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Time series forecasting is an essential tool across numerous domains, yet

traditional models often falter when faced with unilateral boundary conditions,

where data is systematically overestimated or underestimated. This paper

introduces a novel approach to the task of unilateral boundary time series

forecasting. Our research bridges the gap in existing methods by proposing

a specialized framework to accurately forecast within these skewed datasets.

The cornerstone of our approach is the unilateral mean square error (UMSE),

an asymmetric loss function that strategically addresses underestimation biases

in training data, improving the precision of forecasts. We further enhance

model performance through the implementation of a dual model structure

that processes underestimated and accurately estimated data points separately,

allowing for a nuanced analysis of the data trends. Additionally, feature

reconstruction is employed to recapture obscured dynamics, ensuring a

comprehensive understanding of the data. We demonstrate the e�ectiveness

of our methods through extensive experimentation with LightGBM and GRU

models across diverse datasets, showcasing superior accuracy and robustness

in comparison to traditional models and existing methods. Our findings not only

validate the e�cacy of our approach but also reveal its model-independence

and broad applicability. This work lays the groundwork for future research in

this domain, opening new avenues for sophisticated analytical models in various

industries where precise time series forecasting is crucial.

KEYWORDS

time series forecasting, unilateral boundary, asymmetric loss function, feature

reconstruction, dual model structure

1 Introduction

Unilateral boundary time series forecasting is a nuanced and intricate domain within

the field of time series analysis. This form of forecasting pertains to time series data that is

characterized by the presence of only one boundary, either as a lower or an upper bound.

The essence of this concept lies in the fact that time series with a lower bound tend to

be partially underestimated. In simpler terms, the values represented in these series are

frequently less than the actual figures, thus positioning the given time series as a lower

boundary of the real data. Conversely, time series that feature an upper bound are partially

overestimated, where the represented values exceed the actual data, establishing the given

series as an upper boundary.

Real-world applications abound with examples of single boundary time series

problems. A common instance is observed in the performance ofmultiple low-cost sensors.

These sensors, under specific conditions, either underestimate or overestimate the actual

values they are designed to measure. This phenomenon is well-documented in various

studies.
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• Rohan et al. conducted an in-depth investigation into the

Plantower PMS1003, a low-cost particle sensor. Their research

revealed a significant spike in particle number and mass

concentrations when the relative humidity exceeded ∼75%

(Jayaratne et al., 2018). This situation typifies what can be

termed as a secondary time series sample, where the deviation

from accuracy—be it overestimation or underestimation—

correlates with another time series.

• Another intriguing case study scrutinized the efficacy of

various rainfallmeasurement instruments, including a tipping

bucket rain gauge (TBRG), a weighing rain gauge (WRG),

an optical rain gauge (ORG), a present weather detector

(PWD), a Joss–Waldvogel disdrometer (JWD), and a 2-D

video disdrometer (2DVD), to evaluate how accurately they

measure rainfall and drop size distributions. Their findings

were quite revealing: the PWD and 2DVD recorded higher,

and the JWD lower rain rates when the rainfall intensity

exceeded 20 mm/h, while the TBRG recorded higher and the

WRG lower rain rates below this threshold (Liu et al., 2013).

This scenario is a classic example of an output sample, where

the variation in measurement is intrinsically linked to the

value within the time series itself.

• Girisha et al. explored the accuracy of low-cost soil

water sensors, namely ECH2O-5TE, Watermark 200SS, and

Tensiometer model R. Their study indicated that while the

ECH2O-5TE tended to overestimate soil water content, the

Watermark and Tensiometer underestimated it (Ganjegunte

et al., 2012). This scenario exemplifies what can be described as

a random perturbation sample, where the accuracy deviation

occurs in a seemingly random manner.

The potential for practical applications of unilateral boundary

time series forecasting extends to a variety of fields. For instance,

in the transportation sector, a taxi company might be interested

in forecasting the potential number of waiting passengers in a

specific area. Historically, it is more feasible for taxi companies

to record data on carried passengers rather than those waiting. It

is evident that the number of carried passengers underestimates

the actual number of potential passengers, especially when taxi

availability is low. Similarly, parking lot owners can employ this

forecasting model to predict the potential number of vehicles

needing parking space, using historical data on occupied spaces.

Both the taxi and parking scenarios can be categorized as upper

bound samples, where underestimation occurs once the values

surpass a certain threshold, like the number of available taxis or

parking spaces.

The challenge and opportunity in unilateral boundary time

series forecasting lie in developing models capable of accurately

predicting actual figures based on historically underestimated or

overestimated data. This necessitates not only an understanding

of the specific characteristics of the data but also an ability to

discern and account for the underlying factors that contribute

to the boundary conditions. The examples cited from various

studies highlight the diverse contexts in which unilateral boundary

time series are relevant and underscore the need for sophisticated

modeling techniques to tackle this complex yet fascinating area of

time series analysis.

In the aforementioned scenarios, it is notable that we possess

the capability to discern instances of data underestimation or

overestimation. Take, for instance, the PMS1003 low-cost particle

sensor. This device tends to overestimate readings at relative

humidity levels surpassing 75%. Consequently, we can assume

that in historical particle time series data, instances where relative

humidity exceeded 75% likely led to overestimated measurements.

Conversely, consider the scenario concerning potential waiting taxi

passengers. Here, the total number of taxi passengers is prone

to underestimation in situations where there are minimal or no

vacant taxis available. Therefore, it is reasonable to assume that

in such instances, the aggregate count of taxi passengers has been

underestimated, underscoring a direct correlation between taxi

availability and passenger count estimation. Addressing either the

lower-bounded or upper-bounded time series forecasting problem

can be methodologically equivalent. By simply reversing the sign of

each time series value, an upper-bounded series can be transformed

into a lower-bounded one, and vice versa. This duality offers a

versatile framework for model development.

Given a set of time series data characterized by unilateral

boundaries, where some values are known to be either

overestimated or underestimated under specific conditions,

the problem of Unilateral Boundary Time Series Forecasting

involves developing a predictive model that can accurately forecast

future values by dealing with these skewed segments in the

training dataset. To the best of our knowledge, there appears

to be a noticeable gap in the existing literature and practical

applications concerning models specifically designed for unilateral

boundary time series forecasting. This particular niche in time

series analysis, which deals with datasets that are characterized by

either partial overestimation or underestimation, remains largely

unexplored. Recognizing this void, our research endeavors to

construct a comprehensive framework tailored to address this

unique forecasting challenge.

Our proposed method for unilateral boundary time series

forecasting is novel in novel and multifaceted, targeting three

key aspects of the challenge. The first is the introduction of an

asymmetric loss function, the loss function of unilateral mean

square error (UMSE), tailored to address underestimated output

data in training datasets. This approach significantly improves

the model’s accuracy by correcting bias toward underestimation.

Second, we have developed a dual model structure, specifically

designed to handle underestimated input data in both training and

testing phases. This structure is critical for aligning the model’s

predictions with the actual data trends, ensuring a more accurate

and unbiased forecast. Last, the technique of feature reconstruction

plays a key role. It involves enhancing the actual input data to

capture the underlying dynamics that may be obscured due to

unilateral boundary conditions. This step is essential for a deeper

and more comprehensive data analysis, leading to more accurate

forecasting outcomes. Together, these strategies create a robust

framework for addressing the nuances of unilateral boundary time

series forecasting, ensuring precision and reliability in predictions.

To evaluate the efficacy of our proposed method, we

conducted experiments utilizing Light Gradient Boosting

Machine (LightGBM) (Ke et al., 2017) and Gated Recurrent Unit

(GRU) (Cho et al., 2014) models. These models were chosen
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due to their widespread use and proven effectiveness in time

series forecasting. LGBM is renowned for its efficiency and

effectiveness as a tree-based model, while GRU is a celebrated

recurrent neural network model. The objective of employing

these models was to demonstrate the model-independence of

our method and their applicability across different forecasting

paradigms. Our experimentation extended to various datasets and

underestimation simulation methods. This comprehensive

approach was instrumental in showcasing the versatility

and robustness of our methods across diverse data sets and

underestimation scenarios. Additionally, we conducted thorough

comparative analyses against other related methods to underscore

the advancements our methods offer.

The contributions of this work are four-fold.

• Conceptually, we propose and formulate the problem of

unilateral boundary time series forecasting, which is widely

motivated by various real-world scenarios of time series data

collection and analysis.

• Technically, we have put forth a generalized model for

unilateral boundary time series forecasting, amalgamating

three distinct strategies, including the loss function of

unilateral mean square error, the dual model structure, and

the feature reconstruction module, to address the multifaceted

nature of this forecasting challenge.

• Empirically, our simulation of various underestimation

scenarios, grounded in real-world applications, coupled with

experiments on diverse datasets, establishes the efficacy of our

method across a broad spectrum of situations and data types.

• Lastly, the successful application of our method on both tree-

based and deep learning models not only reinforces their

versatility but also opens avenues for their implementation

across various model architectures.

The organization of the remainder of the paper is as follows.

