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This paper addresses the critical gaps in existing AI riskmanagement frameworks,
emphasizing the neglect of human factors and the absence ofmetrics for socially
related or human threats. Drawing from insights provided by NIST AI RFM and
ENISA, the research underscores the need for understanding the limitations of
human-AI interaction and the development of ethical and social measurements.
The paper explores various dimensions of trustworthiness, covering legislation,
AI cyber threat intelligence, and characteristics of AI adversaries. It delves
into technical threats and vulnerabilities, including data access, poisoning, and
backdoors, highlighting the importance of collaboration between cybersecurity
engineers, AI experts, and social-psychology-behavior-ethics professionals.
Furthermore, the socio-psychological threats associated with AI integration
into society are examined, addressing issues such as bias, misinformation, and
privacy erosion. The manuscript proposes a comprehensive approach to AI
trustworthiness, combining technical and social mitigation measures, standards,
and ongoing research initiatives. Additionally, it introduces innovative defense
strategies, such as cyber-social exercises, digital clones, and conversational
agents, to enhance understanding of adversary profiles and fortify AI security.
The paper concludes with a call for interdisciplinary collaboration, awareness
campaigns, and continuous research e�orts to create a robust and resilient AI
ecosystem aligned with ethical standards and societal expectations.
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1 Introduction

Artificial Intelligence trustworthiness is a multi-dimensional concept that according to

the CEN JTC21 includes cybersecurity, transparency, robustness, accuracy, data quality

and governance, human oversight, and record keeping and logging (Newman, 2023).

Risk management of trustworthiness implies the identification, analysis, estimation,

mitigation of all threats and risks of rising from all these different dimensions where

the implementation of a quality management system complements the effective risk

management that can be validated through conformity assessment.

Ensuring the trustworthiness of AI systems, involves addressing various risks

associated with human factors. Human biases, both implicit and explicit, can inadvertently

influence AI algorithms, leading to biased outcomes in decision-making processes.

Additionally, human errors during the design, development, and deployment stages can

introduce vulnerabilities and compromise the reliability of AI systems. Trust in AI is also
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contingent on user understanding and acceptance, emphasizing the

need for transparent communication about how AI operates and

its limitations. Addressing these human-related factors is crucial

for enhancing the trustworthiness of AI systems and promoting

responsible AI development (Kaplan et al., 2021).

Threats from the different dimensions of trustworthiness are

not isolated; they are interrelated and thus the controls and

mitigation actions need to be evaluated against their effectiveness

in treating all types of risks. For example, human oversights related

threats (e.g., bias, luck of transparency/equality, and explain ability)

impact cybersecurity (e.g., loss of integrity of data) and vice-versa.

The controls needed shall include not only technical but also

behavioral, social, cultural, and ethical mitigation actions as it has

been clearly mentioned in the AI Act, Article 9, which requires

among others that the risk management include the estimation of

both technical and human risks.

In this manuscript, our primary goal is to categorize a wide

array of threats spanning all dimensions of trustworthiness,

leveraging comprehensive classification endeavors, including

contributions from prominent entities such as ENISA, NIST

(2024), OWASP, MITER, and others. Our aim is to delineate

the current challenges in fully comprehending the entire AI

threat landscape across all dimensions of trustworthiness and

to underscore the research initiatives required to address these

challenges. The manuscript will evaluate these standards along

with various ETSI and CEN standards and guidelines to gauge their

applicability in securing the AI lifecycle and managing AI risks.

Notable frameworks, such as NIST AI Risk Management, ENISA

Multilayer Framework, and MITER ATLAS, will be scrutinized,

and any identified open issues will be highlighted. This manuscript

intends to assess the aforementioned efforts, pinpointing existing

gaps and open issues, and laying the groundwork for future

research and standardization endeavors.

The existing work on AI risk management lacks consideration

for human factors and fail to propose metrics for socially

related or human threats. As highlighted in the NIST AI RMF

(2023) (Appendix C), further research is essential to understand

the current limitations of human-AI interaction, an aspect also

emphasized by ENISA, which stresses the need for the development

of AI ethical and social measurements. Another challenge lies

in the selection and implementation of non-technical controls,

such as social responsibility. Despite the existence of standards

like ISO 26000:2010 and ISO/IEC TR 24368:2022, these are not

integrated into the phases of AI risk management. Collaboration is

crucial with cybersecurity engineers, AI experts, and professionals

from social-psychology-behavior-ethics disciplines to enhance AI

risk management methods (EU, 2019). This includes the effective

selection of human-related targeted controls. Notably, ongoing EC

HE projects (e.g., THEMIS, FAITH) are actively addressing these

open issues.

This manuscript is organized as follows: This manuscript

is structured as follows: We commence with a comprehensive

exploration of the background and ongoing efforts in the

dimensions of trustworthiness, encompassing legislation, AI

cyber threat intelligence, and the profiles and characteristics

of AI adversaries. Subsequently, we delve into the technical

threats, vulnerabilities, and attacks associated with AI, followed

by an in-depth examination of socio-psychological AI threats,

vulnerabilities, and attacks. The discussion then transitions to

the management of AI trustworthiness, where we delineate both

technical and social mitigation measures. We further elucidate the

standards in AI risk management pertaining to trustworthiness,

exploring initiatives, frameworks, and notable research projects.

Lastly, the manuscript concludes with insights, drawing together

key findings and proposing a way forward in the dynamic landscape

of AI trustworthiness.

2 Background and e�orts

2.1 Dimensions of trustworthiness

In the rapidly evolving landscape of Artificial Intelligence

(AI), the establishment of trust is paramount for widespread

adoption and effective integration into various domains. The

National Institute of Standards and Technology’s (NIST) AI Risk

Management Framework (AI RFM) provides a comprehensive set

of characteristics that define the trustworthiness of AI systems. This

discussion further elaborates on these dimensions, drawing insights

from relevant literature and industry practices.

2.1.1 Fit for purpose
The concept of being “fit for purpose” underscores the

importance of aligning an AI system’s design and capabilities with

its intended objectives. This dimension ensures that the system is

not only technically proficient but also tailored to meet the specific

needs of its users. In the context of AI ethics and design, concepts

such as fairness, accountability, and transparency become crucial to

achieving a system that is truly fit for its intended purpose (Floridi

et al., 2018).

