
TYPE Original Research

PUBLISHED 09 May 2024

DOI 10.3389/fdata.2024.1375818

OPEN ACCESS

EDITED BY

Pavlos Papadopoulos,

Edinburgh Napier University, United Kingdom

REVIEWED BY

Mohsen Rezvani,

Shahrood University of Technology, Iran

Dimitrios Kasimatis,

Edinburgh Napier University, United Kingdom

*CORRESPONDENCE

Antonio Maci

antonio.maci@bvtech.com

RECEIVED 24 January 2024

ACCEPTED 22 April 2024

PUBLISHED 09 May 2024

CITATION

Artioli P, Maci A and Magrì A (2024) A

comprehensive investigation of clustering

algorithms for User and Entity Behavior

Analytics. Front. Big Data 7:1375818.

doi: 10.3389/fdata.2024.1375818

COPYRIGHT

© 2024 Artioli, Maci and Magrì. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A comprehensive investigation of
clustering algorithms for User
and Entity Behavior Analytics

Pierpaolo Artioli, Antonio Maci* and Alessio Magrì

Cybersecurity Laboratory, BV TECH S.p.A., Milan, Italy

Introduction:Government agencies are now encouraging industries to enhance

their security systems to detect and respond proactively to cybersecurity

incidents. Consequently, equipping with a security operation center that

combines the analytical capabilities of human experts with systems based on

Machine Learning (ML) plays a critical role. In this setting, Security Information

and Event Management (SIEM) platforms can e�ectively handle network-related

events to trigger cybersecurity alerts. Furthermore, a SIEM may include a User

and Entity Behavior Analytics (UEBA) engine that examines the behavior of both

users and devices, or entities, within a corporate network.

Methods: In recent literature, several contributions have employed ML

algorithms for UEBA, especially those based on the unsupervised learning

paradigm, because anomalous behaviors are usually not known in advance.

However, to shorten the gap between research advances and practice, it is

necessary to comprehensively analyze the e�ectiveness of thesemethodologies.

This paper proposes a thorough investigation of traditional and emerging

clustering algorithms for UEBA, considering multiple application contexts, i.e.,

di�erent user-entity interaction scenarios.

Results and discussion: Our study involves three datasets sourced from

the existing literature and fifteen clustering algorithms. Among the compared

techniques, HDBSCAN and DenMune showed promising performance on the

state-of-the-art CERT behavior-related dataset, producing groups with a density

very close to the number of users.

KEYWORDS

clustering, data analytics, machine learning, UEBA, unsupervised learning

1 Introduction

The spread of knowledge and technology across borders has intensified because of

globalization. Transferring technology has boosted innovation and productivity. However,

this favors the occurrence of sophisticated cyber attacks implemented by exploiting this

technological evolution. This leads to numerous cybersecurity issues across cyberspace.

Typically, cyber warfare refers to a series of malicious actions designed to disrupt critical

infrastructures of a targeted country (Robinson et al., 2015). Nowadays, geopolitical issues

contribute to the high prevalence of such a phenomenon (Serpanos and Komninos, 2022).

Consequently, many organizations have improved their research on effective solutions to

employ adequate countermeasures against the threat of cyber warfare. These solutions

often refer to an interaction between skilled individuals and artificial intelligence (AI)-

based techniques (Maher, 2017; Zhang et al., 2022; Potula et al., 2023). To centralize

the benefits of combining different lines of defense, companies are increasingly equipped

with a Security Operations Center (SOC) (Vielberth et al., 2020; Mughal, 2022). In the

SOC context, the Security Information and Event Management (SIEM) is a central-role

application (Cinque et al., 2018; Ban et al., 2023; Rosenberg et al., 2023). This tool is used

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2024.1375818
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2024.1375818&domain=pdf&date_stamp=2024-05-09
mailto:antonio.maci@bvtech.com
https://doi.org/10.3389/fdata.2024.1375818
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2024.1375818/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

to normalize security events from heterogeneous log sources and

trigger alerts (Feng et al., 2017). It supports the efficiency of

response to security incidents and provides an extended view of

what was happening in the information technology (IT) ecosystem

until the current moment (Podzins and Romanovs, 2019). The

adoption of SIEM becomes paramount as IT organizations generate

a large amount of data. This system fulfills the need to appropriately

handle large data batches using sophisticated event correlation

engines (Sekharan and Kandasamy, 2017). Recent studies have

shown the effectiveness of SIEM in processing large volumes of

data (Li and Yan, 2017). As a result, its employment has been

investigated in several application domains, such as Internet of

Things (IoT) networks (Zahid et al., 2023), smart city (Botello

et al., 2020), Industrial Control System (ICS), and Operational

Technology (OT) networks (Di Sarno et al., 2016; Fausto et al.,

2021; Radoglou-Grammatikis et al., 2021).

Data analytics is a relevant feature of a SIEM platform. As

a subfield of AI, machine learning (ML) involves data-driven

algorithms that support the decision-making process of SOC

analysts in detecting network intrusions (Anumol, 2015). In the

current literature, several research works propose innovative AI-

based intrusion detection methodologies (Das et al., 2019; Singh

A. et al., 2022; Alkhudaydi et al., 2023; Maci et al., 2023, 2024;

Park et al., 2023; Coscia et al., 2024). A SIEM can integrate these

techniques to enhance real-time analysis capabilities (Muhammad

et al., 2023). In this regard, the User and Entity Behavior Analytics

(UEBA) engine aims to analyze the behavior of employees, third-

party contractors, and collaborators of the organization to detect

misbehavior in user activities (González-Granadillo et al., 2021).

To achieve this purpose, UEBA typically employs ML algorithms

trained on data collected from various sources, such as system

logs, application logs, network devices, and network traffic (Khaliq

et al., 2020). This engine represents a crucial component because

legitimate users have greater privileged rights and authorized access

to intranet resources than outsiders; therefore, these privileges

can pose a potential high risk to the intranet if used in an

unusual manner (Salitin and Zolait, 2018). Several investigations

have addressed the problem of insider threat detection using

ML algorithms, emphasizing the promising results obtained (Al-

Mhiqani et al., 2020; Lavanya and Shankar Sriram, 2022; Bin Sarhan

and Altwaijry, 2023). Modeling a user profile, including their

interests, characteristics, preferences, and behaviors, is a crucial

step in defining a suitable baseline to feed into ML algorithms

that are capable of predicting deviations from them that are not

known a priori (Eke et al., 2019; Savenkov and Ivutin, 2020).

Unsupervised learning algorithms are useful when there is no

prior knowledge of the anomaly being investigated (Vikram and

Mohana, 2020; Carrera et al., 2022; Mochurad et al., 2023). A

UEBA engine can greatly benefit from unsupervised learning

algorithms because any substantial deviation from normal behavior

in common communication patterns can represent a potential

attack (Martín et al., 2021; Fysarakis et al., 2023). Clustering

algorithms belong to the unsupervised learning paradigm and

can be used in UEBA for different purposes, including anomaly

detection, pattern recognition, and segmentation of user or entity

behavior. Despite the crucial role that these algorithms could play

in grouping similar entities based on behavioral patterns, selecting

the most appropriate clustering algorithm for UEBA remains a

challenging task due to the diverse nature of behavioral data and

the need for real-time analysis, which in turn depends on the

computational overhead of the method. The use of traditional

clustering algorithms for UEBA was recently investigated by Datta

et al. (2021) for real-time detection. However, while the recent

literature provides some clustering applications for UEBA, these

refer to traditional algorithms, i.e., no modern techniques are

examined. Additionally, no multiple state-of-the-art datasets are

taken into account for the experimentation, despite this aspect

is essential to provide an extensive overview of the efficiency

and robustness, i.e., the overall reliability of these algorithms in

scenarios that are as close to reality as possible.

To address this challenge, we conduct a comprehensive

investigation of multiple clustering algorithms and evaluate their

applicability for UEBA based on several key aspects, such as

scalability and performance effectiveness, in terms of the main

properties of the derived groups, such as cohesion, separation,

and density. Our thorough examination encompasses a wide

range of clustering techniques, including traditional and more

modern advances in such an algorithmic category. Furthermore, we

provide a deeper understanding of the practical considerations and

implementation aspects of these algorithms for UEBA, considering

factors such as data pre-processing, feature selection, and algorithm

parameter tuning. Such an analysis has the main objective of

providing practical recommendations and advice in the complex

process of determining the reliability of the evaluated methods

to identify the most appropriate clustering algorithm for specific

UEBA applications. The contributions proposed in this study can

be summarized as follows:

• It represents a comprehensive review of clustering algorithms

for UEBA, including the following key aspects at the data and

algorithm levels:

• Data-level: The investigation uses three distinct user

behavior-related datasets, one of which consists of logs that

represent real user actions, which is used for the first time

in this kind of work. Each dataset undergoes tailored pre-

processing strategies with the objective of making the data

capable of preserving the scenario modeled, while reducing

the computational effort required by the algorithms.