Section 2 critically reviews existing studies, highlighting the

limitations in current forecasting methodologies and setting the

stage for our novel contributions. In Section 3, we delineate the

problem statement, defining the scope and the specific challenges

of unilateral boundary time series forecasting. Section 4 is devoted

to the technical exposition of our proposed method, detailing the

dual model structure, the innovative asymmetric loss function,

and the feature reconstruction technique that collectively enhance

forecasting accuracy. Experimental setups, including the datasets

and evaluation metrics used, along with a thorough analysis of

the results, are presented in Section 5. This section validates

the effectiveness of our approach through comparative studies

with existing models. Finally, Section 6 concludes the paper

with a summary of our findings, the implications for practical

applications, and directions for future research.

2 Related work

This section provides a comprehensive review of the literature

pertinent to unilateral boundary time series forecasting. We

delineate various forecasting methodologies, particularly focusing

on those that address distribution shifts and non-stationary

time series, which share conceptual similarities with unilateral

boundary conditions. Each referenced study is critically evaluated

to highlight both its contributions and limitations in the context

of unilateral boundary challenges. This review sets a critical

foundation for the subsequent sections by clearly establishing

the existing gaps that our proposed methodology aims to fill,

thereby justifying the need for our novel approach. This section

not only contextualizes our work within the broader field of

time series forecasting but also underscores the novelty and

necessity of tackling the specific problem of unilateral boundaries in

forecasting models.

2.1 Time series forecasting with
distribution shift

Time series forecasting with distribution shift refers to the

prediction of future values in a series where the underlying

data distribution changes over time. This is a complex issue

because traditional forecasting methods often assume that past

data distributions will continue into the future, which is not the

case with distribution shifts. Recent advancements in this field

have introduced several novel approaches. Fan et al. (2023) have

developed Dish-TS, a paradigm designed to alleviate distribution

shifts by considering intra-space (within input data) and inter-

space (between input and output data) shifts. Their dual coefficient

network framework, Dish-TS, adjusts for these shifts to enhance

forecasting accuracy significantly. Duan et al. (2023) introduced

Hyper TimeSeries Forecasting (HTSF), a hypernetwork-based

framework that adapts to time-varying distributions and forecasts

accurately under distribution shifts, using hyper layers to

characterize and adjust to these shifts dynamically. Kim et al.

(2021) proposed reversible instance normalization (RevIN), a

method for addressing changes in statistical properties over time

by symmetrically removing and restoring statistical information

within a time series instance. This approach has shown to improve

forecasting in various real-world datasets. Wang et al. (2023) took

inspiration from Koopman theory to create the Koopman Neural

Forecaster (KNF), a sequence model that gains robustness against

distributional shifts by learning a linear Koopman space with neural

networks. Cai et al. (2023) tackled the concept drift problem with

MemDA, encoding periodicity in the data and adapting on-the-

fly to changes using a meta-dynamic network, thus enhancing

model generalizability across distribution changes. Lastly, Chen

et al. (2023) focused on calibrating Transformers for time series

forecasting, introducing a method to detect and adapt to context-

driven distribution shifts (CDS) using a residual-based detector and

a sample-level contextualized adapter.

Time series forecasting with distribution shift is distinctly

different from unilateral boundary time series forecasting. While

the former deals with the entire data distribution changing over

time, the latter specifically addresses scenarios where the series has

a single boundary condition causing systematic underestimation or

overestimation of values. The challenge in unilateral boundary time

series forecasting lies in recognizing and adjusting for these skewed

segments in the data, rather than dealing with broad shifts in the

overall data distribution.
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2.2 Non-stationary time series forecasting

Non-stationary time series forecasting involves predicting

future values of a time series when the statistical properties of

the series, such as mean and variance, change over time. This

contrasts with stationary time series forecasting, where the series

is assumed to have constant statistical properties throughout. Non-

stationarity poses significant challenges as it requires models to

adapt to evolving trends and shifts in the data distribution.

Several recent studies have approached non-stationary time

series forecasting with innovative solutions. Liu et al. (2022)

introduced Non-stationary Transformers, which tackle the

problem of over-stationarization that can occur when applying

stationarization techniques to make a series more predictable.

They propose a framework with two interdependent modules to

enhance predictability while retaining the inherent non-stationary

characteristics that are crucial for forecasting real-world events.

Liu et al. (2023) proposed an Adaptive Normalization (SAN) that

reduces non-stationarity at a local temporal slice level rather than

globally across the entire series. This approach acknowledges the

distribution discrepancies between different segments of the series

and dynamically adjusts the model to these changes, leading to

more accurate predictions. Wang et al. (2022) developed a robust

forecasting framework for heavy-tailed and non-stationary time

series data commonly found in finance and medical fields. They

introduced an adaptive sparse Huber additive model that provides

generalization bounds for both stationary and non-stationary

data, circumventing the need for traditional mixing conditions

and addressing shifts in data distributions over time. Lastly, Fu

et al. (2022) explored a Reinforcement Learning based Model

Combination (RLMC) framework that determines dynamic

weights for base models in an ensemble. This method treats model

selection as a sequential decision-making problem, adapting to

non-stationary time series data by learning dynamic model weights

and leveraging deep learning to capture hidden features from raw

data.

While these methods offer advanced solutions for non-

stationary time series forecasting, they differ from unilateral

boundary time series forecasting in their primary focus. Unilateral

boundary time series forecasting specifically addresses time series

that exhibit a single boundary, either a lower or upper limit,

beyond which the values are systematically underestimated or

overestimated. This creates a distinct set of challenges, such

as handling asymmetric error distributions and reconstructing

underestimated or overestimated values, which the mentioned

non-stationary forecasting methods do not directly address.

Therefore, while non-stationary and unilateral boundary time

series forecasting both deal with complex time series data, they

require different specialized approaches to accurately predict future

values.

2.3 Robust time series forecasting

Robust time series forecasting is concerned with the

development of predictive models that maintain their accuracy

and reliability in the face of anomalies, outliers, or other forms

of data irregularities. These models are designed to withstand

the challenges posed by noisy and unstable data, ensuring that

the forecasting remains dependable even when the data inputs

are imperfect or when the series experiences sudden shifts or

aberrations.

Cao et al. (2023) tackle this by considering the individualized

treatment effect on time series data with irregular observations

and hidden confounders. They use Lipschitz regularization and

neural controlled differential equations to model dynamic causal

relationships in irregular samples. Yoon et al. (2022) take a

probabilistic approach to robust forecasting, focusing on input

perturbations and extending randomized smoothing to attain

robust forecasters against adversarial perturbations. Zhang A.

et al. (2023) address the robustness of Recurrent Neural Networks

(RNNs) concerning input noises by minimizing the localized

stochastic sensitivity, thereby enhancing the model’s resilience

to slight input disturbances. Zhang W. et al. (2023) propose a

co-training approach for noisy time series learning, leveraging

complementary information from different views to improve

the robustness of the representation learning. Zeng and Li

(2021) introduce a Bayesian median autoregressive model that

utilizes time-varying quantile regression at the median for robust

forecasting, which is inherently more resistant to outliers than

mean-based methods. Wen et al. (2020) extend the RobustSTL

method to handle complex patterns and multiple seasonality in

time series data, greatly enhancing computational efficiency and

robust decomposition capabilities.

Robust time series forecasting differs from unilateral

boundary time series forecasting in its approach to handling

data irregularities. While robust forecasting methods are designed

to withstand various data imperfections and maintain performance

in the face of such challenges, unilateral boundary time series

forecasting specifically addresses the issue of systematic

underestimation or overestimation within a series. This latter

approach requires not only resilience to irregularities but also

the ability to recognize and correct for one-sided biases that are

characteristic of unilateral boundaries. Thus, while both fields aim

to enhance forecasting accuracy, they do so by addressing different

types of data integrity issues.

A recent work (Yang et al., 2023) addresses the challenge of

time series forecasting in the presence of outliers and random

noise by introducing a novel loss function (adaptive rescaled

lncosh) that flexibly switches among L1, L2, and Huber losses to

enhance robustness against non-standard data distributions. In

contrast, our unilateral boundary time series forecasting method

specifically targets datasets with systematic underestimations

or overestimations, employing a dual model structure, feature

reconstruction, and an asymmetric loss function to directly address

these systematic biases rather than focusing on random noise

and outliers. While both approaches aim to improve forecasting

reliability, our method is uniquely designed to handle the

challenges posed by unilateral boundary conditions in time series

data, differing fundamentally in focus and technique from the

robust adaptive mechanisms discussed in the referenced paper.

Another recent work, TemporalSVR (Wu et al., 2024),

enhances the standard Support Vector Regression’s (SVR) ability to

handle time series by incorporating temporal correlations through

extended kernel functions and an iterative training approach.
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This method addresses the limitations of traditional SVR in

capturing the underlying temporal structures of correlated data,

thus improving prediction efficiency. In contrast, our unilateral

boundary time series forecasting method specifically addresses the

issue of systematic underestimation or overestimation inherent

to datasets with unilateral boundaries. Unlike the TemporalSVR,

which focuses on enhancing general SVR for better temporal

pattern learning across typical time series data, our method

employs a dual model structure, feature reconstruction, and an

asymmetric loss function tailored to correct biased data points

directly linked to boundary conditions. This approach allows for

targeted adjustments in forecasts, making it distinct in its focus and

application compared to the generalized improvements offered by

TemporalSVR.