2.1.2 Predictable and dependable
Predictability in AI behavior is a fundamental characteristic

that ensures users can anticipate the system’s responses and

outputs in different situations. Achieving predictability requires

transparency in AI algorithms and decision-making processes,

enabling users to comprehend and trust the system’s operations

(Lipton, 2016). Dependability, on the other hand, involves

consistent and reliable performance over time, reducing the

likelihood of unexpected errors or deviations from established

standards (Huang et al., 2020).

2.1.3 Appropriate level of automation
Balancing the level of automation is critical to the ethical

and trustworthy deployment of AI. This dimension acknowledges

the limitations of AI systems and emphasizes the importance of

human oversight, particularly in complex or morally ambiguous

situations. Striking this balance ensures that AI augments human

capabilities without relinquishing control, promoting responsible

and accountable AI practices (Bryson et al., 2017).

The dimensions of trustworthiness in AI, as defined by the

NIST AI RFM, encompass being fit for purpose, predictable,
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dependable, and maintaining an appropriate level of automation.

These dimensions provide a robust framework for guiding the

development and deployment of AI systems, ensuring they align

with ethical considerations and meet the expectations of users and

stakeholders in diverse applications.

2.2 Legislation

On December 2023, negotiators from the European Union

(EU) Parliament and Council reached a preliminary consensus

on the EU Artificial Intelligence Act (AI Act). This legislation

is most important since it aims to safeguard fundamental rights,

democracy, the rule of law, and environmental sustainability

from the threats posed by high-risk AI, simultaneously fostering

innovation and positioning Europe as a frontrunner in this

domain. The regulations set out responsibilities for AI systems

based on their potential risks and the magnitude of their

influence. The EU AI Act also establishes compulsory guidelines

for trustworthy AI, barring specific AI applications that pose

“unacceptable risk,” such as those violating fundamental rights,

potentially manipulating individuals using subliminal techniques,

exploiting vulnerable groups like children, enabling social scoring

by public authorities, or allowing remote biometric identification

by law enforcement in public spaces. Moreover, the Act sets

standards for “high-risk” AI systems concerning data governance,

transparency, human oversight, accuracy, and security, with

flexibility in implementation but without specifying exact technical

solutions. The categorization of high-risk AI depends on its

intended use, encompassing eight predetermined areas such

as biometric identification, critical infrastructure management,

education, employment, access to services, law enforcement,

migration control, and democratic processes.

Relevant cybersecurity legislation that apply to AI systems

also include: The General Data Protection Regulation (GDPR)-

2016; Cybersecurity Act (CSA)-2019, Data Governance Act-

DGA applicable from 09/2023; Radio Equipment Directive

(RED) applicable from 08/2025; Digital Services Act (DSA)-

11/2022; Critical Entity Resilience Directive; (CER)-11/2022;

Network and Information Security Directive 2 (NIS 2)-12/2022;

Digital Operational Resilience Act (DORA)-01/2023; Machinery

Regulation (MR)-05/2023; Data Act EU-formally adopted-11/2023;

Cyber Resilience Act (CRA)-Trilogue started-09/2023. As already

mentioned, a political agreement on the AI Act was reached among

the European Parliament, Council, and Commission, marking

the world’s first comprehensive legal framework for AI (AI Act-

Trilogue started on 06/2023).

3 AI Cyber Threat Intelligence

3.1 Integrating human insights and
technology

AI Cyber Threat Intelligence (CTI) is essential for analyzing

and mitigating vulnerabilities in AI systems. Recent research

has detailed cyber-attacker taxonomies and cyber-threat

characteristics, identifying adversarial ML threats and various

AI Risk Management Frameworks like ENISA, NIST, and

MITRE ATTACK. However, these frameworks often overlook

the psychological and behavioral profiles of attackers, focusing

instead on technical threat assessments without fully considering

the cognitive aspects of cybersecurity operators using AI tools.

There’s a need for more comprehensive testing that includes

cognitive and perceptual dynamics between operators and AI

systems, such as task switching, situational awareness, and trust

levels. Behavioral change processes, often neglected due to their

complexity, are crucial for a deeper understanding of cybersecurity

dynamics. Incorporating digital twins could provide dynamic

representations of attackers and enhance our understanding of

human-AI interactions in cybersecurity.

To advance AI CTI, a socio-technical perspective that

includes profiling cyber attackers beyond technical analysis is

necessary. Adopting a human-centric approach and cyber-social

exercises can help analyze ML attack lifecycles and identify socio-

driven vulnerabilities. Developing comprehensive attacker and

operator profiles using digital twin technology will allow for

more accurate risk assessments. Enhancing human-AI interaction

requires investigating behavior-change interventions and applying

methodologies like the Unified Theory of Acceptance and Use of

Technology (UTAUT) to co-design cybersecurity measures tailored

to operators’ needs. Exploring the efficiency of human-AI teams

in cybersecurity and focusing on Team Decision Making (TDM)

processes is also essential.

Standardized AI risk management processes, such as ISO 23894

and the NIST AI 100-1 Lifecycle, provide frameworks for assessing

AI system risks throughout their lifecycle. These models and the

input from ETSI’s AI threat ontology, along with information

security standards like the ISO 27000 family, highlight the need

for integrated approaches that consider both cybersecurity and

AI risks.

Explainable AI (XAI) techniques are crucial for detecting

and mitigating biases, monitoring for adversarial attacks, and

ensuring the integrity of AI systems throughout their lifecycle.

However, integrating XAI into standard risk assessment and

adversarial attack detection practices remains a gap. Developing an

integrated cybersecurity framework that utilizes XAI throughout

the AI lifecycle is necessary. Unifying AI threat knowledge with

cybersecurity and privacy insights is crucial for a comprehensive

understanding of vulnerabilities and risks. Leveraging XAI to

identify potential vulnerabilities and monitor for adversarial ML

attacks can enhance risk assessment and control recommendations.

Standards under development, such as ISO/IEC/IEEE 24748-

7000:2022, are beginning to address these concerns.

Overall, enhancing AI cybersecurity requires a multifaceted

approach that includes understanding the profiles and

characteristics of AI adversaries, adopting human-centric

strategies, and integrating advanced technologies like digital twins

and XAI. This approach will lead to more resilient and adaptable

security systems, aligning with societal expectations and norms.