• Algorithm-level: The investigation analyzes traditional and

modern clustering methodologies, with an emphasis on

their relevance to the UEBA domain, including a particular

focus on scalability to address the big data aspect of the

problem addressed. Each clustering technique undergoes a

hyper-parameter tuning process, involving tailoredmetrics,

to determine the most appropriate algorithm setting for

specific UEBA scenarios.

The remainder of this study is organized as follows. Section

2 provides a review of the literature on approaches that address

the UEBA challenge. The theoretical framework related to the

algorithms evaluated in this study is described in Section 3. The

experimental plan is presented in Section 4. In Section 5, the results

of the proposed comparative study are listed. A critical evaluation

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

of the results with the following main findings and insights is

outlined in Section 6. The reliability analysis, which describes how

clustering algorithms deal with UEBA, is provided in Section 7.

Section 8 concludes this article and indicates possible future work.

2 Literature review

This section discusses the context in which our research occurs

by describing advances in the literature that are related to our work

and include: (i) general methodologies designed for UEBA; and (ii)

clustering algorithms for UEBA. Finally, the proposed contribution

motivation that emerged from such a revision is presented.

2.1 Methodologies for User and Entity
Behavior Analytics

The deployment of increasingly sophisticated UEBA systems

on real applications represents a fascinating challenge for the

scientific community in several aspects (Dhillon et al., 2021). In

Shashanka et al. (2016), a Single Value Decomposition (SVD)-

based algorithm is implemented to create a behavior profile

associated with a certain entity according to a baseline derived

from a data preparation phase combined with a feature extraction

strategy. Once the user behaviors are profiled, a confidence score

is computed for each event by scoring the test features in relation

to the behavior profile. Similarly, in the study by Yousef and

Jazzar (2021), a SVD-based algorithm for UEBA is used to create

a behavior profile per entity according to a group of entity-specific

data processed appropriately. In Tang et al. (2017), user data

are modeled using a factorization machine (FM) model, which

is a recommender system-based method used to identify unusual

access made by a user to any resource for the first time. This is

achieved by learning from prior user-to-entity access logs and user

context information subjected to an appropriate data preparation

phase. In the study by Astakhova and Muravyov (2019), a UEBA

solution is integrated with user behavioral biometrics and Open

Source Intelligence (OSINT) technologies to increase the ability to

recognize the operating context of the user. Specifically, according

to the biometric recognition system, the generic user can be

authorized or not to access a given resource. In the study by

Yaochuang (2023), the presented UEBA engine combines a traffic

analyzer with a system that examines the behavior of the Internet

user. The latter uses a Generative Adversarial Network (GAN)-

based model to determine whether a platform is legally accessed. In

the study by Zunair Ahmed Khan et al. (2022), the UEBA problem

is faced using time series analytical methods, such as the Scalable

Time series Ordered-search Matrix Profile (STOMP) algorithm

that creates a matrix profiling starting from a series of time-

dependent user events. The methodology embeds the computation

of the distance profile through a z-normalized Euclidean distance.

The final matrix indicates the anomalous behavior based on the

magnitude variation manifested by the user-related variables. In

the study by Rashid and Miri (2021), UEBA engines are enriched

using a differential privacy-based approach with the objective of

preserving the privacy of the analyzed user data while retaining

the accuracy of the anomaly detection model. This is achieved

by perturbing the input data to the UEBA anomaly detection

system by injecting Laplacian noise. In the study by Kaur et al.

(2022), the UEBA challenge is addressed by examining the log

data retrieved using the Cloud Trail Logs tool. Then, these data

are pre-processed according to ad hoc data cleaning and feature

engineering strategies to create a user behavior baseline. The latter

is used to control whether new logs can be considered anomalous or

not by computing a threat index that is a function of the deviation

between the current log data and the baseline. A general framework

for detecting insider threats from user behavior is provided in

Singh M. et al. (2022). It consists of a combination of feature

engineering techniques, such as isometric feature mapping and

content-based feature extraction, to minimize information loss

while providing a set of optimal features to a multi-fuzzy classifier

via an emperor penguin feature selection algorithm. UEBA engines

are correlated with data analysis and visualization tools to identify

user misbehavior, even in the cases of multiple organization

scenarios, such as in the study by Rengarajan and Babu (2021). In

the study by Piñón-Blanco et al. (2023), an UEBA application in OT

networks is used characterize the interactions between operators

and ICSs, defining the entities of interest to create a baseline.

Then, such a baseline is transmitted to a deep learning (DL)-

based anomaly detection system that employs a Long Short-Term

Memory (LSTM) model. Similarly, a LSTM model is leveraged

in the study by Sharma et al. (2020) as an autoencoder to learn

the user behavioral pattern (known in advance, i.e., such method

works on labeled data) and to determine anomalies according to a

threshold. The latter is computed on the basis of a reconstruction

error defined on the legitimate data subset. DLmodels are also used

in the study by Singh et al. (2019) for user profiling. Specifically,

this method consists of a combination of a multi-state LSTM and

a convolutional neural network (CNN) that is capable of learning

behavioral patterns over time. Using UEBA engines, the security of

classical applications, such as the Federated Identity Management

(FIM), can be improved (Martín et al., 2021). In particular, a

session fingerprint is defined to characterize the user (within the

identity federations) behavior and misbehavior. In the study by

Najafi et al. (2021), a natural language processing (NLP)-based

approach is presented to discover anomalies in entity behavior.

In such a study, the entities considered were executable files, and

the presence of outliers in their behaviors could be considered a

possible symptom of the presence of malicious executable software.

In the study by Lukashin et al. (2020), a scalable data processing

framework is proposed to address the UEBA problem. It comprises

a set of modules that are delegated to extract the most relevant data

parameters according to a particular topic and to transform them

for ML-based anomaly detection tools, such as LSTM, Isolation

Forest, and Support Vector Machine (SVM). Recent investigations

have highlighted the widespread use of several clustering algorithm

configurations for UEBA, denoting the need to examine in this

direction (Landauer et al., 2020; Sarker, 2021).

2.2 Clustering algorithms for User and
Entity Behavior Analytics

In the study by Iglesias Perez and Criado (2023), K-means

algorithm applied to time series data is used in combination

with graph analysis techniques on information extracted from

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

an UEBA engine realized through temporal behavior multiplex

networks. In the study by Parwez et al. (2017), K-means and

hierarchical clustering algorithms are employed to detect anomalies

in user communication patterns in the context of mobile networks.

Specifically, anomalies are determined according to the number of

samples that fall into the generic inferred cluster. Less-numerous

clusters are considered anomalous. In the study by Hu et al.

(2018), the presented UEBA engine consists of four components:

a data log collector, data log analyzer, behavior profile storage,

and anomaly detector. In such a setting, the analyzer module uses

the agglomerative clustering algorithm to establish the baseline

according to a custom similarity metric. The anomaly detection

module identifies unusual behavior in user actions by comparing

them with a predefined baseline, triggering an anomaly alert when

the deviation exceeds a set threshold. Similarly, in the study

by Kim et al. (2019), a K-means-based misbehavior detection

algorithm is investigated. Specifically, training samples are used

to define a baseline used to categorize anomalous or not, never-

seen-before samples. This is achieved by introducing an anomaly

score, given by the ratio between the distance from the closest

centroid and that relative to the centroid itself. In the study

by Ariyaluran Habeeb et al. (2019), the authors proposed a

clustering-based methodology and compared its performance with

that of several algorithms, including K-means, spectral clustering,

agglomerative clustering, and Hierarchical Density-Based Spatial

Clustering of Applications with Noise (HDBSCAN) for real-time

anomaly detection in entity behaviors within a IoT context. In the

study by Wang et al. (2016), user behavior models were extracted

by applying hierarchical cluster methodologies to a graph data

structure. Modern recommender systems are trained to predict

the potential future interactions made by users with entities on

the basis of data collected about the past behavior of users.

In the study by Xie and Wang (2018), a two-stage clustering

algorithm was used to provide recommendations. The first stage

uses a density-based clustering method to produce the number of

clusters to be used as input to the second phase, which employs

K-means. Given the widespread use of the K-means algorithm,

several versions of this method have been proposed in the current

literature (Ikotun et al., 2023). Each variant updates a specific

mechanism with respect to the vanilla operating mode to gain

the desired advantage, such as the scalability of the algorithm

when dealing with big data. For instance, the mini-batch K-means

considers a reduced number of training samples to perform the

center positioning update. The nestedmini-batchK-meansmethod

uses repurposed mini-batches in consecutive training iterations.

Alternatively, K-means++ restructures the centroids’ initialization

strategy using a specific selection probability. The latter strategy

has been proposed in behavior-related data grouping applications.

