrix, denoting the principal components

on each mode, usually orthogonal. In general, Rn is much smaller

than In for n = 1, · · · ,N, so the core tensor C can be considered

as a compressed version of the original tensorA, which reduces the

computational complexity to some extent.

The matricized form of the Tucker decomposition is as follows:

A(n) = UnC(n) (UN ⊗ . . . ⊗ Un+1 ⊗ Un−1 ⊗ . . . ⊗ U1)
T .

The Tucker-rank of the Nth-order tensor A ∈ R
I1×I2×···×IN ,

also known as the multilinear rank (Kasai and Mishra, 2016), is

FIGURE 2

Illustration of the Tucker decomposition of a third-order tensor.

denoted as an N-dimensional vector composed of the ranks of the

various mode unfolding matrices of the tensor:

ranktc(A) =
(
rank

(
A(1)

)
, rank

(
A(2)

)
, · · · , rank

(
A(N)

))
(1)

where rank
(
A(n)

)
is the rank of the mode-n unfolding matrices,

representing the dimension of the vector space spanned by the

mode-n fiber. In contrast to the CP rank, the Tucker-rank can be

easily obtained by computation, while the CP rank can only be

determined empirically or by multiple experimental comparisons

to search for the optimal value (Mu et al., 2014). Diagram of the

Tucker decomposition of a third-order tensor is shown in Figure 2.

2.3 Low-rank tensor completion

The LRTC aims to infer and fill missing entries of the tensor

from partially observed values via utilizing the low-rank structure

of the tensor, which is an extension of the low-rank matrix

completion.

Let M ∈ R
p×q be the observed incomplete matrix and � be

the index set, i.e., the observed positions of the matrix elements.

Recovering the matrixM based on the observed partial elements is

referred to as low-rank matrix completion, that is,

min
X

rank(X), s.t. X� = M�, (2)

where the complete matrix X ∈ R
p×q is obtained via the above

optimization problem with constraints.

As a broadening of the low-rank matrix completion

(Equation 2), the LRTC (Ji et al., 2009; Liu et al., 2013; Yuan

et al., 2019a) is formulated as the following optimization problem:

min
X

rank(X), s.t. X� = T�,

where X,T ∈ R
I1×I2×···×IN , T is the incomplete tensor containing

the missing elements, and X is the completed tensor. The

optimization problem is built with a rank minimization constraint,

which ensures that the output tensor has the lowest rank possible

for tensor completion. In the LRTC, there is also a category

of optimization based on tensor decomposition, formulated as

minimizing the discrepancy between the real observations and the

predicted values to complete the missing entries under the given

tensor rank. That is,

min
X

: ‖X� − T�‖2F , s.t. rank(X) = R,
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where R is a bounded constraint on the rank of theX and the tensor

X fulfills a specific tensor decomposition model. The traditional

models are the completion models based on the CP and Tucker

decompositions, e.g., the optimizationmodel for tensor completion

using CP decomposition is stated as follows:

min
X

‖X� − T�‖2F , s.t. X =
R∑

r=1

λra
(1)
r ◦ · · · ◦ a(N)

r .

The LRTC algorithm minimizing tensor rank is more widely

used because the low-rank decomposition-based completion

algorithm is impractical in some situations in reality, especially

it is difficult to select an appropriate tensor rank for use in the

algorithm when there are few observed elements. However, since

the tensor rank is not unique, this makes the LRTC algorithm very

challenging (Liu et al., 2013). Besides the CP rank and the Tucker

rank in Equation (1), there are various forms of tensor rank, such

as TT rank, tubal rank, TR rank, etc. Selecting one of these forms

will result in different LRTC models.

2.4 Tensor nuclear norm minimization

In the LRTC, since the computation of the tensor CP rank

is an NP-hard problem (Hillar and Lim, 2013) and the Tucker

rank has the excellent property of being easy to compute, optimal

completion models based on the Tucker rank of the tensor are

widely used (Romera-Paredes and Pontil, 2013; Liu et al., 2019a;

Yu et al., 2023). That is,

min
X

N∑

i=1

αirank(X(i)), s.t. X� = T�, (3)

where the parameters αi are pre-specified weights and satisfy αi ≥
0,

∑
αi = 1. The Tucker rank of the tensor is represented in

the form of a weighted sum. Gandy et al. (2011) suggests the

unweighted model of αi = 1(i = 1, 2, · · · ,N).

Since the rank of the matrix is non-convex, it is difficult to

guarantee to finding a globally optimal solution in the optimization

(3). Since the nuclear norm of the matrix is shown to be the tightest

convex envelop of the matrix rank (Candes and Recht, 2012), the

completion model based on the nuclear norm minimization is

proposed as follows:

min
X

N∑

i=1

αi

∥∥X(i)

∥∥
∗ , s.t. X� = T�, (4)

where the nuclear norm ‖X(i)‖∗ =
∑

j σj(X(i)), and σj(X(i))

denotes the j-th largest singular value of the matricization X(i).