3.2 Technical threats, vulnerabilities, and
attacks

The literature traditionally distinguishes adversarial AI threats

based on targets, attack timing, attacker knowledge, and attack
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FIGURE 1

Attacks on AI.

consequences (Tabassi et al., 2019). Targets can belong to the

physical domain (e.g., sensor input manipulation), in the digital

representation (e.g., pre-processed data input), or in the model

itself (e.g., a classification model). Attack timing can be at training

stage or at inference stage. Attacker knowledge varies from white-

box (complete knowledge) to black-box (no knowledge) through

diverse shades of gray, depending on attacker knowledge about

the model architecture, parameters, training technique and training

data. Attack can bare consequences on integrity, availability and

confidentiality properties. Figure 1 illustrates the main types of

attacks at each stage of the AI lifecycle.

Here under, we provide a summary of known adversarial AI

techniques based on these properties.

Data access, poisoning and backdoors are attacks happening

at the training stage. With access to training data (e.g., leaked

or public), an attacker can create a substitute AI model to use

as a testbed for future attack steps (Tabassi et al., 2019). This

type of attack requires knowledge of the training data and is

therefore a white-box or gray-box attack, depending on the level

of knowledge that the attacker has on the model itself. Data access

primarily affects the confidentiality, although as a preliminary

step to attacks on the model it can have further consequences.

Poisoning attacks involve techniques to inject or manipulate

training data (Chakraborty et al., 2018). Indirect poisoning occurs

before pre-processing and therefore does not require privileges but

a good knowledge of the application domain. Direct poisoning

occurs after pre-processing and therefore requires access to the

training environment. Poisoning attacks generally can affect the

integrity and availability of AI models. Unlike data access or

poisoning, AI backdoors do not address the physical domain

nor its digital representation but the model itself. Side module

insertion is the process of adding supplementary nodes to perform

hidden tasks in a neural network architecture. Alternatively,

deep alteration techniques introduce bias through modification of

selected nodes (Aufrant and Hervieu, 2020). Backdoors require

complete knowledge and can affect all system properties.

Evasion and oracles are attacks happening at model inference

stage. With evasion attacks, an adversary aims to find small input

perturbations that cause important changes in the output (Biggio

and Roli, 2018). Gradient-based techniques are widely used to

cause misclassification in computer vision systems. Gradient-free

attacks are possible alternatives in the case the target AI is using

gradient-masking techniques (Carlini et al., 2019). Evasion attacks

can be carried with limited preliminary knowledge, although black-

box attacks will typically require many trial and error iterations.

Evasion attacks can be targeted (aiming to make the model fail

on specific crafted inputs) or untargeted (aiming to reduce overall

system performance). Depending on application cases, they can

affect system integrity, or availability (Barreno et al., 2006). In

oracle attacks, an adversary collects model outputs and available

information to infer characteristics about the model or training

data (Papernot et al., 2018). In the case of membership inference,

the attacker verifies if a given data input was used in the model

training dataset (Shokri et al., 2017). In the case of inversion attacks,

he aims to reconstruct training data. In the case of extraction

attacks, he aims to reverse-engineer the model. Oracle attacks are

a good escalator from black box to gray and white-box knowledge

levels (Papernot et al., 2018). They affect the confidentiality of AI

model and data.

3.3 Socio-psychological AI threats,
vulnerabilities, and attacks

The integration of AI into various facets of society brings

forth a new frontier of challenges, particularly in the realm of

socio-psychological threats, vulnerabilities, and potential attacks.

Understanding and addressing these issues are crucial for the

responsible and ethical deployment of AI technologies. Socio-

psychological threats in the context of AI often manifest in the

form of manipulative tactics and the spread of misinformation.

AI algorithms, when applied to social media platforms and

information dissemination systems, have the potential to amplify

existing biases and polarize communities (Pennycook and Rand,

2018). This can lead to the creation of AI-driven echo chambers

that reinforce individuals’ pre-existing beliefs, posing a significant

threat to social cohesion (see Figure 2). Social threats include:

• Bias and discrimination: AI systems may display biases

derived from the data they are trained on, potentially

resulting in discriminatory outcomes, especially against

specific demographic groups.

• Unfair decision-making: Automated decision systems can

perpetuate existing social inequalities if trained on biased data

or if their algorithms lack mechanisms to address fairness.

• Inequality: The widespread integration of AI and automation

may lead to job displacement, particularly in sectors where

routine tasks are easily automated, potentially exacerbating

economic inequality. AI algorithms can be challenging to

interpret, creating difficulties in holding organizations and

systems accountable for their decisions.

• Misinformation:AI-generated deepfake content can fabricate

realistic but false videos, audio recordings, or images,

causing misinformation and potential harm to individuals

or reputations. AI algorithms on social media platforms can

magnify specific content, contributing to the dissemination of

misinformation and the formation of echo chambers.
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FIGURE 2

AI security threats and controls navigator (OWASP Top Ten, 2021).

• Lack of transparency: The absence of transparency in AI

systems may impede public understanding and trust in how

AI is employed.

• Addiction: AI algorithms utilized in social media and

entertainment platforms can contribute to addictive

behaviors, affecting mental health and wellbeing.

AI systems, particularly those employing machine learning

algorithms, can be susceptible to vulnerabilities that enable

behavioral manipulation. Adversaries may exploit these

vulnerabilities to influence user behavior, leading to unintended

and potentially harmful consequences. Understanding the

psychological aspects of human-AI interaction is crucial in

identifying and mitigating such vulnerabilities (Miorandi et al.,

2018). The use of AI in data analytics and user profiling raises

concerns about privacy erosion. Advanced algorithms can analyze

vast amounts of user data, leading to the creation of highly detailed

and potentially intrusive user profiles. Unauthorized access to

such profiles can result in privacy breaches and compromise the

autonomy of individuals (Cavoukian and Jonas, 2017).

AI algorithms, if not carefully designed and monitored, can

perpetuate, and amplify existing societal biases. This introduces

vulnerabilities in AI systems that may inadvertently discriminate

against certain demographic groups. Addressing bias and
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ensuring fairness in AI decision-making processes are critical to

mitigating socio-psychological threats (Diakopoulos, 2016). As

AI systems become more integrated into daily life, establishing

and maintaining trust between users and AI becomes paramount.