Specifically, in the study by Mayhew et al. (2015), K-means++ is

used to cluster different categories of machines, such as servers or

desktops, as well as web servers or web crawlers. In the study by

Gao et al. (2019), the analysis of user behavior clusters is performed

by comparing the results obtained using both K-means and K-

means++. As an alternative to partitioning-based K-means, fuzzy

c-means searches for clusters according to the computation of a

data structure (a matrix) that defines the probability that a sample

belongs to a certain group. This algorithm was used in the study

by Castellano et al. (2007) for user profiling purposes. In the study

by Cui et al. (2022), a fuzzy clustering algorithm is improved by

using a particle swarm optimization procedure that refines the

research on centroid categories. Such an UEBA approach helps

solve the problem of fuzzy clustering results that easily converge

to the local optimum. Furthermore, fuzzy membership matrices

are used to express the probability of being an anomaly. In the

study by Zola et al. (2021), two state-of-the-art density-based

clustering algorithms, namely, Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) and Ordering Points to

Identify the Clustering Structure (OPTICS), are compared with

HDBSCAN in the task of grouping the behavior of normal entities

according to their similarity. As part of a detection framework

that performs a behavioral analysis of online users, OPTICS is

used to infer the relationship between user-related events on social

networks (Nguyen and Jung, 2017). Various purposes can be

achieved with user behavior pattern analysis, such as identifying

the location of the user as in the study by Madhur Arora and

Patel (2023). Specifically, the Balanced Iterative Reducing and

Clustering using Hierarchies (BIRCH) algorithm is applied to

cluster the trajectory data referred to the position coordinates

of the user. In the study by Kuiper et al. (2019), a framework

is presented that leverages a combination of hierarchical and

partitioning clustering algorithms to profile user behaviors. In

particular, hiearchical clustering is used to determine the number

of clusters to configure the next non-hierarchical procedure. The

effectiveness of hierarchical clustering algorithms for time-series-

based tasks, such as UEBA, is highlighted in the study by Meng

et al. (2023). However, the authors of both articles observed that

despite their effectiveness, a major drawback regards their inability

to handle large datasets. To overcome such limitations, recent

advances have been made in the proposal of scalable and accurate

hierarchical clustering algorithms such as First Integer Neighbor

Clustering Hierarchy (FINCH) (Sarfraz et al., 2019) and Sub-

Cluster Component (SCC) (Monath et al., 2021). Other recent

directions explored in the sense of scalable clustering procedures

relied on the use of subspace-based techniques, so that the total

space dimension is reduced to apply clustering in a lightweight

mode while retaining an high accuracy. Traditional applications

have already been investigated for anomaly detection tasks, such as

insider threat detection (Pichara and Soto, 2011). In recent years,

subspace clustering has been applied considering the ensembles

of several (as many as searched groups) (Lipor et al., 2020),

mainly because of the introduction of effective approaches such

as Sparse Subspace Clustering by Orthogonal Matching Pursuit

(SSC-OMP) (You et al., 2016b) and Elastic net Subspace Clustering

(EnSC) (You et al., 2016a) methodologies. Kan et al. (2023)

presented a model based on a set of statistical techniques and

Guassian Mixture Models (GMMs) to identify user-level malicious

behaviors, defined as deviations from a nominal baseline. Density-

peak clustering methods, such as Density peak-based clustering

using Mutual nearest neighbors (DenMune) (Abbas et al., 2021),

have recently been applied to the UEBA task (Liu, 2022). This

algorithm class is mainly based on the construction of a decision

graph according to distance and density measures. It is possible to

choose the cluster centers explicitly on the decision graph based

on the decision graph. Other data points can then be grouped

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

into clusters based on their closest and densest neighbors once the

cluster center has been determined. In the study by Datta et al.

(2021), a comparison between four algorithms is presented, namely

K-means, agglomerative, DBSCAN, and GMM. This evaluation

was conducted using a single dataset that modeled the interaction

between users and e-commerce platforms. Algorithm performance

was recorded using external validation metrics that show the

effectiveness of K-means and agglomerative clustering algorithms.

2.3 Motivation

From the above literature review section, the lack of a thorough

evaluation of clustering algorithms has emerged.Moreover, existing

(not comprehensive) analyses have been limited to the validation

of quantitative performance, without providing any interpretation

of the groups generated by the algorithms. A broader analysis

would consider a larger number of datasets and investigate the

impact of the hyper-parameter setting on the performance of

such methodologies. In addition, the reliability of recent state-

of-the-art clustering algorithms has not yet been examined when

dealing with the UEBA case study. In light of this, we provide

a comprehensive review of clustering algorithms for UEBA with

the aim of pointing out the advantages and disadvantages of 15

clustering algorithms, from classical to recent advances, selected

according to their application in UEBA-related tasks as discussed

in the aforementioned section. Furthermore, to the best of our

knowledge, there is no evidence of the application of scalable

clustering algorithms to this problem. As a consequence, our review

is the first study that considers some clustering algorithms, such as

SSC-OMP and EnSC that has already showed their suitability for

big data challenges similar to UEBA. Finally, to fill the highlighted

gaps, our investigation considers three state-of-the-art UEBA

datasets and evaluates the internal performance achieved by each

clustering algorithm for different hyper-parameter configurations.

Taking into account the best configuration emerging from the fine-

tuning phase, an analysis of the density of clusters generated by the

algorithms was performed to validate the internal performance of

themethods based on the number of samples within each generated

cluster.

3 Clustering algorithms selected for
this investigation

This section lists the clustering algorithms used in this article

to face the UEBA challenge, an example of an industrial application

that, as discussed so far, fits well with these algorithms (Benabdellah

et al., 2019). As a general rule, this type of algorithm can be

divided into partitioning and hierarchical methods. In the first

case, a predetermined number of distinct groups are created by

systematically partitioning the input dataX, which are composed of

m samples, each with n features. Depending on the techniques used

in creating the clusters and the nature of the clusters generated,

partitioning clustering algorithms can be classified as hard/crisp

(density-based, subspace, etc.), fuzzy, and mixture resolving. In the

second case, data are hierarchically arranged into a series of layers,

so clusters are built on top-down (divisive approach) or bottom-

up (agglomerative approach) dendrograms (Ezugwu et al., 2022).

Algorithms belonging to both categories are considered in this

study. Furthermore, we examine scalable clustering methods. This

category of techniques can handle extremely large data by scaling

the execution to tackle the clustering computational overhead of big

data. These algorithms can be categorized according to the chosen

scaling methodology. This study considers the following scalable

clustering methods (Mahdi et al., 2021): (i) sample-based, which

infers about a subset of data, generalizing the results obtained over

the full dataset; and (ii) subspace, which performs cluster searching

in a vector space reduced with respect to the starting one. Table 1

summarizes the categorization of the clustering algorithms used in

this investigation.

3.1 Partitioning

3.1.1 K-means
The K-means (MacQueen et al., 1967) represents the most

classic partitioning-based clustering algorithm. It requires selecting

the number of clusters (usually indicated with K) to search for.

Then, K centroids are initialized and assigned to each cluster.

Given a data point xi ∈ X, with i = 1, ...,m, each algorithm

iteration attempts to fit such a point into the most suitable cluster

by comparing it with the k− th cluster centroid, where k = 1, ...,K.

Specifically, the centroid closest (in terms of a certain distance

metric, e.g., the Euclidean distance) to xi is selected. The K-means

algorithm continues by adjusting the positioning of each centroid

(i.e., updating the centroid set C, with |C| = K), which is defined

for each iteration according to the minimization of a cost function

(Ezugwu et al., 2022):

ζ (C) =
K

∑

k=1

m
∑

i=1
λik‖xi − µk‖d (1)

where µk is the mean value of the data points assigned to cluster k

(that corresponds to the center of the k-th cluster), while λik = 1,

if xi belongs to the k − th cluster; otherwise, it is null. Finally, d

specifies the type of distance function (d = 2 for the Euclidean

distance). Each point in the dataset is eventually assigned a different

group based on the displacement of the centroids until a stopping

condition is met, e.g., the end of training iterations T is reached.

3.1.2 Fuzzy c-means
The fuzzy c-means (Bezdek et al., 1984) is based on the

production ofK partitions forX by searching for similarity between

xi ∈ X and the k-th cluster. This relationship is expressed

using a membership value (∈ [0, 1]), which is computed using a

membership function. Unlike the K-means algorithm, the fuzzy

partitioning process is achieved through an iterative optimization

of the following function (which is slightly modified compared to

Equation 1):

Jrn (C) =
K

∑

k=1

m
∑

i=1
u
rn
ik
‖xi − ck‖d (2)

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

TABLE 1 Categorization of clustering algorithms applied in this study.

Algorithm Category

Partitioning Hierarchical Scalable

Sample-based Subspace

K-means

Fuzzy c-means

GMM

DBSCAN

BIRCH

OPTICS

Mini-Batch K-means

Scalable K-means++

HDBSCAN

Nested mini-batch K-means

SSC-OMP

EnSC

FINCH

SCC

DenMune

: Algorithm does not fall into the category.

: Algorithm falls into partitioning or hierarchical category.