The
∑N

i=1 αi

∥∥X(i)

∥∥
∗ is defined as the nuclear norm of the

tensor X, denoted as ‖X‖∗. The tensor nuclear norm is also

known as the tensor schatten-q norm (Ji et al., 2009; Signoretto

et al., 2010). Based on the nuclear norm, the concept of low-

rank matrix completion is generalized to high-dimensional data,

where the low-rank property of the tensor is often used as a

necessary assumption to limit the degrees of freedom of missing

entries (Kressner et al., 2014).

The tensor nuclear norm minimization completion model

(TNNM) (4) can be expressed as the following:

min
X

N∑

i=1

αi

∥∥X(i)

∥∥
∗ +

λ

2
‖X� − T�‖2F , (5)

where λ > 0 is a regularization parameter.

Since the matrix nuclear norm in the model (5) is

interdependent and cannot be optimized independently, auxiliary

variables for splitting need to be introduced for simplifying solution

algorithm. Liu et al. (2013) presented three solution algorithms,

which are simple LRTC, fast LRTC, and high-accuracy LRTC.

Based on tensor decomposition, Liu (2013); Liu et al. (2014a)

proposed completion models for the factor matrix nuclear norm

minimization and the core tensor nuclear norm minimization.

Nevertheless, the majority of TNNM algorithms involve SVDs of

several large matrices in each iteration, resulting in high computing

costs.

3 The proposed method

3.1 Core tensor nuclear norm minimization
based on thin QR decomposition

In the subsection, we describe the proposed CTNM-QR

algorithm and the solution procedure in detail. Specifically, we

adopt the ideas of the thin QR decomposition to update the

factor matrix on the framework of the core tensor nuclear norm

minimization (CTNM) and propose an efficient low-rank tensor

completion algorithm.

In the CTNM model based on the Tucker decomposition (Liu,

2013; Liu et al., 2014b), the following assumption is stated:

Assumption 1. Let X ∈ R
I1×I2×...×IN with ranktc =

(R1,R2, . . . ,RN) and satisfy Tucker decomposition

X = C ×1 U1 ×2 U2 × . . . ×N UN , where the core tensor

C ∈ R
R1×R2×...×RN , and the orthogonal factor matrix Ui ∈ R

Ii×Ri .

Then

‖X‖∗ = ‖C‖∗

where ‖X‖∗ and ‖C‖∗, denotes the nuclear norm of the original

tensor and the core tensor, respectively.

According to the Assumption 1, the completion model for the

CTNM is:

min
C,{Ui},X

N∑

i=1

αi

∥∥C(i)
∥∥
∗ +

λ

2
‖X− C× 1U1 × . . . × NUN‖2F ,

s.t., X� = T�, and (Ui)
T Ui = IIi , i = 1, 2, . . . ,N,

(6)

where IIi is an Ii× Ii Identity matrix. Owing to the interdependence

of the unfolding matrices, we introduce auxiliary tensors Vi ∈
R
R1×R2×···×RN (i = 1, 2, · · · ,N) to facilitate variable separation.
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Then, the model (6) is transformed into the following equivalent

form:

min
C,Vi ,Ui ,X

N∑

i=1

αi

∥∥Vi(i)

∥∥
∗ +

λ

2
‖X− C×1 U1 × · · · ×N UN‖2F ,

s.t., X� = T�, C = Vi, and UT
i Ui = IIi , i = 1, · · · ,N.

(7)

For the optimization problem Equation (7), we propose an

efficient CTNM-QR algorithm based on alternating direction

multiplication method (ADMM) to address it. The ADMM is

a commonly employed optimization method that decomposes a

problem into a sequence of sub-problems to calculate the optimal

solution, and is adept at proficiently addressing optimization

problems featuring multiple non-smooth terms in the objective

function (Glowinski, 2014; Boţ and Nguyen, 2020; Han, 2022).

The partial augmented Lagrangian function for the model (7) is as

follows:

L (X, C,U1, · · · ,UN ,V1, · · · ,VN ,Y1, · · · ,YN)

=
N∑

i=1

(
αi

∥∥Vi(i)

∥∥
∗ + 〈Yi, C− Vi〉 +

µ

2
‖C− Vi‖2F

)

+
λ

2
‖X− C×1 U1 × · · · ×N UN‖2F ,

(8)

where Yi(i = 1, · · · ,N) is the Lagrange multiplier tensor and

µ > 0 is the penalty parameter.

The ADMM converts the original tensor completion problem

(7) into solving the five subproblems of (9a–9e) by minimizing

the augmented Lagrangian function (8), which iteratively

updates the corresponding parameters. Specifically, we update

V
k+1
i , Ck+1,Uk+1

i ,Xk+1 and Y
k+1
i sequentially in the order of

(9a–9e) with the fixed other parameters. The steps of the algorithm

solution are as follows:

V
k+1
i = argmin

Vi

L

(
Xk, Ck, {Uk

j ,Y
k
j }

N
j=1, {V

k+1
j }i−1

j=1, {V
k
j }

N
j=i+1

)
,

(9a)

Ck+1 = argmin
C

L

(
Xk, C,

{
Uk
j ,V

k+1
j ,Yk

j

}N
j=1

)
, (9b)