Instances of AI errors, biases, or malicious manipulations

can erode user trust. Understanding the socio-psychological

factors that influence human-AI interaction is essential for

developing systems that are not only technically robust but also

socially acceptable (Hoffman and Benenson, 2018). The socio-

psychological dimensions of AI threats, vulnerabilities, and attacks

necessitate a multidisciplinary approach. By addressing these

challenges with insights from psychology, sociology, and ethics,

we can foster the development of AI systems that enhance societal

wellbeing while minimizing potential harms.

4 Management of AI trustworthiness

4.1 Advanced methodologies for
evaluating AI trustworthiness, safety, and
risk

The continuous integration of Artificial Intelligence (AI) into

critical sectors demands rigorous methodologies for evaluating

trustworthiness, safety, and risk. This necessity is driven by the dual

aim of harnessing AI’s transformative potential while mitigating

its inherent vulnerabilities. Among the notable methodologies

developed to address these challenges, the S.A.F.E. approach stands

out for its holistic assessment framework (Giudici and Raffinetti,

2023). However, while extensively covering information-centric

application sectors such as finance, this framework does not

seamlessly expand to operation-centric application sectors such

as manufacturing, automotive or aerospace, in which greater

consideration for AI safety and robustness to adversarial AI

threat should be taken. To capture the full spectrum of AI’s

multifaceted impact, it is essential to explore and integrate

additional methodologies that offer specialized insights and

solutions. This paper delves into these advanced methodologies,

providing a technical and comprehensive analysis.

The S.A.F.E. methodology, emphasizing Security, Accuracy,

Fairness, and Explainability, serves as a foundational framework for

AI evaluation. It suggests implementing cryptographic safeguards

for security, rigorous validation datasets for accuracy, algorithmic

audits for fairness, and feature attribution techniques for

explainability (Smith et al., 2021). However, the dynamic and

complex nature of AI systems requires further methodologies to

address emerging challenges. As mentioned in the work of Giudici

and Raffinetti (2023) addressing the challenge of ensuring the

trustworthiness of AI applications, particularly those based on

machine learning (ML) in high-risk areas is of great importance

by complying with a set of mandatory requirements such as

Sustainability and Fairness. The proposed methodology introduces

a set of integrated statistical methods centered around the Lorenz

Zonoid tool. This tool is used to assess and monitor whether

an AI application is trustworthy over time by measuring key

attributes: Sustainability (robustness with respect to anomalous

data), Accuracy (predictive accuracy), Fairness (prediction bias

across different population groups), and Explainability (human

understanding and oversight).

Expanding this methodology to the realm of cyber security and

cyber risk management, the principles of S.A.F.E. can be adapted to

evaluate and enhance the reliability and integrity of cyber defense

mechanisms. In terms of cyber security, the Sustainability metric

could help evaluate the robustness of security protocols against

evolving threats and attacks, ensuring they remain effective under

various scenarios, including extreme conditions such as zero-day

exploits or sophisticated cyber espionage activities. Accuracy in

this context measures the precision of threat detection systems

in identifying genuine threats while minimizing false positives,

which is crucial for efficient resource allocation and maintaining

operational continuity. Fairness could be applied to ensure that

security measures do not unfairly target or exclude any group,

maintaining equitable access to digital resources (Barocas and

Hardt, 2019; ETSI, 2023). Lastly, Explainability in cyber risk

management emphasizes the importance of transparent and

understandable security policies and the logic behind automated

decisions, such as those made by AI-driven threat detection

systems, enabling better stakeholder understanding and trust in

cyber security measures. Adopting this SAFE framework in cyber

security and risk management can lead to the development of more

resilient, fair, and trusted AI-enabled security systems.

An extension to S.A.F.E. is the T.R.U.S.T. framework, which

incorporates Transparency, Robustness, Usability, Sustainability,

and Traceability. Transparency involves documenting and

disclosing AI development processes and data sources. Robustness

in machine learning is defined by Goodfellow et al. (2014) as the

minimal perturbation required to flip predicted labels. Robustness

testing employs adversarial examples and stress tests to evaluate

AI resilience (Goodfellow et al., 2014). Usability focuses on the

interface between AI systems and users, ensuring that systems are

accessible and user-friendly. Sustainability looks at the long-term

impacts of AI, including environmental and societal sustainability.

Lastly, Traceability ensures that decisions made by AI systems can

be tracked to their origin, facilitating accountability.

Worth also mentioning the work that’s being done regards

evaluation metrics for XAI, organized around objective metrics,

such as behavioral, physiological and task performance metrics,

and subjective metrics, such as trust and confidence (Zhou et al.,

2021). The work of Lopes et al. (2022), proposes a taxonomy

for XAI evaluation methods, organized as Human-centered and

Computer Centered. Under the human-centered methods some of

the evaluation methods are related to the user’s perceived system

competence and understandability, user’s prediction of model

output and of model failures. As for the computer-centered, we can

find clarity, broadness and simplicity, completeness and soundness.

Mohseni et al. (2021), evaluation metrics are focusing

on Mental Models, Explanations Usefulness and Satisfaction,

User Trust and Reliance, Human-AI Task performance, and

Computational Measures. In Ethical Risk Assessment (ERA)

provides a framework for identifying and evaluating ethical risks

associated with AI applications. This includes assessing potential

biases, privacy breaches, and misuse scenarios. ERAmethodologies

often involve stakeholder analysis to identify affected parties

and ethical impact assessments to evaluate the broader societal
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implications (Mittelstadt, 2019). These assessments are crucial

for developing AI systems that align with ethical norms and

societal values.

In the financial sector, Model Risk Management (MRM)

methodologies have been adapted to AI, focusing on the accuracy

and reliability of models underpinning financial decisions. MRM

involves comprehensive testing, including back-testing, scenario

analysis, and sensitivity analysis, to ensure that AI models perform

as expected across a range of conditions. This rigorous testing is

critical for minimizing financial risks and ensuring compliance

with regulatory standards (Bank for International Settlements,

2018).