2.4 Summary and comparison

The comparative analysis presented in Table 1 elucidates

distinct approaches to time series forecasting, emphasizing the

specific challenges each method addresses and the technological

frameworks employed. Studies like Duan et al. (2023) and

Fan et al. (2023) focus predominantly on distribution shifts,

employing innovative methods such as dual coefficient networks

and hypernetwork frameworks, respectively, to adapt dynamically

to changes within data distributions. While these methods show

adeptness in handling broad distributional changes, they do not

specifically tackle issues related to data boundaries or systematic

biases such as unilateral underestimation or overestimation. On the

other hand, Kim et al. (2021) and Wang et al. (2023) introduce

methods that focus on adjusting statistical properties and applying

linear Koopman spaces, enhancing the robustness of forecasting

against distribution shifts without directly addressing boundary-

specific challenges.

Further, Cai et al. (2023) deals with concept drift by

utilizing a meta-dynamic network, which allows for real-time

adaptability in themodel’s response to evolving data characteristics,

highlighting an advanced approach to managing non-stationary

data environments. Chen et al. (2023) enhances the adaptability

of Transformers for forecasting by focusing on context-driven

distribution shifts, which, although innovative, also do not cater

specifically to handling unilateral boundary conditions.

In contrast, our approach uniquely addresses the challenge of

unilateral boundary time series forecasting by explicitly managing

both underestimated and overestimated data points through a

sophisticated dual model structure and feature reconstruction

technique. This method not only acknowledges but directly

intervenes in the irregularities and systematic biases introduced

by boundary conditions, offering a tailored solution that ensures

more accurate and reliable forecasts in these specific scenarios.

This direct focus on unilateral boundaries sets our work apart,

providing a specialized solution where traditional and other

advanced forecasting methods may not perform optimally.

3 Problem statement

This section precisely delineates the challenges and nuances

of Unilateral Boundary Time Series Forecasting, which is the

central focus of this study. It thoroughly outlines the mathematical

formulation of the problem and discusses the specific scenarios

where data is systematically underestimated or overestimated due

to unilateral boundaries. This section serves as a foundation for

the paper, as it not only defines the scope of the investigation

but also justifies the necessity for the development of the novel

methodologies detailed in Section 4. By establishing a clear problem

statement, it links the gaps identified in the existing literature

reviewed in Section 2 with the innovative solutions presented

in subsequent sections, ensuring a coherent progression of the

narrative throughout the paper.

In addressing the challenge of Unilateral Boundary Time

Series Forecasting, we delve into a problem space where certain

values in a time series dataset are systematically underestimated,

characterized by a specific threshold. This scenario requires a

methodical approach to predict future values while accounting for

the skewed segments in the training dataset. The following detailed

mathematical formulation and analysis outline the structure of this

problem:

Consider a collection of time series data, each denoted as X(i),

where i indexes the individual time series in our dataset. Each series

X(i) comprises a sequence of values x
(i)
1 , x

(i)
2 , . . . , x

(i)
n corresponding

to observations at times 1, 2, . . . , n, which form the training dataset.

Alongside this, we have the actual time series Y(i), representing the

true values that we aim to predict.

3.1 Model inputs and features

The forecasting model inputs consist of sequences from

multiple time series, each represented as X(i) = {x
(i)
1 , x

(i)
2 , ..., x

(i)
n },

where i indexes the individual time series in our dataset, and

n represents the number of observations in each series. These

inputs include not only the historical values but also potentially

derived features such as rolling averages, differences, or other

transformations aimed at capturing temporal dependencies and

trends relevant to the forecasting problem.

3.2 Model output (label)

The output of the model, or the label, is the forecasted future

values of the time series, denoted as Ŷ(i) = {x
(i)
n+1, x

(i)
n+2, ..., x

(i)
T }

for times n + 1 to T. These predictions aim to provide corrected

estimates that account for the identified underestimations, aligning

closely with the actual, unobserved future values of the time series.

The core of our problem involves defining and handling

underestimated values within these series. We introduce a

threshold parameter λ to distinctly identify these underestimated

values. Specifically, a value x
(i)
t in the series X(i) is considered

underestimated if it falls below this threshold λ. Mathematically,

this can be represented as: x
(i)
t < λ, where t ∈ {1, 2, . . . , n}.

The forecasting model, denoted as f (X(i);2), where 2 signifies

the model parameters, aims to map the input series X(i) to the

forecasted series Ŷ(i). The model seeks to predict future values

x
(i)
n+1, x

(i)
n+2, . . . , x

(i)
T (for times n+ 1 to T) based on the training data

X(i), given by: Ŷ(i) = f (X(i);2).
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TABLE 1 Comparison of time series forecasting approaches.

Study Method focus Data irregularities Boundary
handling

Model adaptation Methodology

Fan et al. (2023) Distribution shift No No Yes Dual coefficient network

Duan et al. (2023) Distribution shift No No Dynamic Hypernetwork

Kim et al. (2021) Statistical properties No No Reversible Instance normalization

Wang et al. (2023) Distribution shift No No Linear Koopman space Neural networks

Cai et al. (2023) Concept drift Yes No Dynamic Meta-dynamic network

Chen et al. (2023) Distribution shift No No Contextual Transformers

Our work Unilateral Boundary Yes Yes Dynamic Dual model, feature reconstruction

To evaluate and optimize the model, a loss function L(Y(i), Ŷ(i))

is employed. This function quantifies the divergence of the

forecasted values Ŷ(i) from the actual values Y(i). The optimization

objective is to minimize this loss function, thereby aligning

the forecasted values closely with the actual ones, given by:

min2

∑

i L(Y
(i), Ŷ(i)).

Addressing the unilateral boundary condition in our model

involves not only forecasting future values but also recognizing

and adjusting for the underestimation inherent in the training data

X(i). This requires the model to be sensitive to the threshold λ and

to adaptively adjust its predictions for values that are below this

threshold.

4 The proposed method

This section serves as a cornerstone of our research,

introducing a comprehensive framework designed to address the

unique challenges of unilateral boundary time series forecasting.

This section is structured into several subsections to cover various

dimensions of our novel approach. It begins with an overview

of our dual model structure, which processes data through

bifurcated pathways to handle underestimated and accurately

estimated data separately, enhancing model responsiveness and

accuracy. Following this, the feature reconstruction process is

detailed, explaining how we recapture the obscured dynamics of

underestimated data to provide a more accurate prediction base.

Additionally, the section elaborates on our innovative asymmetric

loss function, the Unilateral Mean Squared Error (UMSE), which

fine-tunes the model’s error sensitivity to specifically address

underestimation bias. Together, these subsections synthesize a

robust methodology that significantly advances the predictive

precision of time series forecasting under unilateral boundary

conditions.

We give the overview of the proposed method in Figure 1. At

the outset, we present a Dual Model Structure, where the input data

is processed through two parallel pathways within a single model

framework. This bifurcated approach allows the model to treat

underestimated and regularly estimated data distinctly, ensuring

that each type of data is given appropriate consideration during

the analysis. Following the dual structure, the process advances

to Feature Reconstruction. In this phase, the original input data

is refined to produce a reconstructed series that aims to correct

FIGURE 1

Overview of the proposed method.

for any underestimation present in the initial data. This step

is crucial for restoring the integrity of the data that may have

been compromised due to systematic biases, thereby preparing

a more accurate foundation for the subsequent forecasting. The

final component of the methodology is the implementation of an

Asymmetric Loss Function during the training phase. Depending

on whether the data has been identified as underestimated, the

model selectively applies either the Unilateral Mean Squared Error

(UMSE) for underestimated points or the standard Mean Squared

Error (MSE) for other points. This selective application is key to

tailoring the model’s learning to the specific characteristics of the

data, allowing it to more effectively learn from past inaccuracies.

The methodology culminates with the model leveraging the

reconstructed features, informed by the dual structure analysis

and refined through the asymmetric loss function, to make its

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2024.1376023
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang et al. 10.3389/fdata.2024.1376023

final predictions. By incorporating these tailored components—

dual structure processing, feature reconstruction, and asymmetric

loss—the method provides a sophisticated approach to addressing

the challenges of unilateral boundary forecasting. The integration

of these elements ensures that the forecasting is robust, accounting

for both the raw and adjusted representations of the time series

data, ultimately leading to more accurate predictive outcomes.

4.1 Dual model structure

When grappling with datasets characterized by unilateral

underestimation, we devise a novel dual model structure.