Uk+1
i = argmin

Ui

L

(
Xk, Ck+1, {Uk+1

j }i−1
j=1, {U

k
j }

N
j=i+1,

{
V
k+1
j ,Yk

j

}N
j=1

)
, s.t. Ui

TUi = I, (9c)

Xk+1 = argmin
X

L

(
X, Ck+1,

{
Uk+1
j ,Vk+1

j ,Yk
j

}N
j=1

)
, s.t. X� = T�,

(9d)

Y
k+1
i = Yk

i + µk(Ck+1 − V
k+1
i ). (9e)

That is, for Vk+1
i in the k+ 1th iteration, (9a) can be written as

the following optimization subproblem:

V
k+1
i = argmin

Vi

αi
µk

∥∥Vi(i)

∥∥
∗ +

1
2

∥∥∥∥Ck − Vi +
Y

k
i

µk

∥∥∥∥
2

F

fori = 1, 2, · · · ,N. (10)

The iteration for V
k+1
i for i = 1, 2, · · · ,N can be

effectively addressed through the application of the singular value

thresholding (SVT) operator (Cai et al., 2010). It is easy to obtain a

closed solution to the problem (10) as:

V
k+1
i = foldi(SVTαi/µk (Ck +

Yk
i

µk
)(i)), (11)

where foldi denotes the transformation of the matrix into a tensor

along the ith mode, if the SVD of a matrix Z is Z = Udiag(σ )VT ,

SVTτ (Z) = U diag (max{σ − τ , 0})VT , max(·, ·) is the element-

based maximization operator.

For Ck+1 in the k+1th iteration, the optimization problem (9b)

with respect to C can be rewritten as:

Ck+1 = argmin
C

∑N
i=1

µk

2

∥∥∥∥C− V
k+1
i + Y

k
i

µk

∥∥∥∥
2

F

+ λ
2

∥∥∥Xk − C×1 U
k
1 × · · · ×N Uk

N

∥∥∥
2

F
. (12)

With other variables fixed, it is easy to see that Equation (12)

is a smooth and differentiable optimization problem that can be

derived by first-order optimality conditions for C (Liu, 2013; Liu

et al., 2014b).

For Xk+1 in the k + 1th iteration, solving X by the following

subproblem:

Xk+1 = argmin
X

∥∥∥X− Ck+1 ×1 U
k+1
1 × · · · ×N Uk+1

N

∥∥∥
2

F

, s.t., X� = T�. (13)

By deriving the Karush-Kuhn-Tucker (KKT) condition for

Equation (13), it is easy to obtain the update form of X as Xk+1
� =

T� andXk+1
�c =

(
Ck+1 ×1 U

k+1
1 × · · · ×N Uk+1

N

)
�c
, where� is the

index set of the observed elements, �c is the complement of �.

For the factor matrix Uk+1
i ∈ R

Ii×Ri (i = 1, 2, . . . ,N) in the

k+1th iteration, the optimization (9c) is equivalent to the following

optimization problem:

Uk+1
i = argmin

∥∥∥Xk − Ck+1 ×1 U
k+1
1 · · · ×i−1 U

k+1
i−1

×i+1U
k
i+1 · · · ×N Uk

N

∥∥∥
2

F
s.t. , (Ui)

T Ui = IIi , (14)

This is a peculiar Tucker decomposition model in which

Ui, i = 1, 2, . . . ,N is an orthogonal matrix. HOSVD (De Lathauwer

et al., 2000a; Chao et al., 2021) and HOOI (De Lathauwer

et al., 2000b) are frequently used in the computation of Equation

(14). Nevertheless, these approaches need alternating iterations

of solving Equation (14) and involve SVDs of multiple tensor

matricizations in each loop iteration, which causes the algorithms

to converge quite slowly. To enhance the approaches, we adopt

thin QR decomposition instead of HOOI for solving Ui, which

essentially avoid the SVDs during factorization and improve the

computing efficiency.

Specifically, we first isolate the ith factor matrix Ui from the

Tucker decomposition since the order of multiplications in the

tensor mode-i product is not relevant. Then the equivalent form of

the optimization model (14) for the solution of the ith factor matrix

Ui is as follows:

min
Ui

1

2

∥∥∥Zk
i ×i Ui − Xk

∥∥∥
2

F
, s.t., (Ui)

T Ui = IIi , (15)
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where the given tensor Zk
i = Ck+1 ×1 Uk+1

1 ×2 · · · ×i−1

Uk+1
i−1 ×i+1 U

k
i+1 · · · ×N Uk

N . The problem (15) is nonconvex for all

variables, yet it is convex for each block tensor. When the variables

C,X, {Uj}Nj=1,j6=i are fixed, the optimization (15) with respect to

the factor matrix Un is a smooth and differentiable optimization

problem and can be solved via the first-order optimality condition.

Hence the following equation holds:

(
Zk
i ×i Ui − Xk

)
(i)
ZkT
i(i) = 0,

where
(
Zk
i ×i Ui − Xk

)
(i)

and Zk
i(i) are the mode-i unfolding

matrices of the tensors Zk
i ×i Ui − Xk and Zk

i , respectively.