In the aerospace sector, Safety Critical Function Thread

Analysis (SCFTA) and Failure Modes and Effects Testing (FMET)

methodologies have been applied to enable airworthiness of safety-

critical AI applications such as neural flight control systems

(Henderson et al., 2022). An AI based system called Maneuvering

Characteristics Augmentation System (MCAS) was admittedly

involved in the second crash of a BOEING 737 MAX plane

in Ethiopia in October 2018, that killed 189 people. Along

with technical causes, inadequate pilot training was blamed

for the accident. Therefore, this sector shows greater concern

for AI safety assurance, human-machine team dynamics and

certification methods.

Given the evolving nature of AI systems, continuous

monitoring and adaptive risk assessment are paramount. This

approach involves real-time monitoring of AI system performance,

coupled with adaptive mechanisms to adjust risk assessments

based on emerging data. Techniques such as dynamic retraining

of models, automatic detection of drift in data distributions, and

feedback loops for model adjustment are essential components

(Raj and Seamans, 2020).

The evaluation of AI trustworthiness, safety, and risk

is a multifaceted challenge that requires a combination of

methodologies. While the S.A.F.E. approach provides a solid

foundation, the integration of T.R.U.S.T., Ethical Risk Assessment,

Model RiskManagement, and continuousmonitoring offers amore

comprehensive and technical framework for assessing AI systems.

These methodologies highlight the importance of adaptability,

ethical considerations, and rigorous testing in the development and

deployment of AI technologies. Future research should focus on

refining these frameworks, developing standardized metrics, and

fostering interdisciplinary collaboration to ensure the responsible

advancement of AI.

As for now, the most usual metrics that we can consider, are

described in Table 1.

4.2 Technical mitigation measures

Attacks at training stage are generally well-prevented by good

MLSecOps practices and conventional risk management methods.

Data access can be prevented by appropriate data encryption and

access control measures according to conventional cybersecurity

standards (e.g., ISO 22600 series). While the use of proprietary

data reduces the risk of data access, it does not prevent data leak

by authorized insiders. Poisoning attacks can be countered by data

sanitization techniques that rely on testing-based identification and

removal of examples causing high error rates. Alternatively, robust

statistics approaches use constraints and rules to reduce potential

distortions of the learning model caused by poisoned data (Biggio

and Roli, 2018). AI backdoors are in many cases willingly inserted

by software editors for criminal (ransom), commercial (industrial

espionage), or strategic purposes (governmental control). Their

presence can be revealed by rigorous acceptance testing campaigns

(Aufrant and Hervieu, 2020).

Attacks at inference stagemust be anticipated, as most palliative

measures must be taken at training stage already. Feature squeezing

can reduce adversarial perturbations by performing smoothing

transformations on input features (Tabassi et al., 2019). Reformers

reduce the effect of adversarial perturbations by expanding the

properties of a given input to its closest neighbors in the training

dataset. The injection of adversarial perturbations in the training

data, known as adversarial training, will improve the robustness

of a classifier to evasion attacks (Chakraborty et al., 2018).

Ensemble methods can reduce the success rate of evasion attacks

by combining the results of multiple classifiers based on boosting,

bagging or stacking procedures (Biggio and Roli, 2018). Defensive

distillation improves model generalizability and robustness by

training a distilled NN using knowledge transferred from another

NN of similar architecture. Gradient masking techniques can

reduce sensitivity to adversarial examples by minimizing the first

order derivatives of the model with respect to its inputs (Papernot

et al., 2018). Defenses against oracle attacks include Differential

Privacy techniques that reduce the risk of model reversing by

using general patterns and withholding information about specific

individuals in the training procedure (European Defense Agency,

2020). This technique however comes with a cost in terms of model

accuracy. An alternative approach is the use of homomorphic

encryption that allows machine learning operations on encrypted

data. While this technique guarantees privacy protection, it comes

with computational expenses and operational limitations (Papernot

et al., 2018). Finally, extraction attacks can be detected by the use

of model watermarking techniques, by which model answers to

specific queries provides formal proof of ownership.

General AI controls were grouped by OWASP and adopted

by CEN/CLC JTC21 WG1 TG into four categories: a. General

controls against all threats; b. Controls against threats through run

time use; c. Controls against development-time threats; d. Controls

against runtime application security threats as illustrated in the next

OWASP Figure.

4.3 Social mitigation measures

Article 9 of the AI Act emphasizes the need for comprehensive

risk management in AI systems, necessitating a balance between

technical and human oversight. However, both the NIST_AI_RFM

(Appendix C) and the ENISA AI Framework underscore the

requirement for further research to comprehend the existing

limitations of human-AI interaction in the risk management

process. A critical aspect yet to be thoroughly explored is the

profiling of AI adversaries, specifically focusing on their socio-

technical characteristics. This entails delving into the technical

skills and social capabilities, including behavioral, ethical, moral,
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TABLE 1 Metrics to assess AI properties.

Property Description Metric

Accuracy Amount and frequency of the model’s errors, i.e., how “correct”

the model’s output is compared to reality

Classification Accuracy; Logarithmic Loss; Confusion Matrix;

Area under Curve (AUC); F1 Score; Mean Absolute Error; Mean

Squared Error

Explainability Capability of expressing the relation between the feature values of

an input to a model and the corresponding output value in a

humanly understandable explanation

Coverage; Perceived Understandability; Perceived Technical

Competence; Perceived Reliability; Personal Attachment

Fairness Neutrality of evidence, refers to the property of having models

that are not biased by personal preferences, emotions or other

limitations introduced by the context

Disparate impact; Differential fairness; Statistical Parity

Difference; Demographic Parity Ratio

Reliability Capability of ML models to maintain a minimum performance

level (in terms of accuracy, latency, throughput) under variations

in the inputs’ distributions

Distance from last best serving ML model or from a benchmark

(e.g., rule-based) heuristics; mean time between failure

Robustness Capability of ML models to operate as expected even under

perturbations of the input distributions specifically designed to

affect their operation

Misclassification rate, under data perturbation by adversarial

samples; evasion success rate (targeted/untargeted evasion

attacks)

and psychological traits that set the psychological context of an

AI attack.