: Scalable partitioning/hierarchical clustering algorithm.

where in Equation (2): (i) rn ∈ R, rn > 1; (ii) uik represents the

degree of membership of xi with respect to the k-th cluster; (iii) ck
is the centroid of dimension d. This process results in the update

of centroid placements and membership values that determine the

so-called membership matrix U ∈ R
m×K as follows:

uik =
1

∑K
k=1(

‖xi−cz‖
‖xi−ck‖ )

2
rn−1

(3)

where cz =
∑m

z=1 u
rn
iz xi

∑m
z=1 u

rn
iz

. Training continues until no centroid

adjustments are made in the clusters found.

3.1.3 Gaussian mixture models
GMMs (Mclachlan and Basford, 1988) are used to represent

sub-populations normally distributed within an entire population.

Specifically, a point within a set of data can be assigned to a

normal Gaussian density function characterized by specific mean

and standard deviation values. However, if multiple Gaussian

distributions that can represent this point exist, a mixture model

consisting of the marginal aggregation of such distributions can be

considered to indicate the probability of each distribution. A GMM

can be formally expressed as:

p(xi|θ) =
K

∑

k=1
υkpk(x|θk) (4)

where: (i) υk is the probability of the k-th Gaussian among all

distributions, also called the mixing coefficient; and (ii) pk(x)

represents the density probability of the k-th Guassian given the

point xi ∈ X. Recall that a multivariate (n dimension) Guassian

under the mixture perspective can be defined as p(xi,µk,6k) =
e
− 1

2 (xi−µk)
T6−1

k
(xi−µk)√

(2π)n|6k|
, with µk = 1

|Ck|
∑

xi∈Ck
xi the vector of the

means of the k-th Gaussian, whereas 6k = 1
|Ck|−1

∑

xi∈Ck
(xi −

µk)(xi − µk)
T is the covariance matrix of the k-th Gaussian. In

Equation (4), θ and θk represents the parameters of all Gaussian

distributions and k-th, respectively. To find the most suitable

parameterization, the so-called Expectation Maximization (EM)

algorithm is used. It consists of two main phases. First, µk,6k,

and υk are randomly set for all k ∈ K. Subsequently, for each

pair of cluster points, the responsibility coefficient (see Equation 5,

where t corresponds to the training step) is calculated during

the expectation step to quantify the extent to which the point is

generated from the currently paired Gaussian in relation to the

entire mixture. Then, it is used to recompute all the aforementioned

parameters tomaximize the likelihood until a convergence criterion

is met.

rik =
υkpk(xi|θ (t−1)k

)
∑K

k=1 υkpk(xi|θ
(t−1)
k

)
(5)

3.1.4 DBSCAN
Density-based clustering algorithms fall into the partitioning

category (Ezugwu et al., 2022). The DBSCAN (Ester et al., 1996)

represents one of the most popular algorithms that belong to this

class. The concept of density defines the distribution of subsets

of points in X. In particular, a high distribution of points is said

to be dense and more representative of the presence of a cluster.

Furthermore, the density of the noise areas is typically lower than

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

that of the clustered points. To apply such logic in the desired vector

space, each point p belonging to a cluster must be correlated with

the so-called ε-neighborhood N (p)ε = {q ∈ X|dist(p, q) ≤ ε}.
Therefore, the latter is characterized by a radius defined according

to a distance metric calculated with respect to a point q, resulting in

a suitable density (a minimum number of pointsmpts ∈ N is part of

the neighborhood). qc is said to be a core point if |N (qc)ε| > mpts.

These are the points located in the interior of a cluster. On the

other hand, qb is denoted as a border point if |N (qb)ε| < mpts and

qb ∈ N (qc)ε . Points that are neither cores nor borders are called

noise points. Whenever two core points are close enough (within ε)

to each other, they are grouped together. Border points close to the

core points are placed in the same cluster. Finally, the noise points

are discarded. This is achieved through the so-called reachability

and connectivity relationships:

• Point q is density-reachable from point p if q ∈ N (p)ε and p is

a core point. This relationship is symmetric when both points

are core points but is not symmetric when a border point is

part of the pair.

• Point p is density-connected to point q if there is another point

r such that both p and q are density-reachable from r. This

relation is symmetric.

To summarize the execution of DBSCAN, it starts searching for

all points density-reachable from xi ∈ X and initializes a cluster if

xi is a core point. Given the list of core points found, the algorithm

retrieves all connected points to a single core point and joins the

clusters. Finally, all points in X deprived of core points are noise if

their distance from the closest cluster is greater than ε.

3.1.5 OPTICS
The OPTICS (Ankerst et al., 1999) is a density-based algorithm

that extends DBSCAN. This variation relies on the idea of

simultaneously building density-based groups for different and

theoretically infinite ε
′
values, such that 0 < ε

′
< ε. This

is achieved by taking advantage of two main concepts: (i) core-

distance; and (ii) reachability-distance. For a point p ∈ X, the core-

distance is defined as the smallest distance from p to another point

within its ε-neighborhood, specifically, the distance between p and

its mpts-th nearest neighbor. On the other hand, the reachability-

distance of p in relation to another point q is the smallest distance

such that p is directly density-reachable from q, provided that q

is a core object. These two measures are used to sort points in X

to extract all density-based clusters for different ε
′
< ε values.

After the order of points is obtained, groups of data are defined

as such. In this study, to improve the OPTICS performance, the

version presented in the study by Kamil and Al-Mamory (2023)

is considered. Specifically, it comprises two phases. The fuzzy c-

means algorithm is applied to the original dataset to obtain the

membership matrix (see Equation 3), which represents the data

used by OPTICS for training. In this way, because fuzzy c-means

already provide a cluster map, the search space of the OPTICS

algorithm is reduced; in fact, the algorithm will consider the

neighbors within a single cluster of points, ignoring all the rest.

3.1.6 Mini-batch K-means
The mini-batch variant of the K-means (Sculley, 2010)

addresses the scalability of the original algorithm at the

optimization level. In particular, in the original algorithm,

Equation (1) is minimized using a gradient descent algorithm

that typically converges to a local optimal solution iterating

throughout the entire dataset. In the case of mini-batch K-means,

the dataset is split into small subsets, namely mini-batches Mb

(|Mb| < m), and the gradients are computed for each of

them. Such an approach provides a trade-off between the original

implementation and that that uses a stochastic-based gradient

descent optimization procedure, thereby gaining robustness and

computational efficiency.

3.1.7 Scalable K-means++
The scalable K-means++ (Bahmani et al., 2012) extends the

centroid initialization methodology proposed in the study by

Arthur and Vassilvitskii (2007), improving scalability by reducing

the number of steps required to effectively set up parallel

computation. Specifically, it consists of updating the initial K − 1

centroids (the first is a point sampled uniformly from X) according

to a non-uniform probability function l ‖xi−ci‖
d

ζ
, where xi ∈ X and

ci ∈ C, while l = �(K) is an oversampling factor. Because this

strategy results in an initial configuration of C such that |C| > K,

each point in the so-far formed C is weighted considering the

number of points in X closer to it than any other point in C. Then,

these computed weights are used to perform new clustering in such

a way that the condition |C| = K holds.

3.1.8 Nested mini-batch K-means
The nested mini-batch K-means (Newling and Fleuret, 2016)

constitutes an extension of the mini-batch version of K-means in

the sense of the adopted mini-batch sampling strategy. Specifically,

instead of randomly selecting equal-sized mini-batches, they are

selected in a nested manner. This is achieved by satisfying the

constraint |Mbt | ≤ |Mbt+1 |, with t ∈ {1, ...,T − 1} being the

current training iteration. In this criterion, it is paramount to

properly select the size of the mini-batch for each t. The motivation

behind this choice is better understood by examining two different

hypothetical size updates examined between consecutive steps: (i)

|Mbt+1 | = |Mbt | = S1; (ii) |Mbt+1 | = 2 × |Mbt | = S2.

Denoting by ckt the k-th centroid and ckt+1 (|Mbt+1 |) and the k-

th centroid given a mini-batch of size |Mbt+1 | at steps t and

t + 1, respectively. To avoid redundancy in the centroid update

and a much larger change in the centroid (premature fine-tuning

condition), the estimation presented in Equation 6 is proposed:

‖ckt+1 (S2)−ckt+1 (S1)‖ →
1

2

√

√

√

√

√

1

|Mbt |2

|Mbt
|

∑

i=1
‖xi − ckt‖2 =

1

2
σ̂C(k)

2

(6)

Given the initial size of the first mini-batch, the nested K-

means algorithm iterates until mink
σ̂C(k)

‖ckt−ckt+1 (|Mt |)‖ is higher than

a threshold that reflects the relative costs of premature fine-tuning

and redundancy.