Then the least-squares solution without taking into account the

orthogonality constraints on the factor matrices can be obtained by

Ũk+1
i = Xk

(i)Z
kT
i(i)

(
Zk
i(i)Z

kT
i(i)

)−1
.

Motivated by the work of Shi et al. (2015), we adopt the thin

QR decomposition for the orthogonality constraints of the factor

matrices, that is,

Uk+1
i = QR

(
Ũk+1
i

)
, for i = 1, 2, . . . ,N, (16)

where QR(·) denotes the thin QR decomposition of the matrix.

At this step, the proposed CTNM-QR algorithm merely

needs to carry out QR decomposition of a matrix with the

computational complexity O

(∑N
i=1 Ii × R2i

)
. While the

computational complexity of the HOSVD algorithm in terms

of Ui iterations is O

(∑N
i=1 I

2
i × 5j6=iIj

)
, the HOOI algorithm

is O
(∑N

i=1 I
2
i × 5j6=iRj

)
, where Ri ≪ Ii. This indicates that the

significant computational complexity associated with the SVD can

be effectively mitigated by employing QR decomposition to resolve

the factor matrix.

3.2 Implementation

In the following, we discuss several implementations issues. To

effectively solve the objective function (8), the penalty parameter

µ is adaptively varied via setting the initialization of µ to µ0, and

iteratively increasing µk by µk+1 = ρµk, where ρ ∈ (1.0, 1.1]

and µ0 is usually a smaller constant. For the iteration among

the problems (9a–9e), we principally use two convergence criteria.

One is the relative change satisfaction between two neighboring

recovery tensors Xk+1 and Xk:

∥∥∥Xk+1 − Xk
∥∥∥
F∥∥∥Xk

∥∥∥
F

≤ tol,

where k is the number of iterations and tol is the tolerance error.

The alternative halting condition is k ≥ K, where K is the

maximum number of iterations. The iteration ends if any of the

two conditions is met. We summarize the implementation of the

CTNM-QR as Algorithm 1.

Input: Missing tensor data T ∈ R
I1×I2×···×IN, the index

set of the observed elements �,

complementary set �̄, Tucker-rank

(R1,R2, · · · ,RN ), αi, λ, µ0, µmax, ρ, K, tol;

Output: Completed tensor X ∈ R
I1×I2×···×IN

1 Initialization: X� = T�, X�̄ = 0; Yi = 0,

C = rand(R1, · · · ,RN ), Vi = C, and Ui = QR(rand(Ii ,Ri)) for

i = 1, 2, · · · ,N, where rand(R1, · · · ,RN ) and rand(Ii ,Ri)

represent the R1 × · · · × RN tensor and the Ii × Ri

matrix randomly from the standard normal

distribution;

2 while not converged do

3 for i = 1 :N do

4 Update Vk+1
i by Equation (11);

5 end

6 Update Ck+1 by solving Equation (12);

7 for i = 1 :N do

8 Update Uk+1
i by Equation (16);

9 end

10 Update Xk+1 by solving Equation (13);

11 for i = 1 :N do

12 Update Yk+1
i by Yk+1

i = Yk
i + µk(Ck+1 − Vk+1

i );

13 end

14 Update µk+1 by µk+1 = min(ρµk,µmax);

15 Check the convergence conditions∥∥∥Xk+1 −Xk
∥∥∥
F
/

∥∥∥Xk
∥∥∥
F
≤ tol or k ≥ K.

16 end

Algorithm 1. Core tensor nuclear-norm minimization with QR

decomposition (CTNM-QR).

3.3 Convergence analysis

Let
{
Ck,Uk

1 , . . . ,U
k
N ,V

k
1, . . . ,V

k
N ,X

k
}
be a sequence generated

by the Algorithm 1. Although the CTNM-QR is a nonconvex

ADMM algorithm, the subsequence are convergent and converge

to the KKT point of the problem (6) proved by Liu et al. (2014b). In

the subsection, we only illustrate the convergence of the improved

part of the algorithm for the subproblem (9c).

Denote the objective function in Equation (15) as f (Un) =
1
2 ‖Zn ×n Un − X‖2F , where (Un)

T Un = IIn (n = 1, 2, . . . ,N).

The function f (Un) is convex on Un without considering

orthogonality constraints, so minimizing f (Un) yields Ũk
n =

X
k−1
(n)

(
Z
k−1
n(n)

)T (
Z
k−1
n(n)

(
Z
k−1
n(n)

)T)−1

. Then the following equation

holds:

f (Ũk
n) ≤ f (Uk−1

n ).

Denote g(Ck,Un) = 1
2

∥∥∥Ck ×1 U
k
1 · · · ×n−1 U

k
n−1 ×n+1 U

k−1
n+1 · · ·

×NU
k−1
N ×n Ũn − Xk

∥∥∥
2

F
. By carrying out a thin QR decomposition

of Ũk
n , we have Ũk

n = Uk
nQ

k, where Uk
n is an orthogonal matrix.

Then we have

f (Ũk
n) = g(Ck, Ũk

n) = g (̃C
k
,Uk

n) = f (Uk
n) ≤ f (Uk−1

n )
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TABLE 1 Computational complexity of each iteration in tensor

completion algorithms.