To fortify defense mechanisms against adversarial AI attacks,

it is imperative to understand not only the technical aspects

but also the social elements influencing such attacks. This

encompasses the identification of motives driving attacks, such as

financial, commercial, business, or even recreational interests. The

defender’s effectiveness relies on possessing an appropriate socio-

technical profile, understanding the operational priorities of the

AI system environment. Early research suggests that integrating

socio-technical profiles into security risk assessments enhances the

accuracy of estimating social and technical vulnerabilities, enabling

a more realistic approach to cybersecurity risk management.

Mitigating social-driven AI threats, such as bias and

transparency issues, requires comprehensive measures. Awareness

campaigns, social dialogs, and cyber-social experiments are vital

components for enhancing the ethical values and principles of both

attackers and defenders. Creating digital “clones” of adversarial

ML attackers and efficient “question-and-respond” schemes can

contribute to the challenge of understanding adversaries better.

Investigative psychology research and behavioral science can

pave the way for social and behavioral anonymous profiling of

AI attackers (Kioskli and Polemi, 2020, 2022a,b).

The introduction of cyber-social exercises provides

interdisciplinary training for potential attackers and defenders.

This novel approach aims to study attack tactics and defense

strategies by considering different social profiles and human

characteristics. Developing “clones,” sophisticated ML models

inspired by digital twin principles, is crucial for storing attributes

and features of adversaries gathered from cyber-social exercises and

relevant research. These digital clones, integrated with knowledge

graphs and advanced machine-learning techniques, dynamically

adapt and respond to evolving threats.

In parallel, a new generation of conversational agents or

“chatbots” is proposed to implement intelligent dialogues. These

chatbots aim to elicit security operator capabilities in defending AI

systems while gathering essential information about the relevant

priorities of the business environment. Advances in natural

language processing have paved the way for more capable and

engaging conversational agents, finding applications across various

domains, including business, healthcare, and learning.

Addressing socio-psychological AI threats requires a holistic

approach that integrates technical understanding with insights into

human behavior. Ongoing research efforts should focus on refining

risk management processes, understanding adversary profiles,

and developing innovative defense strategies. Recommendations

include fostering interdisciplinary collaboration, implementing

awareness campaigns, and investing in cyber-social exercises.

Moreover, the development of digital clones and conversational

agents represents promising directions for advancing AI security.

Continuous efforts in these areas will contribute to creating a robust

and resilient AI ecosystem that aligns with ethical standards and

societal expectations.

5 Structuring initiatives for AI
trustworthiness

5.1 Standards in AI risk management
related to trustworthiness

The landscape of standards surrounding AI risks is vast,

encompassing contributions from ISO/IEC, ETSI, and IEEE (IEEE

P2976, 2021; IEEE P3119, 2021). This section highlights key

standards that focus on AI risks and trust management.

Starting with the foundational standards for risk management,

such as the ISO27000x series and ISO 31000:2018, we then move

to dedicated AI risk management standards like ISO/IEC 24028,

which addresses AI security threats.

ISO/IEC 42001—Artificial Intelligence Management System,

published in December 2023, is designed to manage risks and

opportunities associated with AI, addressing ethics, transparency,

reliability, and continuous learning. ISO/IEC 23894 works in

conjunction with ISO 31000:2018, focusing specifically on AI risk

management. ISO/IEC has also published TR standards, including

those that concentrate on AI ethical and societal concerns. The

robustness of neural networks is tackled by ISO/IEC 24029-2:2023,

which offers a methodology for using formal methods to assess
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neural network robustness. The development of ISO/IEC 24029-

3 aims to focus on statistical methods for this purpose. Technical

Report TR 24028 analyzes and surveys approaches to enhance

trustworthiness in AI systems and mitigate vulnerabilities related

to trustworthiness.

Other relevant ISO standards include:

• ISO/IEC WD 27090—Cybersecurity—Artificial Intelligence:

Guidance for addressing security threats to AI systems.

• ISO/IEC WD 27091—Cybersecurity and Privacy: Artificial

Intelligence—Privacy protection.

• ISO/IEC 27115—Cybersecurity evaluation of complex

systems: Introduction and framework overview.

• ISO/IEC CD TR 27563: Impact of security and privacy in AI

use cases.

• ISO/IEC 5338 (also covering the AI risk management process

and summarizing 23894).

• ISO/IEC AWI 42105 (under development) on guidance for

human oversight of AI systems.

• ISO/IEC 5259 series (Data quality).

• ISO/IEC 24029 series (Robustness).

• ISO/IEC 22989 (AI concept and terminology standard).

• ISO/IEC FDIS 5338: AI system lifecycle processes.

From ETSI, the Securing Artificial Intelligence (SAI) group is

making strides in this area. It published the AI Threat Ontology

[ETSI GR SAI 001 V1.1.1 (2022-01)] as one of its initial reports.

In 2023, ETSI introduced the Artificial Intelligence Computing

Platform Security Framework [ETSI GR SAI 009 V1.1.1 (2023-

02)], detailing a security framework for AI computing platforms to

protect valuable assets like models and data. Additionally, ETSI GR

SAI 007 V1.1.1 (2023-03) discusses steps for AI platform designers

and implementers to ensure explicability and transparency in

AI processing.

IEEE has introduced P3119, a standard for the Procurement

of Artificial Intelligence and Automated Decision Systems,

establishing definitions and a process model for AI procurement

and how government entities can address socio-technical and

innovation considerations responsibly. The IEEE P2976—Standard

for XAI (eXplainable Artificial Intelligence)—aims to define the

requirements for an AI method, algorithm, application, or system

to be considered explainable, ensuring clarity and interoperability

in AI system design.

In March 2023, the European Commission (EC) requested

CEN and CENELEC to work with international and national

stakeholders, including SMEs, to develop a European standards

program for AI (CEN/CENELEC Standards, 2023). These

standards will aim to ensure safety, transparency, user

understanding, oversight, accuracy, robustness, cybersecurity,

and quality management throughout the AI systems’ lifecycle,

catering to various stakeholders’ needs and ensuring regulatory

compliance. This request by the EC was accompanied by a set of

requirements in the following areas for the new EU standards:

• Risk management system for AI systems: Specifies a

continuous iterative process for risk management throughout

the AI system’s lifecycle, aimed at preventing or minimizing

risks to health, safety, or fundamental rights. Ensures

integration of risk management systems with existing

Union Harmonization legislation where applicable.