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

3.1.9 SSC-OMP
The SSC-OMP algorithm (You et al., 2016b) exploits the self-

expressiveness property of the data so that each point in a union

of subspaces can be expressed as a linear combination of other

points in the subspaces, i.e., X = XC, with diag(C) = 0. Of all

possible coefficient matrices C, the so-called subspace-preserving

is searched. Such a matrix enables the representation of a point in

a subspace as a linear combination of η alternative points in the

same subspace. Once found, the affinity matrixW can be obtained

(so that given two points xi and xj, wij = |cij| + |cji|) to group

the data using spectral clustering algorithms. The main objective of

the SSC-OMP algorithm is to find a sparse representation of each

point in terms of other data points. This is achieved by solving the

following optimization problem:

c∗i = argmin
ci

‖xi − Xci‖22 s.t. ‖ci‖0 ≤ k (7)

The objective function in Equation (7) is minimized using

the orthogonal matching pursuit algorithm, which computes the

subspace-preserving matrix C∗ to deriveW = |C∗|+|C∗T |. Finally,
the segmentation of X is obtained by clustering the affinity matrix

using the spectral clustering algorithm used in the vanilla sparse

subspace clustering method (Elhamifar and Vidal, 2009).

3.1.10 EnSC
The EnSC (You et al., 2016a) represents an alternative

geometric method compared to the methods based on sparse

subspaces in the mechanism used to calculate C. This is achieved

by referring to the following objective function:

min
ci
λ‖ci‖1 +

1− λ
2
‖ci‖22 +

λ

2
‖xi − Xci‖22 s.t. cii = 0 (8)

where λ ∈ [0, 1). From Equation (8), δi = λ(xi − Xc∗i ) is called
the oracle point and cannot be found until c∗i is found. Given such

a point, the oracle region is derived. It consists of two opposite

spheres Rn symmetrically located at ± δ
‖δ‖2 . To compute the oracle

region, the so-called ORacle Guided Elastic Net (ORGEN) method

is used, which addresses such a problem by sequentially solving

reduced-scale subproblems. First, the active (support) set T is

initialized (authors advise λ = 0; note that such a parameter defines

the size of the oracle region, so that to small values corresponds

a large oracle region and well-connected points) and is used to

compute the oracle region. Then, T is updated considering the

actual support vectors. The procedure is repeated for a finite

number of iterations. In such a setting, the subspace-preserving

condition is reached if the following inequality λ

‖δ(xi ,Xl
i)‖2
≥ r2i

ri+ 1−λ
λ

is met, where xi is a point in a subspace with dimension l < n and

ri is the inradius of the convex hull of the symmetrized points in Xl
i ,

that is, a dictionary contained in the subspace itself.

3.1.11 DenMune
The DenMune (Abbas et al., 2021) takes advantage of the

principle of consistency ofKnn-mutual-nearest-neighbors such that

pints that share some mutual nearest neighbors must be part of the

same cluster. In this case, Knn is a user parameter that defines the

size of a neighbor. Consider xi ∈ X, the Knn-nearest neighbors of

such a point can be interpreted as a list of sorted points according to

their distance from a reference point denoted by KNNxi→. On the

other hand, if xi ∈ KNNxj→, with xj ∈ X, the following condition

xj ∈ KNNxi←, holds. The set of mutual nearest neighbors of xi
is defined as the intersection between KNNxi→ and KNNxi←. In

essence, this set identifies dense points with respect to xi. To better

isolate dense points, the DenMune algorithm implements a scoring

mechanism to classify the data samples into: (i) strong points if
|KNNx←|

Knn
≥ 1; (ii) weak points if |KNNx←|

Knn
< 1; and (iii) noise points

if 0 ≤ |KNNx←|
Knn

<< 1. Strong points are used to construct clusters,

then some of the appropriate weak points (those with |KNNx←|
Knn

close

to 1) are merged with the existing clusters, and the remaining part

with the noise points is discarded.

3.2 Hierarchical

3.2.1 BIRCH
The BIRCH (Zhang et al., 1996) is a classical hierarchical

algorithm used to handle large datasets. Clustering feature (CF)

tuples are used to summarize information in dense regions or

clusters of data to minimize the memory requirements of large

datasets. This tuple is expressed as cf =< m, f (m), g(m) >,

where f and g perform linear and squared summations of the data

points, respectively. According to this formulation, the so-called

CF tree can be used to compactly represent subclusters within

X as a leaf node. CF trees contain CF entries that are made up

of the sum of the CF entries in their children. This is achieved

according to the CF additive theorem, which states that given

cf1 =< m1, f1(m1), g1(m1) > and cf2 =< m2, f2(m2), g2(m2) >,

cf1 + cf2 =< m1 + m2, f1(m1) + f2(m2), g1(m1) + g2(m2) >. The

maximum number of entries in each leaf node is set according to

a threshold, which also influences the tree size. Once the CF tree

is built, a global clustering phase is performed that can employ the

above-cited clustering algorithms, such as K-means.

3.2.2 HDBSCAN
The HDBSCAN (Campello et al., 2013) presents a hierarchical-

based variant of the previously described DBSCAN algorithm. In

this approach, density estimation takes advantage of the concept of

core distance. Given a point p ∈ X, dcore(p) indicates the distance

from p to the mpts-nearest neighbor. The core distances of the

points in the denser regions are generally smaller, whereas those in

the sparser regions are larger. This metric is then used to define the

mutual reachability distance between p, q ∈ X, as dmreach(p, q) =
max{dcore(p), dcore(q), dist(p, q)}. This measure is used to build the

mutual reachability graph, where each node is a generic data point,

and the generic edge that connects two nodes is weighted by the

mutual reachability distance of the involved nodes. If such a graph

is pruned of arcs having a weight higher than ε, it makes sense that

clusters are generated by the connected components of the ε-core

points, i.e., objects with dcore(p) ≤ ε. The remaining points are

assumed to be noise. Such a drop operation can be performed by

adopting methods capable of searching for the minimum spanning

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

tree of the graph. Then, the minimal spanning tree is transformed

into a hierarchy of connected components that need to be clustered

according to a minimum cluster size (mclustersize ), i.e., a value above

which a set of points is considered as a cluster. Among the clusters

thus identified, only those defined as stable are retained, according

to a persistence criterion defined by analyzing the inverse distance

values when the generic cluster is generated.

3.2.3 FINCH
The FINCH (Sarfraz et al., 2019) algorithm is a parameter-

free hierarchical clustering procedure. Given xi(j) ∈ X, the affinity

matrix A can be calculated as follows:

A(xi, xj) =
{

1 if xj = κ1xi or xi = κ
1
xj
or κ1xi = κ

1
xj

0 otherwise
(9)

where κ1xi(j) is the first neighbor of point xi(j). The matrix obtained

from Equation 9 directly infers the grouping relationship between

data points that must be recursively merged. This is achieved

by averaging the data samples within each group and using the

mean vectors to determine the first nearest neighbor. As specified

above, the FINCH algorithm comes as a free parameter procedure.

However, the overall algorithm can be adapted to return the desired

number of clusters K (if required) by refining a closed partition in

the returned hierarchy tree.

3.2.4 SCC
The SCC (Monath et al., 2021) determines which points

should belong to the same cluster in a sequence of rounds

(the single round is indicated with τ ). First, SCC places each

point into its own distinct cluster. Then, a merging operation is

applied to the cluster sets if the sub-cluster component criterion

is fulfilled. Taking into account a set of data X, it can be flat

in a set S = {m1,m2, ...,mK}, i.e., ∪Kk=1mk = X. Two sub-

clusters ml,mz ∈ S belong to the same sub-cluster component

[mHf
(ml,mz , ρ, S) = 1] according to a threshold ψ and a linkage

function f :P(X) × P(X) → R
+, with P(X) the set of all possible

S, if there exists a path fromml tomz in a hierarchical arrangement

such that (i) f (msr ,msr−1 ) ≤ ρ for 0 ≤ r ≤ z; and (ii)

msr−1 = argminm∈S f (msr ,m) ∧ (∨)msr = argminm∈S f (msr−1 ,m).

Therefore, in a round τt , the inference is produced considering

the sub-clusters merged in the previous round that are in the

same sub-cluster component. Note that when no clusters are

merged in the previous round, ψ increases. In essence, sub-cluster

components can be conceptualized as the connected components

of a graph, with sub-clusters (nodes) from the previous round and

arcs connecting pairs of nodes with a distance less than ψ between

them.

4 Experimental setup

First, this section describes the datasets used. For each,

a specific pre-processing strategy has been adopted and

detailed. Second, the metrics used to evaluate the selected

clustering algorithms are described and discussed. Third,

the implementation details and algorithm settings are

listed.

4.1 User and Entity Behavior Analytics Data

4.1.1 Description
To provide an extensive comparative study, three different

problem-specific datasets were selected according to their usage

in the current literature. To simplify the notation, the datasets are

identified by integers. Their description is as follows:

• The first dataset (D1) used is called E-shop Clothing

(Łapczyński and Białowa̧s, 2013, 2019). This has been selected

because it was used in the study by Datta et al. (2021) to

evaluate a set of four clustering algorithms for the same

problem addressed in this study. D1 is a collection of

information on the clickstream of an online store that can

be used to identify behavioral patterns starting from the

interaction between users and the web application. It consists

of the study by Diwandari and Zaky (2021):

1. Timing data are divided into three different variables,

namely year, month, and day, each encoded as an

integer number (e.g., 29th April 2008 is expressed as

year=2008, month=4, and day=29).