Traditional forecasting methods often process input data as a

singular, homogeneous entity, which, while effective in standard

scenarios, falls short in accurately addressing datasets with

systematic underestimation. This shortfall is primarily due to

their inability to distinguish between and appropriately respond

to the differences in underestimated and accurately estimated

data points. The dual model structure, therefore, is proposed and

conceptualized to fill this gap. It bifurcates the input dataset into

two distinct streams, each tailored to either the underestimated

or the non-underestimated segments of the data. This bifurcation

is not merely a procedural alteration but a strategic recalibration

of the model’s approach to data processing. By doing so, it allows

for a more nuanced and specialized analysis of each data segment,

ensuring that the unique characteristics and patterns inherent in

the underestimated data are given due consideration. This focused

approach is crucial in environments where underestimation is a

consistent feature, not an anomaly, enabling the model to learn

complex patterns for forecasting that are attuned to the specific

challenges posed by such data. The dual model structure, therefore,

stands as a significant advancement, enhancing the accuracy

and reliability of forecasts in scenarios plagued by unilateral

underestimation.

4.1.1 Dual LightGBM
Given an input time series for the i-th dataset,

{x
(i)
1 , x

(i)
2 , . . . , x

(i)
n }, a traditional model might consider this

series as a single input dimension of size n. In contrast, the dual

model approach extends this input series into a dimension of

size 2n, with each point being processed through two different

functions, g1() and g2() (Equations 1, 2):

g1(x
(i)
j ) =

{

x
(i)
j , if x

(i)
j is underestimated

NaN , otherwise
(1)

g2(x
(i)
j ) =

{

NaN , if x
(i)
j is underestimated

x
(i)
j , otherwise

(2)

Here, NaN (Not a Number) represents an undefined

or missing value in computing. Models like LightGBM (Ke

et al., 2017) treat NaN values as missing data, effectively

ignoring them during decision splits. In implementing this

structure with LightGBM, the extended input series becomes

{g1(x
(i)
1 ), g1(x

(i)
2 ), . . . , g1(x

(i)
n ), g2(x

(i)
1 ), g2(x

(i)
2 ), . . . , g2(x

(i)
n )}. The

first half of this series retains the underestimated data while

setting non-underestimated data to NaN. Conversely, the second

half keeps the non-underestimated data, assigning NaN to the

underestimated ones. This bifurcation allows the LightGBMmodel

to process and weigh these two data streams separately.

The efficacy of the Dual LightGBM model in addressing

underestimation in unilateral time series forecasting is rooted

in its approach to data segregation and processing. By dividing

the input data into two distinct streams, the model adeptly

isolates underestimated data points from their non-underestimated

counterparts. This bifurcation is crucial, as it allows each subset

of data to be analyzed independently, ensuring that the unique

characteristics of underestimated data are not overshadowed by

the general trends of the complete dataset. The Dual LightGBM

model leverages this separation to apply specialized treatment to

the underestimated data, enhancing the model’s sensitivity to subtle

nuances that standard approaches might overlook. This heightened

sensitivity is key in accurately predicting values that are prone to

underestimation, as it enables the model to compensate for biases

inherent in the data.

4.1.2 Dual GRU
The Gated Recurrent Unit (GRU) (Cho et al., 2014) has

established itself as a pivotal component in the realm of recurrent

neural networks, particularly for time series forecasting. Its

standard mathematical formulation is well-known for effectively

handling sequential data. However, in the context of time series

data characterized by unilateral boundaries like underestimation,

the standard GRU structure requires modifications to address the

unique challenges posed by such data. This subsection explores the

adaptations to the GRU model to better handle underestimation

issues in time series forecasting.

The standard GRU cell’s mathematical operations are governed

by the following equations (Equation 3):

zt = σ (Wzxt + Uzht−1 + bz)

rt = σ (Wrxt + Urht−1 + br)

h̃t = tanh(Wxt + U(rt ⊙ ht−1)+ b)

ht = (1− zt)ht−1 + zt h̃t

(3)

In these equations, xt represents the new input for the GRU

cell at time t, and ht−1 is the hidden state from the previous time

step. The GRU cell uses gates (update gate zt and reset gate rt)

to regulate the flow of information through the unit, effectively

capturing dependencies over different time scales. We propose a

variant of GRUs that is specialized to deal with underestimation in

uniliteral boundary time series forecasting.

A straightforward method to tackle underestimation in time

series data is to modify the GRU’s gating mechanism. One such

approach, involves setting the update gate zt to zero whenever the

input value xt is underestimated. This prevents the underestimated

value from influencing the time series embedding process within

the GRU. However, this approach has a significant downside: it

results in the loss of information from underestimated values,

which could be vital for accurate forecasting. To overcome
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the limitations of the GRU-close approach, a modified method

duplicates certain parameters within the GRU. This setup involves

creating two sets of GRU parameters: one set for normal values

and another for underestimated values in the time series. The

duplicated parameters include Wz ,Wr ,W,Uz ,Ur ,U, bz , br , and

b. The idea here is to allow the GRU to process normal and

underestimated values separately, using distinct parameter sets

for each. We propose to further selectively duplicate parameters

within the GRU. Only the parameters that deal directly with the

input values (Wz ,Wr ,W, bz , br , b) are duplicated. This decision

is based on the understanding that normal and underestimated

values exhibit different distributions and, hence, require distinct

processing. Conversely, parameters associated with the previous

time step’s hidden state (Uz ,Ur ,U) remain unchanged. The

rationale behind this is that the time series embedding, which

captures the temporal dynamics of the series, should be consistent,

regardless of whether the current input value is normal or

underestimated.

Traditionally, GRU models, with their powerful sequential

data processing capabilities, have been hampered by their inability

to differentiate between normal and underestimated data points.

The dual GRU model overcomes this limitation by introducing

a bifurcated processing pathway – one that treats underestimated

and normal data separately, thereby tailoring the model’s response

to the unique characteristics of each data type. In unilateral time

series, underestimated data points are not merely outliers or

random noise; they represent a consistent and systematic deviation

from the true values. Standard models tend to absorb these

deviations, leading to a compounding of errors in forecasts. The

dual GRU, particularly in its GRU-2w variant, addresses this by

selectively duplicating parameters related to input processing. This

targeted approach ensures that the model does not overgeneralize

from the skewed data, a critical factor in preventing the

perpetuation of underestimation biases. By providing separate

pathways for underestimated data, the model ensures that these

points do not disproportionately influence the overall forecasting.

This leads to more reliable and accurate predictions.

4.2 Feature reconstruction

Feature reconstruction in unilateral time series forecasting is a

critical procedure aimed at reconstructing the actual values from a

partially underestimated input series. This process is particularly

important in addressing the challenges posed by systematic

underestimation in time series data. In this subsection, we will

describee the detailed steps involved in feature reconstruction, its

application in LightGBM and GRU models, and discuss how this

approach contributes to more accurate forecasting.

The process of feature reconstruction involves several key steps,

each designed to enhance the model’s ability to predict accurate

values by compensating for the underestimation inherent in the

input data.

1. Model training with dual structure: initially, a model (referred

to as model_A) is trained using the dual model Structure.

This model is specifically designed to handle underestimated

and normal values separately, as described in the dual model

subsections for LightGBM and GRU.

2. Prediction of reconstructed input: utilizing the original input

series and the trained model_A, the reconstructed input series

is predicted. This step is crucial as it aims to estimate what the

actual values of the input series might have been, had there been

no underestimation.

3. Training of Secondary model: subsequently, a second model

(model_B) is trained using the reconstructed input series along

with the original input data.

4. Testing phase prediction: in the testing phase, the first step

involves using model_A to predict the reconstructed testing

input from the original testing input. This reconstructed testing

input, along with the original testing input, is then used to make

the final prediction of the testing output using model_B.

4.2.1 Model concatenation in LightGBM
In the context of LightGBM, feature reconstruction involves

a concatenation process. Given an original input series X =

{x
(i)
1 , x

(i)
2 , . . . , x

(i)
n } and a reconstructed input series X̂ =

{x̂
(i)
1 , x̂

(i)
2 , . . . , x̂

(i)
n }, the concatenated input series for Light GBM is

represented as Equation 4:

x̂
(i)
1 , x̂

(i)
2 , . . . , x̂(i)n , g1(x

(i)
1 ), g1(x

(i)
2 ), . . . , g1(x

(i)
n ), g2(x

(i)
1 ), g2(x

(i)
2 ),

. . . , g2(x
(i)
n ). (4)

Here, the functions g1() and g2(), as defined in the dual model

structure, are applied to the original series, and the resulting series

is concatenated with the reconstructed series X̂. The resulting

input dimension for the Light GBM model is 3n, incorporating the

original, the dual processed, and the reconstructed series.

4.2.2 Model concatenation in GRU
For the GRUmodel, the concatenation process involves feeding

the original input series X to the dual GRU model and the

reconstructed input series X̂ to a standard GRU model. The

outputs of these two GRU models are then concatenated and

passed through a dense layer for final processing. This approach

allows the model to leverage the strengths of both the dual GRU

(handling underestimated and normal values) and the standard

GRU (processing the reconstructed series), thereby enhancing the

overall predictive capability.