Algorithms Complexity

TT-WOPT (Yuan et al., 2017) O

(
N

∏N
i=1 Ii + R2

∑N
i=1

∏
j6=i Ij

)

TT-SGD (Yuan et al., 2019b) O
(
N2R3

)

CP-WOPT (Acar et al., 2011) O

(
2(N + 1)R

∏N
i=1 Ii

)

SiLRTC, HaLRTC (Liu et al., 2013) O

(∑N
i=1 Ii

∏N
i=1 Ii

)

CTNM (Liu, 2013) O

(
(2N + 1)R

∏N
i=1 Ii

)

gHOI (Liu et al., 2014b) O

(
(N + 1)R

∏N
i=1 Ii

)

CTNM-QR O

(
(N + 1)R

∏N
i=1 Ii

)

where C̃
k = Ck ×n Qk. Therefore, when C,X, {Ui}Ni=1,i6=n is

fixed, the objective function f (Un) tends to be decreasing during

the iteration process, and the sequence
{
Uk
1 , . . . ,U

k
N

}
is the

convergence sequence.

3.4 Complexity analysis

In the subsection, we analyze the complexity of the proposed

CTNM-QR algorithm. The running time of the CTNM-QR

algorithm is primarily consumed in solving the auxiliary variables

with the SVT operator and some multiplicative computations.

Suppose the size of the input tensor is I1 × I2 × · · · × IN and

Tucker rank is R1 = · · · = RN = R, the time complexity of solving

Equation (9a) is O
(
NRN+1

)
, the time complexity of solving X in

(9d) is O
(
R

∏N
i=1 Ii

)
, and the time complexity of computing Un

in Equation (16) is O
(
NR

∏N
i=1 Ii + R2

∑
i Ii

)
. Consequently, the

total time complexity of the Algorithm 1 isO
(
T(N + 1)R

∏N
i=1 Ii

)
,

where T is the total number of iterations. When the N and

Ii, i = 1, 2, · · · ,N are fixed, the time complexity of the CTNM-

QR algorithm mainly dominates on R. Fortunately, the R generally

takes small values due to the low-rank assumption of the tensor.

For comparison, we list the major computational complexity of

several classical tensor-completion algorithms in Table 1. Although

the per-iteration complexity of TT-SGD (Yuan et al., 2019b)

is incredibly low, the total number of iterations required is

higher and more time-consuming than the proposed CTNM-QR

algorithm in practice. In addition, the Polak-Ribiere nonlinear

conjugate gradient algorithm of CP-WOPT (Acar et al., 2011) also

suffers from the problem of being time-consuming. Compared

with the nuclear norm minimization algorithms such as SiLRTC,

HaLRTC, CTNM, etc., the proposed CTNM-QR algorithm saves

some computational complexity. The CTNM-QR is consistent

with the generalized higher-order orthogonal iteration (gHOI)

algorithm (Liu et al., 2014b) in terms of the algorithm’s primary

computational cost.

4 Experiments

In this section, we conduct experiments to evaluate the

performance and efficiency of the CTNM-QR algorithm in the

LRTC problem using synthetic tensor data, color images, and

medical MRI scans. The experiment compares the CTNM-QR

with five other typical completion algorithms: gHOI (Liu et al.,

2014b), CTNM (Liu, 2013), FaLRTC (Liu et al., 2013), CP-WOPT

(Acar et al., 2011), and TT-SGD (Yuan et al., 2019b), where

the parameters of the comparison algorithms are optimized. In

addition, by means of studies, we analyze the convergence of

the CTNM-QR algorithm intuitively. All the experiments are

implemented on Windows 10 and MATLAB (R2018b) with an

Intel(R) Core(TM) i5-7200U CPU at 2.70 GHz and 4 GB RAM.

To construct the incomplete tensor artificially, we utilize

random uniform sampling from the complete tensor based on the

given missing rate (MR), so the tensor missing form is randomized

uniform missing. We set up varying MR for the test tensor, where

the MR is defined as:

MR = 1−
M

∏N
n=1 In

where M is the number of entries observed in the N order tensor

T ∈ R
I1×I2×···×IN . We adopt relative squared error (RSE) and CPU

time as evaluationmetrics tomeasure the performance of the tensor

completion. The RSE is calculated as follows:

RSE =
‖X− T‖F
‖T‖F

where ‖ · ‖F indicates the Frobenius norm, the X and T denote

the tensor recovered by the algorithm and the original true tensor,

respectively. The algorithm’s accuracy in recovering the tensor

increases as the RSE decreases, and computational complexity

decreases as the CPU time decreases.

4.1 Synthetic tensor completion

In the simulation studies, we generate the low rank synthetic

tensor T ∈ R
I1×I2×···×IN by the Tucker decomposition model, i.e.,

T = C ×1 U1 ×2 U2 × . . . ×N UN , where C ∈ R
R1×R2×...×RN ,

Ui ∈ R
Ii×Ri (i = 1, 2, . . . ,N) and their entries independently follow

the standard normal distribution. This implies that the Tucker rank

of the tensor T is (R1,R2, . . . ,RN).