Drafted for usability by relevant operators and market

surveillance authorities.

• Data and data governance: Includes specifications for data

governance procedures, focusing on data generation, biases,

and dataset quality for training AI systems.

• Record keeping through logging capabilities: Specifies

automatic logging of events for traceability and post-market

monitoring of AI systems by providers.

• Transparency and information to users: Provides design

and development solutions for transparent AI system

operations and instructions for users about system capabilities

and limitations.

• Human oversight: Specifies measures and procedures for

human oversight built into AI systems and implemented

by users, including those specific to certain AI systems’

intended purposes.

• Accuracy specifications for AI systems: Lays down

specifications for ensuring appropriate accuracy

levels, declaring relevant accuracy metrics and tools

for measurement.

• Robustness specifications for AI systems: Specifies

robustness considering potential sources of errors, faults, and

interactions with the environment.

• Cybersecurity specifications for AI systems: Provides

organizational and technical solutions to safeguard AI systems

against cyber threats and vulnerabilities.

• Quality management system for providers of AI systems:

Specifies a quality management system ensuring continuous

compliance with various AI system aspects.

• Conformity assessment for AI systems: Provides procedures

for conformity assessment activities related to AI systems and

quality management systems of AI providers.

Another area of development for standards and methodologies

is that of General Purpose AI (GPAI). The release of ChatGPT by

OpenAI in December 2022 has triggered a worldwide enthusiasm

around consumer-oriented applications of Large Language Model

(LLM). Artificial General Intelligence (AGI) techniques with

generative capabilities, called foundation models, are being pushed

to the market. While these models inherit a lot of the previously

highlighted vulnerabilities of narrow AI, their pre-training on a

broad set of unlabeled and uncurated data opens a risk of web-

scale poisoning and supply chain attacks. Hallucinations, prompt

extraction and prompt injection come on top of existing AI

risks. In Figure 3 we summarize the main types of attacks on

LLMs, which bring additional challenges particularly due to the

prompt manipulations.

Existing standards do not appropriately cover the specific

risks related with the development and use of GPAI. We would

recommend dedicated standardization efforts in this area.

5.2 Initiatives and frameworks

In addition to legislation and standards, there several

frameworks and research tools that can guide and support
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the development of AI systems toward their robustness

and trustworthiness.

NIST AI Risk Management Framework (AI RMF 1.0 URL),

consider as characteristic of AI trustworthiness the properties of

being valid and reliable, safe, secure and resilient, explainable and

interpretable, privacy-enhanced, fair, accountable and transparent.

These properties are not seen individually, as they influence each

other, and are also tied to the social and organizational behavior,

to the decisions made by AI developers and the interactions

with the humans. Indeed, the framework assumes that Human

FIGURE 3

Attacks on LLMs.

judgment is needed to decide on the AI trustworthiness metrics and

their thresholds, which are dependent from the decision context.

For each of these properties, the framework highlights the risks

and how to manage them. The framework core is composed of

four functions: Govern, Map, Measure, and Manage. GOVERN

is a cross-cutting function that is infused throughout AI risk

management and enables the other functions of the process. The

MAP function establishes the context to frame risks related to an AI

system. The MEASURE function employs quantitative, qualitative,

or mixed-method tools, techniques, and methodologies to analyze,

assess, benchmark, and monitor AI risk and related impacts. The

MANAGE function entails allocating risk resources to mapped

FIGURE 5

ENISA multilayer framework for AI-related cybersecurity good
practices (ENISA URL).

FIGURE 4

NIST AI RMF AI actors across AI lifecycle stages (NIST AI RMF URL).
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FIGURE 6

MITRE adversarial threat landscape for AI systems (MITRE ATLASTM URL).

FIGURE 7

LLM security with OWASP and MITRE resources (OWASP URL).

and measured risks on a regular basis and as defined by the

GOVERN function. Risk treatment comprises plans to respond

to, recover from, and communicate about incidents or events.

Figure 4 illustrates the actors considered in the framework, along

the AI lifecycle.

ENISA report on the multilayer framework, provides a vision

of good cybersecurity practices for AI based on three layers (see

Figure 5): The cybersecurity foundations; AI Fundamentals and

Cybersecurity; and Sector Specific Cybersecurity Good practices.

The AI layer presents the Ai legislation, describes the assets and

procedures, the AI threat assessment and security management,

as well as the AI related standards. The standards are mapped

along the AI lifecycle of design, development, deploying and

monitoring. In the same document, ENISA presents the analyses

the current state of cybersecurity requirements andmonitoring and

enforcement practices that the national competent authorities have

adopted or plan to develop. The survey revealed there is still a lot to

be done.

MITRE ATLASTM (2024) (Adversarial Threat Landscape for

Artificial-Intelligence Systems) provides a knowledge base of

adversary tactics and attack techniques on AI systems (see

Figure 6). It was modeled after, and is complementary to, MITRE

ATT&CK
R©

framework, with some of the tactics and techniques

adapted directly from ATT&CK
R©

framework. Here we can

find tactics and techniques such as ML Model Access, Privilege

Escalation based in Large Language Models (LLM), ML Attack

Staging. Worth noticing several attack techniques consider LLMs

usage, and for almost all of them there’s no mitigation measure

mentioned. This is a living knowledge base, strongly recommended

to be followed.

ENISA report on the multilayer framework, provides a vision

of good cybersecurity practices for AI based on three layers: The

cybersecurity foundations; AI Fundamentals and Cybersecurity;

and Sector Specific Cybersecurity Good practices. The AI layer

presents the Ai legislation, describes the assets and procedures,

the AI threat assessment and security management, as well as

the AI related standards. The standards are mapped along the AI

lifecycle of design, development, deploying and monitoring. In the

same document, ENISA presents the analyses the current state

of cybersecurity requirements and monitoring and enforcement

practices that the national competent authorities have adopted or

plan to develop. The survey revealed there is still a lot to be done.