2. Geographic data are represented by a single feature, namely

country, in which the country of origin of the IP address

is indicated by a numerical label (e.g., country=1 to

indicate Australia). Any label is encoded by the authors

using their own dictionary.

3. Session and web page data collection (all integer numbers),

including: (i) session ID; (ii) page 1 (main

category) that concerns the main category to which the

product belongs, based on four main categories; (iii) page

2 (clothing model) that represents the product

code, composed of a letter concatenated to an integer

number; (iv) location that describes the position of the

product in the web page layout encoded for each part of

the display (divided into six parts); and (v) order that

reports the sequence of clicks during one session.

4. The group of attributes related to the browsed product

includes: (i) color, where colors of products are encoded

as integers; (ii) price, expressed in dollars; (iii) the binary

flag price 2 that defines whether the price of a specific

product exceeds the average price for the entire product

category; and (iv) model photography, describing

whether the model is frontal or profile using a dicotomic

flag.

• The second dataset (D2) used is called Clue-lds (Landauer

et al., 2022a). This represents a collection of log data retrieved

from interactions between users and a cloud storage solution

over a 5-year period. Each collected event is characterized by

a specific typology and the identifier of the user (with its role

and network identifier) who performed it. The exact moment

at which it is recorded and a series of user location information

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

TABLE 2 D3 features per instance.

Feature/file Logon Device Email http File Psychometric

ID

user

date

PC

activity

file_tree

to

cc

bcc

from

size

attachments

content

url

filename

to_removable_media

from_removable_media

openness

conscientiousness

extraversion

agreeableness

neuroticism

in the case of network identifier availability. Data are available

in the study by Landauer et al. (2022b) in the form of a JSON

object such that each first-level key represents a feature of

the original data, which, in turn, could consist of a group of

attributes. An example is reported in Listing 1.

{ ‘ ‘ params ’ ’ : { ‘ ‘ path ’ ’ : ‘ ‘ / v a r i e d - tomato

-muskox - e n g i n e e r / p r o f i t a b l e - copper -

l l ama - c l a s s r o oma i d e / a p p a l l i n g - pu rp l e

- booby - qua l i t ymanage r ’ ’ } , ‘ ‘ t ype ’ ’ :

‘ ‘ f i l e _ a c c e s s e d ’ ’ , ‘ ‘ t ime ’ ’ : ‘ ‘ 2 0 22 -

04 - 12T08 : 2 6 : 5 6 Z ’ ’ , ‘ ‘ uid ’ ’ : ‘ ‘

f e d e r a l - j a d e - loon - handyman ’ ’ , ‘ ‘ id

’ ’ : 49690432 , ‘ ‘ uidType ’ ’ : ‘ ‘

i p a dd r e s s ’ ’ , ‘ ‘ r o l e ’ ’ : nu l l , ‘ ‘

i s L o c a l I P ’ ’ : 0 . 0 , ‘ ‘ l o c a t i o n ’ ’ : { ‘ ‘

countryCode ’ ’ : ‘ ‘ IT ’ ’ , ‘ ‘ countryName

’ ’ : ‘ ‘ I t a l y ’ ’ , ‘ ‘ r e g ion ’ ’ : ‘ ‘VE ’ ’ ,

‘ ‘ c i t y ’ ’ : ‘ ‘ San Don \ u00e0 d i P iave

’ ’ , ‘ ‘ l a t i t u d e ’ ’ : 4 5 . 6 2 5 1 , ‘ ‘

l o n g i t ud e ’ ’ : 1 2 . 5 6 6 2 , ‘ ‘ t imezone ’ ’ :

‘ ‘ Europe /Rome ’ ’ , ‘ ‘ po s t a lCode ’ ’ :

‘ ‘ 3 0 0 2 7 ’ ’ , ‘ ‘ metroCode ’ ’ : nu l l , ‘ ‘

regionName ’ ’ : ‘ ‘ Venice ’ ’ , ‘ ‘

i s InEuropeanUnion ’ ’ : t rue , ‘ ‘

c on t i n en t ’ ’ : ‘ ‘ Europe ’ ’ , ‘ ‘

a c cu r a c yRad iu s ’ ’ : 1 0 0 } }

Listing 1 An example of sample in D2.

The meaning of first-level attributes can be described as

follows: (i) params: this feature comprising a dictionary

containing additional details about the event, which might

encompass information (like the file access pathway); (ii)

type: a categorical variable that describes the typology of the

event, i.e., the action performed by the user; (iii) time: ISO-
formatted timestamp of the event; (iv) id: a distinct integer

identifier for the log sample; (v) uid: a string that could

contain a user name or an IP address, depending on whether

the event is related to a user or an entity. This variable is strictly

related to the user identifier; (vi) role: string that defines

the role of a user (e.g., management, sales, technical, etc.);

(vii) isLocalIP: dicotomic flag, which expresses whether

the user is identified as local (true) or external (false); (viii)

location: a nested dictionary containing information on

the geographical location of users, such as their address, city,

and longitude.

• The third dataset (D3) consisted of synthetic samples and

was released by the CERT Insider Threat Center

(Glasser and Lindauer, 2013, 2016). Among the versions

released, we considered r5.2 in our article. In this release,

actions taken by an organization of 2,000 employees are

simulated and recorded over a period of 18 months. The

insider threat scenarios modeled are as follows: (i) data theft;

(ii) intellectual property theft; and (iii) IT sabotage. This is

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

TABLE 3 Original data main characteristics.

Dataset No.
samples

No. numeric
(categorical)
features

No. users

D1 165,474 13 (1) N/Aa

D2 ∼ 5× 107 1 (8) 5389

D3 ∼ 8× 107 6 (27) 2× 103

aNot available.

achieved since the information provided characterizes the

organizational structure and the generic user. Specifically,

the information provided covers six distinct instances, i.e.,

(i) authentication-related events (logon/logoff); (ii) email

transmissions; (iii) device interactions; (iv) file operations; (v)

HTTP events; and (vi) psychometric score assigned to each

employee. Each dataset file contains a set of specific variables

for each category analyzed, as outlined in Table 2. For each

instance, it is shown whether the feature is included ( ) or

not ( ). Note that in some cases, variables are shared between

instances, but this does not imply sharing the interpretation

of the evaluation of such a variable, because the semantic

is instance-specific. For example, the activity of the logon

(device) file can be logon/logoff(connect/disconnect).

In Table 3, the main characteristics of the three datasets are

listed. According to the problem at hand, there are both numeric

and categorical data, i.e., our study considers mixed data. Note

that although some of the selected clustering algorithms can work

with mixed data (Ahmad and Khan, 2019), we will use appropriate

strategies to transform categorical data into numerical data, as

described below.

4.1.2 Pre-processing strategies
According to the information provided in Table 3, a different

pre-processing strategy is required for each dataset. Specifically,

each strategy adopted has the goal of accurately modeling real-life

application contexts:

• D1 has a unique categorical column, that is, page 2

(clothing model). When analyzing such a column, it

can be seen that it consists of a first letter followed by a

number. Therefore, we divided this column into two new

columns that are categorical and numerical, respectively. The

generated categorical feature admits four possible values, i.e.,

A for 49,743 samples, P for 38,747 samples, C for 38,577

samples, and B for 38,407 samples. As a consequence, we

applied a label encoder to map each letter to an integer

number. Therefore, D1 is composed of 15 numerical features;

thus, it is suitable for unsupervised learning methods, such

as clustering algorithms. Furthermore, to reduce the impact

due to the magnitude of some features, the Z-score strategy

was used so that the data were normalized as z = x−µ
σ

,

where µ and σ represent the mean and standard deviation

of the original data, respectively. Therefore, unlike Datta

et al. (2021), we did not apply One Hot Encoder (OHE) on

page 2 (clothing model), avoiding explosion in the

number of features. In fact, in the study by Datta et al. (2021),

OHE resulted in ∼70 features, making the need for principal

component analysis (PCA) to reduce the number of columns

to 15, obtaining an explained data variance equal to 85%. As a

final point, we removed the column year because it assumes

a unique value for all samples.