In the concrete implementation, we set the tolerance to tol =
10−5 for all algorithms, the maximum number of iterations to

K = 6 × 105 for the TT-SGD, and K = 500 for the rest of

the algorithms. For the FaLRTC, gHOI, CTNM, and CTNM-QR,

we set the weights αi = 1/N, i = 1, 2, · · · ,N. The smoothing

parameter of the FaLRTC is set to αi/Ii, i = 1, . . . ,N, and the rest

of the parameters are maintained at their default values. For the

CP-WOPT, the tensor rank R is set to 15. For the TT-SGD, the TT

rank is set to R1 = · · · = RN−1 = 15. For the gHOI, CTNM, and

CTNM-QR, we set µ0 = 10−3, µmax = 1010, ρ = 1.05.

We consider two cases including the fourth-order tensor with

the size 40 × 40 × 40 × 40 and the fifth-order tensor with the

size 20 × 20 × 20 × 20 × 20. The Tucker-rank of the tensor

is set to R1 = · · · = RN = 5, where the tensor orders

N are 4 and 5, respectively. We consider four distinct MRs

30, 50, 70, 80% for the test tensor and replicate 100 simulations.

Table 2 presents the average results (RSE and time cost) for 100

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2024.1382144
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Wu and Jin 10.3389/fdata.2024.1382144

TABLE 2 Average RSE and time cost (seconds) of all approaches on various tensor sizes.

CP-WOPT FaLRTC TT-SGD CTNM gHOI CTNM-QR

MR RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time

40× 40× 40× 40

30% 4.62e-1 73.96 1.47e-2 44.12 5.99e-2 138.25 2.40e-3 9.75 6.73e-4 2.75 3.71e-4 3.06

50% 5.54e-1 100.21 2.95e-2 38.67 9.77e-2 136.57 8.96e-3 20.15 2.36e-3 4.97 1.91e-3 5.56

70% 5.73e-1 144.19 5.61e-2 63.78 1.29e-1 139.18 5.95e-2 40.92 3.96e-3 12.03 3.26e-3 9.95

80% 5.99e-1 238.06 9.19e-2 80.37 2.90e-1 135.12 1.26e-1 106.91 9.10e-3 17.48 6.27e-3 13.79

20× 20× 20× 20× 20

30% 4.63e-1 66.18 1.22e-2 60.79 4.27e-2 161.67 2.89e-3 18.63 7.91e-4 3.70 3.07e-4 4.92

50% 6.00e-1 58.37 5.98e-2 68.96 8.18e-2 160.00 6.58e-3 29.25 7.15e-4 6.96 6.00e-4 8.92

70% 7.06e-1 50.39 8.59e-2 80.89 1.68e-1 174.45 9.58e-2 65.25 1.40e-3 18.37 1.20e-3 13.28

80% 7.40e-1 96.97 1.05e-1 94.42 1.78e-1 175.31 8.18e-2 101.26 5.91e-2 23.08 1.40e-2 20.32

Bold values indicate the best results obtained from the experiments.

FIGURE 3

Convergence of the algorithm on synthetic data with the size 100× 100× 100. (A) Log-value of relative change of the CTNM, gHOI, and CTNM-QR

with 80% MR. (B) Relative changes of the CTNM-QR with various MRs.

FIGURE 4

The original color images. (A) Flower (taken from https://www.pexels.com/Nathalie De Boever), (B) Starfish (taken from https://www.pexels.com/

Kindel Media), (C) Sky (taken from https://www.pexels.com/Pixabay), (D) House (taken from https://www.pexels.com/Pixabay), (E) Orange (taken

from https://www.pexels.com/Pixabay).

independent experiments. The outcomes reveal that the CTNM-

QR method yields more accurate solutions with the less time costs,

and outperforms other algorithms in the term of the RSE regardless

of whether it’s a higher order tensor or a lower order tensor.

Although the gHOT method has a somewhat shorter running time

than the CTNM-QR at the lowMRs, the time costs of bothmethods
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TABLE 3 RSE and time cost (seconds) comparison on true color images at di�erent MRs.

MR Method Flower Starfish Sky Lena Apple

RSE Time RSE Time RSE Time RSE Time RSE Time

40% CP-WOPT 7.46e-2 210.25 1.88e-1 186.98 6.58e-2 40.26 1.79e-1 68.70 6.93e-2 100.02

FaLRTC 1.26e-1 38.50 1.74e-1 44.21 4.47e-2 34.69 1.19e-1 38.79 6.69e-2 48.69

TT-SGD 1.12e-1 75.05 1.76e-1 77.73 5.56e-2 61.59 1.11e-1 61.10 6.90e-2 69.15

gHOI 5.32e-2 17.91 1.20e-1 12.83 3.24e-2 9.78 9.59e-2 13.48 3.18e-2 9.43

CTNM 8.24e-2 19.35 1.69e-1 34.58 2.95e-2 8.60 1.13e-1 26.39 3.66e-2 11.27

CTNM-QR 4.16e-2 11.31 1.15e-1 14.54 2.56e-2 4.19 8.88e-2 7.84 3.02e-2 3.29

60% CP-WOPT 1.22e-1 204.18 1.97e-1 350.43 9.03e-2 52.39 1.96e-1 159.59 1.16e-1 115.27