Feature reconstruction addresses a critical limitation in time

series forecasting models dealing with unilateral underestimation.

By reconstructing the actual values from underestimated data,

this approach provides a more accurate representation of the true

nature of the input series. This, in turn, allows the forecasting

models (both LightGBM and GRU) to make predictions based

on a more realistic and comprehensive understanding of the

data. The concatenation of the original, dual processed, and

reconstructed series in both LightGBM and GRU models ensures

that the forecasting is informed by a holistic view of the data. It

combines the insights gained from the original series, the nuanced

understanding from the dual-processed series, and the corrected

perspective from the reconstructed series.
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4.3 Asymmetric loss function

We propose the asymmetric loss function, specifically the

Unilateral Mean Squared Error (UMSE), to addresse the challenge

of handling underestimated values in time series forecasting. The

design and application of this loss function are crucial in mitigating

underestimation issues, leading to more accurate and reliable

forecasting outcomes. In this section, we will elaborate the rationale

behind the design of UMSE, its mathematical formulation, and how

it effectively addresses the issue of underestimation in time series

data.

The Mean Squared Error (MSE), a traditional loss function

widely used in regression problems, is defined as follows

Equation 5:

MSE(Ŷ ,Y) =
1

n

n
∑

t=1

(Ŷt − Yt)
2 (5)

However, this standard MSE does not specifically cater to

the nuances of time series data with unilateral boundaries. In

such cases, a segment of the training data may be systematically

underestimated. To address this, we propose the Unilateral Mean

Squared Error (UMSE) as an asymmetric loss function, given by

Equation 6:

UMSE(Ŷ ,Y) =
1

n

n
∑

t=1

[1− H(Ŷt − Yt)] · (Ŷt − Yt)
2, (6)

where H(x) represents the Heaviside step function, given by

Equation 7:

H(x) =
d

dx
[max(x, 0)], for x 6= 0. (7)

The UMSE loss function is designed to differentially penalize

errors based on whether they stem from underestimated values.

This is achieved through the incorporation of the Heaviside step

function, which serves as a switch to modulate the contribution of

each term in the loss function based on the relationship between

the predicted value Ŷt and the training value Yt .

• When Yi > Ŷi, implying that the forecasted value is smaller

than the underestimated training value, UMSE aligns with the

traditional MSE. This is logical because, in such scenarios, the

actual value is assumed to be greater than the underestimated

value. Hence, the error should be treated as it would be in

standard regression problems, focusing on minimizing the

squared error.

• Conversely, when Yi < Ŷi, indicating that the forecasted

value exceeds the underestimated value, UMSE is set to

zero. This design choice is particularly insightful. It stems

from the uncertainty regarding the relationship between

the predicted value and the actual value. If the predicted

value surpasses the underestimated value, it is unclear

without additional information whether the prediction is

overestimating, accurate, or still underestimating the true

value. Therefore, penalizing such predictions could potentially

lead to further underestimation, defeating the purpose of the

forecasting model.

In time series forecasting, especially with unilateral boundaries,

accurately predicting future values hinges on the model’s ability

to learn from and adjust for systematic underestimations in

the training data. The UMSE function directly addresses this

challenge by effectively “ignoring” instances where the model

predicts values higher than the underestimated training values. This

approach encourages the model to err on the side of overestimation,

countering the inherent bias toward underestimation in the data.

Moreover, the asymmetric nature of UMSE ensures that the

model is not excessively penalized for overestimations, which is

crucial in contexts where underestimation poses a greater risk

or cost. This is particularly relevant in scenarios like inventory

management or demand forecasting, where underestimation can

lead to more severe consequences than overestimation.

4.4 Algorithm

The Algorithm 1 detailed above provides a structured

approach to forecast time series data with considerations for

unilateral boundary conditions, specifically focusing on systematic

underestimations within the dataset. Initially, the algorithm

initializes the model parameters and processes each series within

the dataset to identify underestimated data points based on a

predefined threshold, λ. It then extracts and reconstructs features

to correct any biases induced by these underestimations. The

dataset is split into training and validation sets, and the model

iteratively learns by adjusting its parameters through a training

loop where each batch of the reconstructed and original data

is used to compute the forecast and minimize the loss using

either Unilateral Mean Squared Error (UMSE) or Mean Squared

Error (MSE), depending on the data’s characteristics. Finally, the

algorithm applies the trained model parameters to forecast future

values for each series using both the original and reconstructed

features, ensuring that the forecasts are robust, accurate, and

reflective of the corrected data representations. This approach is

not only comprehensive but also enhances the forecasting accuracy

by effectively addressing the challenges of unilateral boundary

conditions in time series data.

4.5 Computational cost and uncertainty

4.5.1 Computational cost
The computational efficiency of our proposed method, which

integrates a Dual Model Structure, Feature Reconstruction, and an

Asymmetric Loss Function, is designed to optimize both accuracy

and performance for unilateral boundary time series forecasting.

Here is a detailed analysis of the computational aspects:

1. Dual model structure: this approach processes data through

two parallel pathways, effectively doubling the input dimension

but not necessarily doubling the computation time. Modern

computing frameworks efficiently handle such parallel

computations, particularly on hardware optimized for matrix

operations, such as GPUs. The separation into two streams

allows for targeted processing, which can be executed

concurrently, thereby minimizing the increase in computational

load. Moreover, this bifurcation ensures that each data
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Require: Time series dataset D = {X(1),X(2), . . . ,X(N)},

threshold λ, hyperparameters 2

Ensure: Forecasted values {Ŷ(1), Ŷ(2), . . . , Ŷ(N)}

1: Initialize model parameters 2

2: for i = 1 to N do

3: Identify underestimated points: U(i) = {t | X
(i)
t < λ}

4: Prepare input features: F(i) ←

extract_features(X(i),U(i))

5: Reconstruct features: R(i) ←

reconstruct_features(X(i),U(i))

6: end for

7: Split D into training set Dtrain and validation

set Dval

8: while not converged do

9: for each batch (Fbatch,Rbatch,Ybatch) from Dtrain do

10: Ŷbatch ← f (Rbatch;2)

11: Compute loss L ← L(Ybatch, Ŷbatch) using UMSE or

MSE

12: Update 2 to minimize L

13: end for

14: end while

15: for i = 1 to N do

16: Forecast future values: Ŷ(i) ← f (F(i),R(i);2)

17: end for

18: return {Ŷ(1), Ŷ(2), . . . , Ŷ(N)}

Algorithm 1. Unilateral boundary time series forecasting.

type–underestimated and regularly estimated–is processed by

the model that’s best fit for its characteristics, reducing the

number of iterations needed for the model to converge.

2. Feature reconstruction: although reconstructing features

from underestimated data introduces additional steps in the

forecasting process, the computational cost is mitigated by

the use of sophisticated vectorized operations that are well-

supported by modern machine learning libraries. This phase

involves recalculating inputs which, while computationally

demanding, is limited to once per training iteration. The

reconstructed features enhance model accuracy, which can

reduce the number of epochs required to achieve optimal

results, thus indirectly lowering the overall computational

expense.

3. Asymmetric loss function: the implementation of the Unilateral

Mean Squared Error (UMSE) for underestimated points and

standard Mean Squared Error (MSE) for other points requires

conditional operations within the loss calculation. However,

these operations are simple comparisons and do not significantly

affect the computational complexity. The selective application

of loss functions allows for focused learning, where the

model spends more computational resources on difficult,

underestimated cases rather than treating all data uniformly.

This targeted learning approach can lead to faster convergence,

thus reducing the number of gradient updates required.

Overall, the computational cost of our proposed method is

efficiently managed through the use of various data processing

techniques and optimized loss function calculations. The dual

structure of the model leverages parallel processing capabilities,

feature reconstruction is streamlined through vector operations,

and the asymmetric loss function focuses computational efforts

where they are most needed, leading to a cost-effective solution.

This makes our approach not only innovative but also practical,

balancing computational demands with forecasting performance,

thus providing a robust and efficient tool for dealing with unilateral

boundary challenges in time series data.

4.5.2 Uncertainty
In addressing the uncertainty associated with the proposed

method for Unilateral Boundary Time Series Forecasting, it

is essential to emphasize the sophisticated mechanisms we

have implemented to ensure robust and accurate predictions,

thereby reducing uncertainty to a minimum. The integration

of a dual model structure, feature reconstruction, and an

asymmetric loss function specifically tailors the approach

to the unique challenges posed by unilateral boundary

conditions, effectively mitigating risks of model error

and mispredictions.

The dual model structure allows our method to process

underestimated and regularly estimated data separately, enhancing

the precision of data treatment and minimizing errors caused by

indiscriminate processing of divergent data types. This bifurcation

ensures that each segment of data receives appropriate analysis,

reducing the likelihood of error propagation throughout the

forecasting process.

Feature reconstruction further minimizes uncertainty by

correcting any biases introduced by underestimation in the

input data. By reconstructing a more accurate series from the

compromised data, this step not only restores the integrity of the

information but also improves the foundation uponwhich forecasts

are made. This process is crucial for ensuring that the predictions

are not only based on accurate data but also reflect a deeper

understanding of the underlying dynamics, which might otherwise

be obscured by systematic biases.