• To make the data suitable for the detection of misbehavior,

we exploited the attack injection proposed by the authors of

D2.1 It relies on the main idea of hijacking a user account

by another one, i.e., a certain user’s behavior patterns are

changed to reflect someone else’s from a given point in

time. To implement such logic, two distinct users u1, u2 that

interchange by means of the relative identifier are considered

once a time, so that theymeet the following properties: (i) both

are operative until the instant dmin in which the switch occurs;

(ii) after switching the identifiers, both users must be active

for at least one day; (iii) only those who perform a minimum

number of total events (cmin) to which correspond aminimum

number of unique event types (amin); and (iv) the considered

patterns should not be too similar to be detected simply,

but neither too different to make switching their identifiers

irrelevant. All requirements are satisfied if the following set of

equations holds (Landauer et al., 2022a):































|{ti ∈ d(u1(2)) : ti < ts}| > dmin

c(u1(2)) > cmin ∧ |a(u1(2))| > amin

smin < sim(u1, u2) = ω1 ×
min

(

c(u1)
|d(u1)|

,
c(u2)
|d(u2)|

)

max
(

c(u1)
|d(u1)|

,
c(u2)
|d(u2)|

)

+ω2 × |a(u1)∩a(u2)||a(u1)∪a(u2)| < smax

(10)

where d(u1(2)) represents the number of days on which u1 and

u2 generate an event, respectively, while c(u1(2)) and a(u1(2))

indicate the count, as well as all types of events generated by

u1 and u2. Note that in Equation (10), sim(u1, u2) includes two

weighting factors, i.e., ω1 and ω2 such that ω1 + ω2 = 1.

To implement attack hijacking, our setting follows the one

proposed by the authors: dmin = 25 days; cmin = 100; amin =
4; ω1 = 0.3; ω2 = 0.7; smin = 0.1; smax = 0.6. As a reasonable

range from an application point of view, 6 months of random

logs were considered in D2. Subsequently, the time column

was divided into year, month, day, hours, minutes,

and seconds. Analogously, the params column, which is

an action-related dictionary, was split so that each key-value

pair became a new feature of the dataset. The same logic

was applied for location. Null values were padded with

−1. Each categorical feature resulting from the splitting of

params was transformed using a label encoder. As in D1, the

entire dataset was normalized by applying a Z-score strategy.

• As a pre-processing strategy for D3, we used the one proposed

in the study by Le et al. (2020).2 First, an employee context

model is created consisting of information such as assigned

assets, roles, work hours, authorizations, and relationships

1 https://github.com/ait-aecid/clue-lds (accessed October 16, 2023).

2 https://github.com/lcd-dal/feature-extraction-for-CERT-insider-

threat-test-datasets (accessed October 3, 2023).

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://github.com/ait-aecid/clue-lds
https://github.com/lcd-dal/feature-extraction-for-CERT-insider-threat-test-datasets
https://github.com/lcd-dal/feature-extraction-for-CERT-insider-threat-test-datasets
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

TABLE 4 Pre-processed data main characteristics and Hopkins statistic.

Dataset No.
samples

No. numeric
(categorical)
features

No.
users

Hopkins

D1 165,474 14 (0) N/A 4.59×
10−2

D2 499,097 87 (0) 290 1.04×
10−4

D3 132,124 1,096 (0) 2× 103 5.22×
10−5

with colleagues. Given data in D3 and user contexts, the

feature extraction phase starts aggregating data according to

specific criteria, such as the observed period and the number

of actions performed. Then, aggregated data are used to extract

numerical vectors consisting of encoded categorical data and

both frequency (number of resources access after a work

hour, number of emails sent, etc.) and statistical (median,

standard deviation of resource sizes, and the number of words

in the websites accessed) features. Based on the aggregation

condition, data are organized taking into account weeks, days,

sessions, and subsessions. Specifically, in the last case, the user

actions and duration of each session are indicated. As in the

above pre-processing strategies, data are scaled through the

Z-score.

The main characteristics of each pre-processed dataset are

reported in Table 4. Furthermore, for each row, the Hopkins

statistic is reported to quantify the cluster tendency of each dataset

according to the following formula (Banerjee and Dave, 2004):

H =
∑mb

l=1 r
n
l

∑mb

l=1 r
n
l
+

∑mb

l=1 w
n
l

(11)

where in Equation (11): mb < m; rl represents the minimum

distance from a point sampled from a subspace of X to its closest

pattern in X; wl is the minimum distance from a randomly selected

pattern in X to its nearest neighbor (mb out of the available m

patterns are marked at random for this purpose). Given such a

construction, H ∈ [0, 1] and H → 0 indicates clustered data

because H evaluates whether the data are generated by a n-variate

uniform distribution on the hyper-rectangle with n sides of length

equal to the n ranges of the original variables. FromTable 4, all three

datasets appear to be clusterable because the obtained H values are

close enough to 0.

4.2 Metrics used

Since one of the contributions of this article is the refinement

of the evaluation proposed in the study by Datta et al. (2021), we

consider the same set of intrinsic measures, i.e., the Silhouette,

Calinski-Harabasz (CH), and Davies Bouldin index (DBI) scores,

to which we add the analysis of training time. The first three

metrics belong to internal validation methods, i.e., their scores are

computed without knowledge of the ground truth. The internal

validation indices are mainly based on the concepts of cohesion

and separation. The first is intended as a proximity measure of

samples within a cluster. The second method provides a method

for measuring the proximity between groups. Accordingly, the

following equations hold (Palacio-Niño and Berzal, 2019):

Silhouette = 1

m

m
∑

i=1

b(i)− a(i)

max{a(i), b(i)} (12)

CH =
∑K

k=1 mk‖ck − c‖2
K− 1

× m− K
∑K

k=1
∑mk

i=1‖xi − ck‖2
(13)

DBI = 1

K

K
∑

k,j=1
max
k6=j

(
1Xk +1Xj

δ(Xk,Xj)
) (14)

where: (i) in Equation (12), a(i) = 1
|Ca|

∑

j∈Ca ,i6=j d(i, j) is the

average distance to all points in the same cluster, and b(i) =
minCb 6=Ca

1
|Cb|

∑

j∈Cb ,i6=j d(i, j) represents the minimum average

distance between the example and the examples contained in each

group that does not contain the actual one; (ii) in Equation (13),

mk is the number of samples in the k-th cluster, and c is the global

centroid; (iii) in Equation (14), 1Xk is the intracluster distance

within the cluster k, and δ(Xk,Xj) is the intercluster distance

between the k − th and j − th clusters. Well-separated clusters are

typically obtained for a Silhouette score [Equation (12) ∈ (−1, 1)]
close to 1 and for high (low) value of CH(DBI). Each metric

is evaluated by performing an algorithm hyper-parameter tuning

process. In particular, to the best of our knowledge, there are no

other similar studies using D2 or D3. Moreover, when D1 is used,

there is no evidence of a hyper-parameter configuration process.

Our analysis was performed using the following reasonable ranges:

(i) K = 2 : 1 : 20; (ii) ε = 0.2 : 0.2 : 3.8; (iii) mclustersize = 5 : 1 : 25;

(iv) τ = 10 : 5 : 100; (v) Knn = 5 : 5 : 100. Then, we considered

the best configuration, which is achieved using the hyper-parameter

simultaneously selected by the aforementioned methods (to which

corresponds the best metric score the higher number of time).

Given this setting, the number of samples within the predicted

clusters, denoted with ρ, is used to perform a cluster density

analysis. This can be exploited as in the study by Parwez et al. (2017)

for anomaly detection; therefore, anomalies are considered clusters

with fewer objects (if found).

4.3 Implementation details and hardware
setting

According to the current development trend in the ML

(Raschka et al., 2020) field, our comprehensive investigation was

implemented in Python. Table 5 summarizes the implementation

details of all algorithms compared, reporting the reference to

the Python classical or custom package that provides the code.

Moreover, the custom hyper-parameter setting is indicated for

those that did not engage in the previously described tuning

process. For example, we use the thumb rule used in the study by

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

TABLE 5 Implementation details summary.

Algorithm Python package Non-default hyper-parameters

K-means K

GMM K, reg6k
= 10−4a

DBSCAN scikit-learn (Pedregosa et al., 2011) ε,mpts = 2× n

OPTICS Kb

Mini-Batch K-means K

Fuzzy c-means scikit-fda (Ramos-Carreño et al., 2023) K

BIRCH pyclustering (Novikov, 2019) K

HDBSCAN hdbscan (McInnes et al., 2017) mclustersize ,mpts = 2× n

DenMune pyMune (Abbas et al., 2023) Knn

Scalable K-means++ Public repositoryc K

Nested mini-batch K-means Public repositoryd K

SSC-OMP
Public repositorye

K

EnSC K, algorithm = spamsf

FINCH Public repositoryg Kh

SCC Public repositoryi τ

a Non-negative regularization factor ensuring 6k is positive for all k ∈ {1, ...,K}. b We tuned the number of clusters corresponding to the fuzzy c-means step. c https://github.com/SheliaXin/

Scalable-K-means- (accessed October 10, 2023). d https://github.com/sharanry/Nested-K-Means (accessed October 10, 2023). e https://github.com/ChongYou/subspace-clustering (accessed

October 10, 2023). f The sparse estimation is performed through the spams package: https://github.com/getspams/spams-python (accessed October 10, 2023). g https://github.com/ssarfraz/

FINCH-Clustering (accessed October 10, 2023). h We also considered the case in which no number of clusters is required. i https://github.com/nmonath/scc/ (accessed October 10, 2023).