FaLRTC 1.93e-1 37.74 2.51e-1 53.79 6.50e-2 43.14 1.76e-1 45.32 9.14e-2 66.90

TT-SGD 1.35e-1 69.01 2.19e-1 79.79 6.55e-2 64.15 1.37e-1 74.22 8.54e-2 79.98

gHOI 7.97e-2 20.46 1.64e-1 15.34 3.68e-2 10.52 1.11e-1 16.48 4.24e-2 12.37

CTNM 1.45e-1 35.46 2.79e-1 45.18 3.51e-2 14.60 1.54e-1 37.47 4.05e-2 14.02

CTNM-QR 5.67e-2 18.26 1.43e-1 17.79 3.08e-2 8.02 1.02e-1 14.39 3.78e-2 7.30

80% CP-WOPT 1.91e-1 185.96 2.83e-1 181.91 1.37e-1 61.59 2.41e-1 80.00 1.86e-1 130.56

FaLRTC 3.06e-1 48.92 3.71e-1 59.68 1.58e-1 48.67 2.70e-1 57.96 1.06e-1 57.57

TT-SGD 1.57e-1 77.56 2.66e-1 69.92 9.20e-2 68.32 1.67e-1 71.20 9.41e-2 73.87

gHOI 1.41e-1 27.82 2.12e-1 22.37 7.53e-2 14.53 1.34e-1 18.25 7.45e-2 21.52

CTNM 1.99e-1 50.89 3.36e-1 50.87 1.10e-1 47.72 1.88e-1 49.71 7.78e-2 28.82

CTNM-QR 9.13e-2 30.45 1.79e-1 19.91 3.90e-2 12.64 1.10e-1 20.58 4.59e-2 15.12

Bold values indicate the best results obtained from the experiments.

are quite close and the RSE of the CTNM-QR is less than one of

the gHOI.

We also investigate the convergence of the CTNM, gHOI, and

CTNM-QRmethods on synthetic tensor data with the Tucker-rank

(R1,R2,R3) = (10, 10, 10) and the size 100 × 100 × 100, as shown

in Figure 3A, where the abscissa indicates the number of iterations

and the vertical indicates the log-value of the relative change of the

Xk. The results display that the relative change of the convergence

of the CTNM-QR drops more quickly and smoothly than that

of CTNM and gHOI. Figure 3B illustrates the relative changes of

the convergence of the CTNM-QR approach at 40, 60, and 80%

MRs. From the Figure 3B, we find that even at the high MR, the

CTNM-QR converges fast in fewer than 100 iterations.

4.2 Color image completion

In this subsection, we confirm the efficacy of the CTNM-QR by

performing recovery on RGB real-color images, where each image

is represented as a third-order tensor. The low-rank nature of color

images has been demonstrated in Figure 1, which allows excellent

recovery of incomplete images utilizing the low-rank structure of

the tensor. The low-rank color pictures chosen for this experiment

include Flower, Starfish, Sky, Lena, and Apple. The original images

are portrayed in Figure 4. The images are 500 × 500 × 3 tensors

and encompass portraits and various natural landscapes. The image

pixels are normalized to [0, 1]. We carry out multiple experimental

comparisons for every image in order to determine the optimal

rank value.

In the concrete implementation, the tolerance error of all

algorithms is set to tol = 10−4, the maximum number of iterations

K = 5×105 for TT-SGD andK = 500 for the rest of the algorithms.

For the FaLRTC, gHOI, CTNM and CTNM-QR, we set the weights

αi = [1, 1, 10−3], and the smoothing parameter for the former to

αi/
√
Ii for i = 1, 2, 3. For the CTNM-QR, we set µ0 = 10−3,

µmax = 1010, ρ = 1.05. The rest of the algorithm parameters are

preserved at the default settings.

For the color images, we utilize random uniform sampling

to make them missing, and the average reconstruction results

from 100 independent experiments, including RSE and time cost

(seconds), are reported in Table 3, where MR is set to 40, 60, and

80%. The best results are highlighted in bold in the table, and it is

clear that the proposed CTNM-QR method achieves the best RSE

values in all images and outperforms the other competing methods

in terms of CPU time in a substantial number of cases. For example,

when recovering Sky with an MR of 80%, the RSE of the CTNM-

QR is improved by 0.036 and 0.071 over gHOI and the original

algorithm CTNM, respectively, and by 0.119 over the FaLRTC. In

terms of running speed, it outperforms the CTNM and the TT-SGD

by around 4 and 7 times, respectively. Furthermore, in the majority

of image completions, the CP-WOPT method takes the longest. It

is obvious that the CTNM-QR can efficiently mine the low-rank

image spatial correlation to precisely recover the missing tensor in

a reduced iteration time.

Figure 5 depicts visual comparisons of the observed images

with the images following the various completion algorithms,

where the missing rate of incomplete images is 60 and 80%,

and the missing entries are displayed in black. From Figure 5,
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FIGURE 5

Illustration of image completion performance comparisons. The first two rows display the results for a missing rate MR = 60%, and the last four rows

display the results for a missing rate MR = 80% (best viewed zoomed in). (A) Observation. (B) CP-WOPT. (C) FaLRTC. (D) TT-SGD. (E) gHOI. (F) CTNM.