Lastly, the implementation of the Unilateral Mean Squared

Error (UMSE) in the training phase introduces a tailored

approach to handling losses, specifically focusing on minimizing

the impact of underestimated data points. By differentially

penalizing errors based on their nature—whether they arise from

underestimations or not—UMSE helps in refining the model’s

predictions. This loss function reduces the predictive uncertainty

significantly by encouraging the model to compensate for potential

underestimations, thus aligning forecasted outputs more closely

with the true values.

Through these methodological innovations, our approach

substantially lowers the inherent uncertainty typical of

unilateral boundary forecasting. The method’s architecture,

which specifically addresses the complications introduced by

boundary conditions, ensures that the forecasting model is not

only robust but also remarkably precise in its output, leading

to enhanced reliability and accuracy in its predictions. This

comprehensive strategy effectively minimizes the uncertainty

that might otherwise be prevalent in less sophisticated

forecasting methodologies.
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5 Experiments

This section rigorously tests the efficacy of our proposed

method for unilateral boundary time series forecasting through a

series of detailed experimental setups and evaluations. It is divided

into several subsections that outline the experimental design,

describe the datasets used, detail the underestimation simulation

methods, and discuss the evaluation metrics employed to assess

model performance. Results are then meticulously analyzed to

demonstrate the superiority of our approach over existing models.

The section not only provides empirical evidence supporting the

theoretical advancements discussed in earlier sections but also

bridges the conceptual framework with practical applicability. By

comparing our results with baseline models, this section reinforces

the relevance and innovation of our method, setting the stage

for the concluding remarks where future research directions are

proposed based on the experimental findings.

5.1 Evaluation settings

5.1.1 Datasets
We select three distinct time series datasets, each offering

unique insights into different domains: air quality measurement

and urban transportation demand. These datasets are integral

to our experiments, providing a diverse and challenging set of

scenarios for testing our proposed unilateral boundary time series

forecasting models.

5.1.1.1 Beijing and London PM2.5 air quality datasets

The first dataset focuses on air quality, specifically on PM2.5

levels, in two major cities: Beijing and London. This dataset1 was

a key component of the KDD Cup 2018 forecasting competition2,

renowned for its comprehensive and detailed air quality records.

It encompasses long hourly time series data from 59 monitoring

stations, with 35 stations located in Beijing and 24 in London,

spanning from January 1, 2017, to March 31, 2018. The PM2.5

dataset is particularly valuable for its intricate detailing of air

quality levels, offering a granular view of environmental conditions

over time. The data is meticulously categorized by city, station

name, and air quality measurement, resulting in a total of 270

distinct hourly time series. This rich dataset not only provides a

basis for examining air quality trends but also serves as a testing

ground for our forecasting models, particularly in understanding

and predicting environmental and urban air quality dynamics.

5.1.1.2 Singapore taxi demand dataset

The third dataset we utilize captures the vibrant and dynamic

urban transportation landscape of Singapore through the lens of

taxi demand. This dataset (Kang et al., 2013) is sourced from

GPS logs of over 15,000 taxicabs in Singapore, collected over an

entire week. The sheer volume of data, encompassing 123,573,303

GPS points, provides a comprehensive snapshot of urban mobility.

Each GPS point in this dataset includes longitude, latitude, time,

and the occupancy status (occupied or unoccupied) of the taxi.

1 https://github.com/txytju/air-quality-prediction

2 https://www.kdd.org/kdd2018/kdd-cup

TABLE 2 Datasets generated by random perturbation sampling.

Data name Underestimation ratio (α) Distribution

prob25 25% Normal (µ = 0.5)

prob50 50% Normal (µ = 0.5)

prob75 75% Normal (µ = 0.5)

prob50_uniform 50% Uniform (µ = 0.5)

prob50_half 50% Half-Normal (µ = 1)

The temporal granularity of the data is noteworthy, with intervals

between consecutive GPS points varying according to different

taxicabs and times of the day. The most common intervals are

1, 3, and 5 s. To contextualize this data spatially, we discretized

Singapore’s geo-spatial area into 500 m times 500 m grids, enabling

us to construct time series data for both occupied and vacant taxis.

This approach allows us to delve into the intricacies of urban taxi

demand, offering insights into patterns of mobility and the factors

influencing taxi occupancy rates.

5.1.2 Underestimation simulation
We propose Random Perturbation Sampling to simulate

underestimation in time series data. This method is particularly

effective in replicating real-world situations where a value in

the time series data is underestimated due to random factors.

An example of such a scenario is observed in the functioning

of low-cost soil water sensors, which are known to often either

underestimate or overestimate soil water content without any

specific reason (Ganjegunte et al., 2012). The proposed random

perturbation sampling method is structured as follows:

1. Setting underestimation probability: we start by defining an

underestimation probability, denoted as α. This probability

determines how frequently values in the time series will be

randomly underestimated. In our experiments, we varied α to

different values, such as 0.25, 0.50, and 0.75, to simulate varying

levels of underestimation frequency.

2. Choosing distribution functions: different distribution

functions are used to simulate the underestimation. For

instance, we employed Normal, Uniform, and Half-Normal

distributions. These distribution choices reflect the diverse ways

in which real-world underestimation can occur, ranging from

systematic biases (as in the Normal distribution) to completely

random fluctuations (as in the Uniform and Half-Normal

distributions).

3. Applying the underestimation procedure: for each value in the

original time series data t̃s, a random number between 0 and

1 is generated. If this number is less than the predefined

probability α, the corresponding time series value is considered

for underestimation. The underestimation is applied by taking

the original value t̃si, reducing it by half, and then applying the

chosen distribution function to this reduced value. This results

in a new value tsi, which is used in the underestimated time

series.

4. Creating the underestimated time series: if the random number

is greater than or equal to α, the original value from the time
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series t̃si is retained in the new time series ts. This step ensures

that underestimation occurs randomly, as per the specified

probability, and not to every data point in the series.

By varying the distributions and the underestimation

probability α, for each dataset, we can generate different uniliteral

boundary time series datasets, as exhibited in Table 2. This method

thus offers a realistic simulation of random underestimation

phenomena observed in real-world scenarios. Such kind of

simulation allows us to test the robustness and adaptability of our

forecasting models under diverse underestimation conditions.

The insights gained from these experiments are crucial in

understanding how well our models can perform in real-world

situations where underestimation occurs without a specific,

identifiable cause.

5.1.3 Evaluation metrics
In the evaluation of our forecasting models, two metrics were

employed: the RootMean Squared Error (RMSE) (Makridakis et al.,

1982) and the Mean Absolute Error (MAE) (Armstrong, 2001).

These metrics are crucial in assessing the accuracy and reliability

of our models in predicting time series data, especially under

conditions of underestimation. RMSE is a widely used measure in

statistical and forecasting models, valued for its ability to quantify

the magnitude of prediction errors. The formula for RMSE is

given by Equation 8:

RMSE(y, ŷ) =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2. (8)

Here, yi represents the actual value and ŷi is the predicted value.

RMSE calculates the square root of the average squared differences

between these values over n data points. One of the primary reasons

for preferring RMSE over the Mean Squared Error (MSE) is that it

retains the same scale as the data, making the interpretation more

intuitive. Historically, RMSE (and by extension, MSE) has been

popular due to its theoretical relevance in statistical modeling.

MAE is another fundamental metric used in evaluating the

performance of forecasting models. It is defined as Equation 9:

MAE(y, ŷ) =
1

n

n
∑

i=1

|yi − ŷi|. (9)

This metric calculates the average of the absolute differences

between predicted values and actual values. Unlike RMSE, MAE

provides a direct average of error magnitudes and is not overly

sensitive to outliers. This characteristic of MAE has led some

researchers to advocate for its use, especially in scenarios where

outliers significantly impact the model’s performance.

Both RMSE and MAE offer distinct perspectives on the

accuracy of forecasting models. While RMSE is more sensitive to

larger errors (due to squaring the differences), giving an indication

of the severity of errors, MAE offers a straightforward average

of error magnitudes. This combination of metrics provides a

comprehensive understanding of model performance, highlighting

both the average accuracy and the impact of large deviations in

predictions. In our experiments, the use of RMSE and MAE allows

for a balanced evaluation of the forecasting models’ ability to

handle underestimation in time series data. For each dataset, we

repeat the underestimation simulation 20 times over five random

perturbation settings listed in Table 2, and report the average scores

of MAE and RMSE.

5.1.4 Competing methods
We compare the proposed methods with several established

approaches, albeit designed for different purposes, to demonstrate

their efficacy in handling underestimation issues. While no models

are known to specifically address unilateral boundary time series

forecasting, some research works can be adapted for this purpose.

5.1.4.1 Deep censored learning

Originally proposed by Wu et al. (2018), Deep Censored

Learning (DCL) was designed to enable deep learning models to

learn from historically underestimated bidding prices. The primary

distinction between DCL’s target problem and unilateral boundary

time series forecasting lies in the nature of underestimation. In

the bidding context, underestimation occurs only in the observed

bidding price (ytrain), with input features remaining unaffected.