MITRE ATLASTM (Adversarial Threat Landscape for Artificial-

Intelligence Systems) provides a knowledge base of adversary

tactics and attack techniques on AI systems. It was modeled

after, and is complementary to, MITRE ATT&CK
R©

framework,

with some of the tactics and techniques adapted directly from

ATT&CK
R©

framework. Here we can find tactics and techniques

such as ML Model Access, Privilege Escalation based in LLM, ML

Attack Staging. Worth noticing several attack techniques consider
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LLMs usage, and for almost all of them there’s no mitigation

measure mentioned. This is a living knowledge base, strongly

recommended to be followed.

OWASP is the Open Web Application Security Project that

provides the list “OWASP Top 10” (OWASP URL) with the 10

most critical web application security risks (see Figure 7). OWASP

includes projects such as ML security Top Ten and the Top

10 for Large Language Model Applications. The ML Security

Top 10 addresses the threats mentioned in Section 3.1, such as

Data Poisoning, Membership Inference, Transfer Learning Attacks,

Model Poising, among others. For each, it provides measures to

prevent, risk factors and examples of attack scenarios. OWASP Top

10 for LLM Applications addresses attacks like Prompt Injection,

Model Denial of Service, Insecure Plugin Design, among others.

The foundation published in December 2023, a document with the

essential guidelines for a Chief Information Security Officer (CISO)

to manage the rollout of Gen AI technology in their organization.

5.3 Research projects and initiatives

In the ever-evolving landscape of AI the imperative for

trustworthy and human-centric systems has become paramount.

Two pioneering projects funded by the European Union, namely

the Fostering Artificial Intelligence Trust for Humans (FAITH)

and the Human-centered Trustworthiness Optimization in Hybrid

Decision Support (THEMIS 5.0), exemplify dedicated efforts to

optimize trust in AI across critical domains. These initiatives not

only acknowledge the pressing need for reliable and transparent

AI systems but also strive to bridge the gap between technical

prowess and human values. In this overview, we delve into

the distinctive features of each project, shedding light on their

objectives, methodologies, and the broader implications for the

future of trustworthy AI. Both FAITH and THEMIS 5.0 serve

as exemplars of the EU’s commitment to fostering innovation,

collaboration, and responsible AI development.

5.3.1 Fostering Artificial Intelligence Trust for
Humans (FAITH) project

The FAITH project addresses the increasing demand for

trustworthy AI systems across diverse domains during the

ongoing digital transformation. Recognizing the critical role AI

plays in addressing socio-economic needs, FAITH focuses on

optimizing trustworthiness through large-scale pilots in critical

domains. Despite existing recommendations and standards, many

AI practitioners prioritize system performance over key attributes

of trustworthiness. FAITH aims to develop and validate a

human-centric trustworthiness optimization ecosystem, focusing

on traceability, robustness, security, transparency, and usability.

Large-scale pilots will be conducted in critical domains such as

robotics, education, media, transport, healthcare, active ageing,

and industrial processes. A dynamic risk management approach,

following EU legislative instruments and ENISA guidelines, will be

employed. The project will deliver widely applicable tools, engage

diverse stakeholder communities, and produce sector-specific

reports on trustworthiness to accelerate AI adoption. FAITH is an

EU-funded innovation action.

5.3.2 Human-centered trustworthiness
optimization in hybrid decision support (THEMIS
5.0) project

The THEMIS 5.0 project introduces a cloud-based AI

ecosystem designed to optimize trustworthiness in decision

support through human-centered approaches. The ecosystem

includes AI-driven services engaging with humans through

interactive dialogues. A key feature is an AI-driven conversational

agent that provides human-interpretable explanations of AI

decision-making processes and intelligently elicits knowledge

related to decision support needs, moral values, and business

goals. THEMIS 5.0 adopts a European human-centric approach,

emphasizing co-creation processes to align potential tensions

between trustworthy AI components. Co-creation will be applied

across eight European countries to ensure widespread acceptability.

The project aims to enhance trust in AI systems through

transparent and inclusive development. THEMIS 5.0 is an EU-

funded initiative.

These research projects contribute significantly to advancing

trust in Artificial Intelligence, addressing critical challenges in

various application domains. The FAITH project’s focus on

large-scale pilots and the development of a comprehensive

trustworthiness optimization ecosystem provides a holistic

approach to AI adoption. On the other hand, THEMIS 5.0

emphasizes human-centered trust optimization in decision

support, promoting transparency and inclusivity. To further

enhance the impact of these initiatives, it is recommended

to foster collaboration and knowledge-sharing between the

projects, creating synergies in methodologies, tools, and findings.

Additionally, ongoing engagement with diverse stakeholder

communities and the incorporation of ethical considerations

will contribute to the responsible and ethical deployment of AI

technologies. These projects serve as valuable examples of the EU’s

commitment to promoting trustworthy AI and should inspire

future endeavors in the field.

6 Conclusions and the ways forward

A comprehensive examination of human factors throughout

the entire lifecycle of AI attacks is not merely advantageous but

an imperative endeavor. The intrinsic complexity and potential

protracted duration of these attacks introduce formidable

challenges in terms of detection and monitoring. These

complexities render it particularly challenging to discern and

integrate credible knowledge concerning the social and behavioral

profiles of both attackers and the security operators responsible

for defending against these sophisticated threats in the context of

risk assessments. Within the realm of assessing trustworthiness,

a pivotal facet involves the estimation and development of

measurements and scales tailored to social-related threats, such as

bias and explainability. This undertaking constitutes a formidable

challenge that demands sustained collaboration with experts in

social and behavioral sciences. By fostering ongoing partnerships

with these specialized professionals, the endeavor is to navigate the

intricacies of human behavior intertwined with AI attacks. A key

strategy in this pursuit involves the establishment of cyber-social

exercises, complemented by face-to-face interviews that engage

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2024.1381163
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Polemi et al. 10.3389/fdata.2024.1381163

potential attackers and defenders alike. This concerted approach is

not merely an ancillary element but emerges as a critical strategy

to effectively address the inherent challenges in assessing and

mitigating evolving threats within the AI landscape. Through these

collaborative initiatives, the overarching objective is to augment

our comprehension of the multifaceted human dimensions

associated with AI attacks. Simultaneously, this collective effort

seeks to fortify our capacity to assess and proactively mitigate the

ever-evolving nature of these threats, thereby ensuring a more

resilient and trustworthy AI ecosystem.
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