(G) CTNM-QR. Adapted from https://pic.sogou.com.

it can be seen that the best visibility outcomes are obtained by

the CTNM-QR method (Figure 5G), and the recovered image is

very clear and close to the original image. In most instances, the

results of the CP-WOPT contain some fairly ambiguous parts,

and this is the most acute, especially for the Lena and Apple. In

the completion of missing data for images with an 80% MR, the

FaLRTC and CTNM exhibit suboptimal performance, particularly

on the Flower and Lena datasets. Although the results of the

gHOI and TT-SGD appear to be more discernible in comparison,

the finer details of the images have not been fully recovered,

indicating a certain degree of information loss. It implies that the

proposed CTNM-QR method can recover the images accurately

and efficiently.

4.3 Brain MRI completion

In the subsection, we evaluate the performance of the CTNM-

QR algorithm via the MRI images completion of the brain. MRI

images of the brain are acquired through the use of magnetic

resonance imaging, which utilizes a strong magnetic field and

harmless radio waves. It has an influential role in the fields of

medicine and neuroscience, being a key tool used by physicians

to diagnose diseases, study brain activity, and guide treatment

programs. Here, we analyze brain MRI data with the size 236 ×
236 × 180. Similarly, medical MRI data is approximated as a low-

rank tensor and thus can be recovered with low-rank completion

algorithms. For comparison, the tolerance value for all algorithms
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TABLE 4 RSE and time cost (seconds) comparison on brain MRI scanning slice.

CP-WOPT FaLRTC TT-SGD CTNM gHOI CTNM-QR

MR RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time

30% 9.63e-2 13.69 7.25e-2 8.29 9.75e-2 74.36 4.90e-2 4.59 4.90e-2 4.10 4.89e-2 3.34

50% 1.19e-1 16.56 1.11e-1 9.98 1.29e-1 73.36 6.83e-2 7.07 6.84e-2 8.86 6.80e-2 5.60

70% 1.89e-1 25.27 1.70e-1 13.30 1.57e-1 69.38 3.79e-1 22.92 1.97e-1 11.59 1.21e-1 7.16

Bold values indicate the best results obtained from the experiments.

FIGURE 6

Completion visualization results of brain MRI slice data at 70% MR (best viewed zoomed in). (A) Original (adapted from https://www.kaggle.com/

datasets/tourist55/alzheimers-dataset-4-class-of-images). (B) Observation. (C) CP-WOPT. (D) FaLRTC. (E) TT-SGD. (F) gHOI. (G) CTNM. (H)

CTNM-QR.

is set to tol = 10−3, the tensor Tucker-rank is set to R1 =
R2 = R3 = 30 for the gHOI, CTNM, and CTNM-QR, the

tensor CP rank is set to 40 for the CP-WOPT, and the TT

rank is set to R1 = R2 = 20 for the TT-SGD. We choose a

slice of the MRI images for completion due to their enormous

computation cost.

Table 4 presents the recovery accuracy (RSE) and time cost

(seconds) of every algorithm at varying MRs, where the MRs

are set to 30, 50, and 70%, respectively. The findings show that

the RSE of the CTNM-QR, gHOI, and CTNM are nearly equal

at MR values of 30 and 50%. However, when the MR increases

to 70%, the RSE of the CTNM and gHOI dramatically rose. In

terms of the runtime, the proposed CTNM-QR method typically

runs faster than others, especially more noticeable at the higher

MR. In addition, Figure 6 displays the recovery results of the

brain MRI slice data at the 70% MR, where the CTNM-QR

outperforms the other algorithms in terms of both recovered vision

and efficiency.

5 Conclusion

In this paper, we propose a CTNM-QR method, which is

based on an enhancement of CTNM and aims at addressing the

problem of completing the low-rank missing tensor. Firstly, we

review the CTNM algorithm briefly and discuss our changes,

which can be categorized into two major points. One difference

is that the model’s auxiliary variables are introduced as tensors

rather than matrix versions, and the tensor form is able to utilize

multidimensional information to better retain the spatial structure

of high-dimensional data. The other is that the solution of the factor

matrix in the model flexibly adopts the thin QR decomposition

instead of HOOI, which avoids the computation of multiple

SVDs in each loop and minimizes the computational cost to a

certain extent, thus speeding up the process. Secondly, we further

investigate the convergence and complexity of the CTNM-QR

method. Ultimately, extensive experiments on synthetic data of

various orders, real color images, and brain MRI data indicate that
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our method not only beats most state-of-the-art LRTC algorithms

in terms of completion accuracy and visualization, but also runs

faster.

In the future, we will continue to explore how to automatically

determine the optimal rank of a tensor in CTNM-QR to settle

the rank selection challenge. In addition, combining sophisticated

techniques such as deep learning will boost the algorithm’s ability

to adapt to more complicated data. To widen the method’s

application scenarios, we are interested in adapting CTNM-QR

to additional practical applications such as recommender systems,

video denoising, and so on.
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