Conversely, in unilateral boundary time series forecasting, both the

targeted time series value (ytrain) and input features (Xtrain) can

be underestimated. In our research, we introduced an asymmetric

loss function (UMSE) to specifically address the underestimated

training output (ytrain). This enabled us to evaluate the effectiveness

of DCL against our UMSE, even without incorporating the dual

model structure and feature reconstruction.

5.1.4.2 GRU-D

Developed by Che et al. (2018), GRU-D is an approach tailored

for multivariate time series with missing values. While GRU-

D focuses on missing values in training and testing data, our

work concentrates on underestimated values in these datasets.

Our proposed Dual GRU model was specifically designed to

address underestimated values in input data (Xtrain). To assess the

applicability of GRU-D in handling underestimation, we conducted

comparative experiments. These experiments revealed that while

GRU-D could be adapted for underestimated input data, our Dual

GRU showed superior performance.

5.1.4.3 LSTNet

Another method we compared our approach with is the

Long- and Short-term Time-series network (LSTNet) (Lai et al.,

2018). LSTNet combines Convolution Neural Network (CNN)

and Recurrent Neural Network (RNN) architectures to extract

short-term local dependency patterns and discover long-term

trends in time series. In addition, it employs a traditional

autoregressive model to address the scale insensitivity issue

common in neural network models. LSTNet has demonstrated

significant improvements over several state-of-the-art baseline

methods in real-world data evaluations.

By comparing our methods with these established approaches,

we aimed to showcase the robustness and adaptability of our

models in unilateral boundary time series forecasting. Our findings

from these comparisons affirm that our methodologies, particularly

UMSE and Dual GRU model, are not only suitable for handling
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underestimation in time series data but also outperform existing

models that were adapted for this purpose.

5.2 Experimental results

In our experiments, we sought to address several critical

evaluation questions. These questions were carefully crafted to

dissect the effectiveness of our proposed methods and to compare

them with existing techniques. The objective was to validate the

performance of our models under various conditions and to

understand the influencing their effectiveness.

1. Effectiveness of asymmetric loss function: a primary question

was whether incorporating an asymmetric loss function

improves forecasting accuracy. Specifically, we wanted to assess

if our Unilateral Mean Squared Error (UMSE) approach yields

better results than Deep Censored Learning (DCL). This

evaluation aimed to ascertain the impact of our tailored loss

function on handling underestimation in time series data.

2. Dual model structure utility: another crucial question was the

effectiveness of the dual model structure. We examined

whether our dual GRU model outperforms GRU-D in

unilateral boundary time series forecasting. This comparison

was essential to validate whether the dual model approach,

designed to process underestimated and accurately estimated

values separately, offers a significant advantage over traditional

methods.

3. Benefits of feature reconstruction: we also explored the

effectiveness of feature reconstruction in enhancing

the forecasting accuracy. This technique involves

reconstructing the actual values from underestimated data,

and its efficacy was assessed in improving the model’s

predictive performance.

4. Comparative performance against LSTNet and DCL: to

establish the relative performance of our proposed

model, we compared it with LSTNet. This comparison

aimed to determine if our model offers any substantial

improvements over established methods in handling time

series data.

Through these evaluation questions, our experiments

were structured to not only validate the effectiveness of our

methodologies but also to provide deeper insights into their

functioning and advantages over existing methods in unilateral

boundary time series forecasting.

5.2.1 Main results
The experimental results depicted in Figure 2 point to

significant insights in the task of unilateral boundary time series

forecasting, especially when using a dual model approach with

feature reconstruction (FR) and Unilateral Mean Squared Error

(UMSE).

In both Beijing Air Particles and London Air Particles datasets,

the traditional LightGBM (l0) method provides a baseline for

comparison. The addition of UMSE (l1) improves upon this,

suggesting that UMSE’s asymmetry is effective in correcting

unilateral underestimation. The Dual LightGBM with UMSE (l2)

further enhances forecasting accuracy, affirming the hypothesis

that treating underestimated and accurately estimated data points

differently is beneficial. Incorporating feature reconstruction

(l3) achieves the best results, implying that reconstructing

underestimated features allows the model to adjust its predictions

more precisely. The GRU model exhibits a similar trend. The

base GRU model (g0) is outperformed by the GRU with UMSE

(g1), again highlighting the importance of addressing unilateral

underestimation directly within the loss function. The Dual GRU

with UMSE (g2) surpasses the single-stream GRU with UMSE,

reinforcing the dual model’s efficacy. Lastly, the addition of feature

reconstruction to the Dual GRU with UMSE (g3) yields the

most accurate forecasts, underscoring the critical role of feature

reconstruction in forecasting when systematic underestimation

is present. Notably, for the Taxi Carried Passengers dataset,

the improvements are particularly striking with the addition of

UMSE and feature reconstruction, showcasing their crucial roles in

forecasting accuracy.

Furthermore, we can have the following findings based on the

ablation study.

• The dual model structure’s bifurcation of the input dataset into

underestimated and non-underestimated streams enables a

tailored approach to each segment, enhancing model learning

and forecasting precision. This is a significant advancement

for environments where underestimation is a consistent

feature and not an anomaly.

• Feature reconstruction’s role in this context cannot be

overstated. By reconstructing actual values from a partially

underestimated input series, it allows the model to make more

accurate predictions by “filling in the gaps” in the data that

traditional methods may overlook. This is especially evident

in the results for the Taxi Carried Passengers dataset, where

feature reconstruction in both LightGBM and GRUmodels (l3

and g3) led to the most notable improvements in forecasting

accuracy.

• The use of UMSE is a pivotal component in these

experiments. It provides a targeted approach to handling

underestimation by introducing an asymmetric loss function

that “ignores” overpredictions relative to the underestimated

data points. This strategic choice encourages the model to

err toward overestimation, which is particularly beneficial in

scenarios where the cost of underestimation is greater than

overestimation. The asymmetric property of UMSE ensures

that themodel is not excessively penalized for overestimations,

which is crucial for maintaining a balance between sensitivity

to underestimation and the avoidance of excessive penalty for

overestimation.

5.2.2 E�ectiveness of asymmetric loss function
Tables 3, 4 offer a comprehensive evaluation of the asymmetric

loss function, specifically the UMSE, in the context of unilateral

boundary time series forecasting. The results reveal insights into the

performance of UMSEwhen applied to different forecastingmodels

and datasets.

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2024.1376023
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang et al. 10.3389/fdata.2024.1376023

FIGURE 2

Main results with ablation study in terms of MAE and RMSE for the three datasets.

TABLE 3 Results in MAE on evaluating unilateral MSE loss.

Model Beijing London Taxi

LightGBM 22.861 4.934 7.796

LightGBM + DCL 15.473 4.226 5.678

LightGBM + UMSE 15.431†‡ 3.875†‡ 5.663†‡

GRU 24.444 5.004 7.488

GRU + DCL 14.595 3.805 5.739

GRU + UMSE 13.018†‡ 3.430†‡ 5.683†‡

†Indicates passing t-test comparing with baseline model (p-value = 0.05).
‡Indicates passing t-test comparing with DCL (p-value = 0.05).

• For both MAE and RMSE across all datasets, the integration

of UMSE with LightGBM and GRU models results in the

lowest error metrics, denoted by bold figures that have

passed statistical significance testing via t-tests against both

the baseline model and the Deep Censored Learning (DCL)

model. This indicates that UMSE provides a substantial

improvement over the baseline and even over the advanced

DCL method, with a p-value of 0.05 indicating a high level of

statistical significance.

• In the case of LightGBM, the addition of UMSE results

in a decrease in both MAE and RMSE across datasets.

These results are not only statistically significant but also

indicate a meaningful improvement in forecasting accuracy,

emphasizing the effectiveness of UMSE in correcting the

model’s inherent underestimation bias. The GRU model’s

results echo this trend, where the implementation of UMSE

demonstrates even more pronounced improvements. The

statistical significance confirms that UMSE is not only

beneficial but also a statistically reliable enhancement over

traditional loss functions and DCL in this context. The

results strongly suggest that UMSE’s asymmetric design,

which focuses on penalizing the underestimation of unilateral

boundaries more than overestimation, aligns well with the

inherent distribution of the datasets in question.

• Moreover, these results underscore the adaptability of UMSE

across different machine learning models. Both LightGBM,

which is gradient boosting-based, andGRU, a type of recurrent

neural network, benefit from the integration of UMSE,

demonstrating the loss function’s versatility and robustness.

This cross-model efficacy is particularly notable as it suggests

that UMSE can be a broadly applicable tool in the machine

learning toolkit for time series forecasting, regardless of the

underlying algorithm.

5.2.3 Dual model structure utility
The evaluation of the dual model structure, as evidenced by

Tables 5, 6, demonstrates a clear and consistent advantage over

traditional single-stream models. By integrating a dual structure

with UMSE, the forecasting accuracy is notably enhanced across

various datasets, indicated by bothMAE and RMSE improvements.

The dual structure’s utility is evident in its ability to lower error

rates, surpassing the results of the single model equipped with
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TABLE 4 Results in RMSE on evaluating unilateral MSE loss.

Model Beijing London Taxi

LightGBM 39.380 8.251 15.128

LightGBM + DCL 30.996 6.434 12.877

LightGBM + UMSE 30.769†‡ 6.326†‡ 12.867†‡

GRU 40.860 8.512 14.913

GRU + DCL 28.007 5.958 12.846

GRU + UMSE 27.216†‡ 5.538†‡ 12.817†

†Indicates passing t-test comparing with baseline model (p-value = 0.05).
‡Indicates passing t-test comparing with DCL (p-value = 0.05).

TABLE 5 Results in MAE on evaluating the dual model structure.

Model Beijing London Taxi

LightGBM + UMSE 15.431 3.875 5.663

Dual LightGBM + UMSE 13.115† 3.449† 5.427†

GRU + UMSE 13.018 3.429 5.683

GRU-D + UMSE 12.907 3.448 5.721

Dual GRU + UMSE 12.755†‡ 3.424 5.674†‡

†Indicates passing t-test comparing with baseline model (p-value = 0.05).
‡Indicates passing t-test comparing with GRU-D + UMSE (p-value = 0.05).

TABLE 6 Results in RMSE on evaluating the dual model structure.

Model Beijing London Taxi

LightGBM + UMSE 30.769 6.326 12.867

Dual LightGBM + UMSE 27.542† 5.587† 12.622†

GRU + UMSE 27.216 5.539 12.817

GRU-D + UMSE 27.102 5.566 12.837

Dual GRU + UMSE 26.718†‡ 5.522†‡ 12.788†‡

†Indicates passing t-test comparing with baseline model (p-value = 0.05).
‡Indicates passing t-test comparing with GRU-D + UMSE (p-value = 0.05).

UMSE. This performance boost is not marginal but statistically

significant, suggesting that the dual model is effectively capitalizing

on the bifurcation of data to fine-tune the forecast for each

segment-underestimated and accurately estimated.

These enhancements are not just numerical improvements but

represent a substantial advancement in forecasting methodology.

The dual model’s tailored approach to handling underestimated

data points ensures that the forecasting mechanism is more aligned

with the true distribution of the datasets. It is not only about

reducing the error metrics but also about understanding and

addressing the underlying biases in the data more effectively.

Statistical significance, as shown by the t-test results, adds

robustness to these findings, indicating that the dual model’s

performance is not only better by measurement but also reliably

different from the comparison models. The consistent pattern

across different datasets solidifies the dual model’s adaptability

and its potential as a universally applicable solution for unilateral

boundary problems in time series data.

Furthermore, the dual model structure’s success in this context

underscores the importance of model architecture in handling

TABLE 7 Results in MAE on evaluating feature reconstruction (FR).

Model Beijing London Taxi

Dual LightGBM 13.115 3.449 5.427

Dual LightGBM + FR 12.731† 3.410† 5.361†

Dual GRU 12.755 3.423 5.674

Dual GRU + FR 12.783 3.383† 5.630†

†indicates passing t-test comparing with the baseline model (p-value = 0.05).

TABLE 8 Results in RMSE on evaluating feature reconstruction (FR).

Model Beijing London Taxi

Dual LightGBM 27.542 5.587 12.622

Dual LightGBM + FR 27.388† 5.537† 12.517

Dual GRU 26.718 5.523 12.788

Dual GRU + FR 26.874 5.511† 12.767†

†indicates passing t-test comparing with the baseline model (p-value = 0.05).

TABLE 9 Results in MAE on comparing with LSTNet.

Model Beijing London Taxi

LSTNet 22.282 4.959 8.058

Unilateral LightGBM 13.795 3.410† 5.362†

Unilateral GRU 13.083† 3.452 5.670

†indicates passing t-test comparing with the baseline model (p-value = 0.05).

TABLE 10 Results in RMSE on comparing with LSTNet.

Model Beijing London Taxi

LSTNet 38.723 8.243 16.720

Unilateral LightGBM 28.019 5.537† 12.571†

Unilateral GRU 26.874† 5.511 12.767

†indicates passing t-test comparing with the baseline model (p-value = 0.05).

complex data scenarios. It implies that in cases where data is

systematically skewed or underestimated, traditional single models

may not be sufficient. A nuanced approach, such as the proposed

dual model, which can differentiate and independently process the

distinct aspects of the data, can lead to more accurate predictions

and a deeper understanding of the data dynamics.

5.2.4 Benefits of feature reconstruction
The experimental results regarding the benefits of Feature

Reconstruction (FR) are exhibited in Tables 7, 8. We can find

that the integration of FR into the dual LightGBM and dual

GRU models demonstrates a clear improvement in forecasting

accuracy across various datasets. Feature Reconstruction acts as a

key enhancement, refining the predictive capabilities of the dual

models. By reconstructing underestimated features, the models can

adjust their predictions with greater precision, leading to more

accurate forecasts. The dual model’s inherent strength in managing

underestimated and accurately estimated data points separately is

further augmented by FR. The synergy between the dual structure
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and FR allows for a more nuanced approach, as it provides the

model with a more complete picture of the data landscape, enabling

it to address the specific challenges posed by underestimation.

Statistical significance testing further underscores the value of

FR. The marked improvements in forecasting accuracy confirm

that the inclusion of FR leads to statistically reliable advancements

over models without it. The positive impact of FR is evident across

different datasets, suggesting a broad applicability of this approach

in diverse forecasting scenarios. It’s also worth noting that the

benefits of FR are not uniform across all error metrics or models,

which implies that the effectiveness of FR may depend on the

specific characteristics of the dataset and the underlying model

dynamics. Nonetheless, the overall trend indicates that FR is a

valuable addition to the forecasting process.

5.2.5 Comparative performance against LSTNet
The comparative analysis against LSTNet is displayed in

Tables 9, 10. The results reveal that the proposed Unilateral

LightGBM and Unilateral GRU models have markedly improved

performance. Such an outcome suggests that these unilateral

models, tailored to specifically address underestimation in time

series data, exhibit a significant advancement over the traditional

LSTNet approach. The proposed unilateral models show a

clear edge, as indicated by the t-test results, highlighting a

statistically significant enhancement in forecasting accuracy. This

improvement is notable across different datasets, underlining

the robustness of these models in a variety of contexts. The

unilateral models’ superior performance can be attributed to their

specialized dual model structure, the asymmetric loss function, and

the reconstruction of features, which are designed to tackle the

challenges posed by unilateral underestimation directly.

6 Conclusions

In this paper, we addressed the challenge of unilateral boundary

time series forecasting, a niche yet critical domain within the

broader field of predictive analytics. This issue is particularly

relevant in scenarios where time series data are subject to systematic

underestimation or overestimation, a common occurrence in

diverse applications ranging from environmental monitoring to

demand estimation. Recognizing the lacuna in existing literature

for models adept at handling such skewed data, our research sought

to develop a comprehensive framework explicitly tailored to this

unique forecasting challenge.

Our novel approach is multi-pronged, focusing on three

integral aspects: the deployment of the unilateral mean square

error (UMSE) loss function, the conceptualization of a dual model

structure, and the implementation of feature reconstruction. To

substantiate the efficacy of our approach, we employed LightGBM

and GRU models, renowned for their effectiveness in time

series analysis. Through rigorous experimentation across various

datasets and underestimation simulations, we demonstrated the

model-independence of our approach and its applicability to

different forecasting paradigms. Our empirical findings were

robust, underscoring the adaptability and potency of our methods

in diverse underestimation scenarios.

In short, we have not only proposed a cohesive and generalized

model for unilateral boundary time series forecasting but have

also empirically validated its superiority over existing methods.

This model stands as a significant advancement for real-world

applications where the accurate prediction of time series data

is vital. Its versatility across different model architectures makes

it a promising solution for a wide array of industries, from

environmental monitoring to intelligent transportation systems.

We believe that our work will serve as a benchmark for

future research in this area, offering a robust foundation for

the development of more sophisticated and accurate forecasting

models.

Future work on unilateral boundary time series forecasting

could expand upon our proposed method in several intriguing

directions. One area of potential exploration is the application of

our framework to a broader range of deep learning architectures,

such as Transformers (Vaswani et al., 2017), to evaluate their

effectiveness in capturing long-term dependencies within

skewed data. Additionally, investigating the integration of

external variables that may influence the underestimation or

overestimation of data, like economic indicators or environmental

factors, could enhance the model’s contextual understanding

and predictive power. Another promising avenue could

involve the use of unsupervised or semi-supervised learning

techniques to better handle scenarios with limited labeled data,

which is a common challenge in real-world datasets. Lastly,

adapting our methods to real-time forecasting systems, where

unilateral boundaries are dynamically shifting, could significantly

benefit industries requiring instantaneous data analysis and

decision-making.
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