Datta et al. (2021) to set mpts in DBSCAN (except for D2 and D3,

wherempts = 5), HDBSCAN, and OPTICS.

The visualization strategy of the results was inspired by the

yellowbrick package (Bengfort and Bilbro, 2019). However, as

shown in Table 5, not all algorithms were implemented using

scikit-learn; therefore, we produced ad hoc Python visualization

scripts that take advantage of matplotlib (Hunter, 2007) and

seaborn (Waskom, 2021) graphical libraries. All experiments were

performed on a workstation with an octa-core CPU and 64 GB

RAM.

5 Results

5.1 Performance comparison

This section provides a performance comparison between the

aforementioned metric trends with respect to the variation of the

hyper-parameter setting for each algorithm. In particular, line plots

were adopted for internal validation metrics, whereas training time

was represented as a linear approximation of the actual trend, with

a confidence interval of 95%. Note that we used a logarithmic scale

for the CH measure because of its magnitude.

Figure 1 shows the performance comparison analysis per

algorithm. This can be described as follows:

• The results obtained for the K-means algorithm are grouped

in Figure 1A. The Silhouette score reaches the maximum value

for K = 2, for D1 and D3. As K increases, there is a

degradation in the line generated by this metric for the third

dataset, while a jagged curve is observed for D2 when K > 5

(a spike is observed for K = 7). Taking into account D1,

such a score tends to improve for K values close to 20. For

this specific dataset, this result counters with the CH trend,

which decreases as K increases. Meanwhile, CH achieves the

maximum values for high K values when the datasets used are

D2 and D3. The DBI is minimum for K = 4(16) in the case

of D2(D1), while it follows an almost steady pattern for D3.

Finally, the training time increases approximately linearly with

K for all datasets.

• When examining the results achieved by the Fuzzy c-means

algorithm (see Figure 1B), a performance decline is observed

for all metric scores for D1 and D2 compared to the K-means

experiment. Instead, the same results are obtained for the

utmost case, which is again K = 2. When K increases, the

DBI can reach very undesirable values. For example, in the

case of D2, DBI> 15 for K = 13. On the contrary, the results

produced on the third dataset are almost exact replicas of

those obtained using the K-means algorithm. Moreover, the

Fuzzy c-means is more disadvantageous than K-means from

the training time point of view, especially in the case of D2.

• Figure 1C displays the results obtained for the GMM

algorithm. First, based on the configuration reported in

Table 5, the algorithm was not run when a number of

components greater than three was selected for D3, although

we decreased reg6k
with respect to its default setting.

Furthermore, unlike the two algorithms above, promising CH

and DBI trends are found for both D1 and D2, although K

reaches higher values. With regard to Silhouette, it can be

observed that the highest values are for K ∈ [2 − 7] for D1

and D2. Finally, taking into account the actual trend of the

training time, one can infer that the GMM is influenced more

by n, rather than m, when the algorithm searches for more

components.

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://github.com/SheliaXin/Scalable-K-means-
https://github.com/SheliaXin/Scalable-K-means-
https://github.com/sharanry/Nested-K-Means
https://github.com/ChongYou/subspace-clustering
https://github.com/getspams/spams-python
https://github.com/ssarfraz/FINCH-Clustering
https://github.com/ssarfraz/FINCH-Clustering
https://github.com/nmonath/scc/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

A B C

D E F

G H I

J K L

M N O

FIGURE 1

Performance comparison of evaluated clustering algorithms. (A) K-means. (B) Fuzzy c-means. (C) GMM. (D) DBSCAN. (E) BIRCH. (F) OPTICS. (G)

(Continued)

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

FIGURE 1 (Continued)

Mini-Batch K-means. (H) Scalable K-means++. (I) HDBSCAN. (J) Nested mini-batch K-means. (K) SSC-OMP. (L) EnSC. (M) FINCH. (N) SCC. (O)

DenMune.

• Similar to GMM, the DBSCAN algorithm did not provide

acceptable outcomes for D3, as for each value of ε tested, it

assigned a cluster to each sample. For this reason, Figure 1D

does not provide results for the third dataset. Furthermore,

in the case of D2, the algorithm could not run for ε > 1.6,

with the step selected and the hardware setting used. However,

close to the last valid experiments, both Silhouette and CH

exhibit an increasing gradient, while DBI appears to decrease

for ε > 1. Nevertheless, in the case of D1, very relevant

results are observed for both Silhouette and DBI with ε = 3.2,

which, however, corresponds to a long training time. The latter

increases almost linearly for ε > 2.

• The BIRCH performance trends as a function of the number

of clusters searched are presented in Figure 1E. First, training

time appears to be unaffected by K. Note that the training

time is the highest recorded so far for both D2 and D3,

and in this case, the number of features is more likely to

have a considerable impact on this overhead compared to the

number of samples. Despite this effort, this algorithm appears

to perform extremely promisingly, in fact: (i) for K = 2,

very positive Silhouette scores are obtained for all datasets,

and, especially, it is close to 1 for D2; (ii) for K = 2, the

CH(DBI) assume (high) low values for D3(D1) and D2, while

to K = 4(K = 20) corresponds the maximum (minimum)

DBI for D1(D3).

• The OPTICS performance is represented in Figure 1F. For

such an algorithm, K = 9 results in the highest Silhouette

and DBI scores for the second dataset, respectively. The

first-rate settings for D1 and D3 are given by K = 2

(maximum Silhouette and CH, and minimum training time).

Regarding computational overhead, the overall training time

is considerably long, especially when m is very high, as in the

case of D2. As a final point, the training time grows nearly

linearly with K.

• The performance of the Mini-batch K-means shown in

Figure 1G is comparable to that obtained by the K-means

algorithm in Figure 1A for low K values. In this case, K = 2

results in the highest Silhouette score. The main differences

concern the CH and DBI curves, for which a performance

drop is observed as the value of K increases. As expected,

the main advantage with respect to the K-means is the

shorter training time. Furthermore, another difference for

this measure is given by the approximate linear trend in D2,

which is descending for the mini-batch algorithm approach.

This result is consistent with the working procedure of the

algorithm, which reduces the overhead because of the mini-

batch of samples used.

• Figure 1H shows the scores achieved by the metrics evaluated

using the Scalable K-means++ algorithm. The observed

trends are extremely similar to those of the K-means-

based algorithms evaluated so far. However, a considerable

difference is observed for the training time curves, which

follows a linear increase with K and is longer than that of the

K-means, especially when D2 is used.

• The HDBSCAN performance (Figure 1I) denotes a lack of

efficiency of the algorithm on D1 and D2 datasets according

to the metric scores achieved. On the other hand, the same set

of graphs indicates that the algorithm exhibits very promising

results when D3 is used, regardless of the value of mclustersize .

The training time trend of HDBSCAN highlights a significant

overhead in the case of D2 and D3. However, it decreases with

increasing mclustersize in experiments that involve the second

dataset.

• The nested mini-batch K-means performs the same with

respect to the K-means-based algorithms discussed above on

the third dataset, as seen in Figure 1J. On the other hand, in

the case of the D1 and D2 datasets, the values obtained from

the DBI metric follow a more chaotic pattern as K increases.

Similar to the trend observed for the previously mentioned

algorithms, Silhouette and CH decreases with the increase

of K. The training time grows linearly with such a hyper-

parameter, with a more significant angular coefficient even in

the case of the first dataset.

• According to the results provided in Figure 1K, the SSC-OMP

algorithm yields in Silhouette values lower than zero for all

evaluated datasets, expect for K = 2 and K = 3 when the

first dataset is used. The CH increases (decreases) with K for

D2(D1/D3). On the other hand, DBI assumes low values for

both D1 and D2, regardless of K. On the contrary, it results

in an unstable trend for D3, reaching very high values (e.g.,

∼ 4× 103 for K = 17). Finally, the computational overhead is

significant, especially in the case of D2, where for eachK value,

a training time greater than 4× 104 s is observed.

• With regard to Figure 1L, the EnSC did not provide results

on D2 using our data pre-processing strategy and hardware

setup. Furthermore, the algorithm did not result in satisfactory

performance. Specifically: (i) the Silhouette obtained is clipped

in the range [−0.15, 0]; (ii) the CH follows a jagged trend that

continuously oscillates between high and low values; and (iii)

the DBI score is stable to low values for the first dataset and

reaches an undesirable spike in the case of D3 for K = 11.

• The performance achieved by the FINCH algorithm is shown

in Figure 1M. Note that K = 0 indicates that the algorithm

was run without specifying the number of clusters to search

for. The training time appears reasonable, even for large data

(which appears to decrease linearly with increasing K when

there are many samples). The CH decreases with the increase

of K, regardless of the dataset considered. The DBI is almost

stable for each K-value for the D1 and D2 datasets, while

it assumes a skewed trend for D3. Regarding the Silhouette

score, it is lower than zero (expect for K = 2) in the case of

D3; on the contrary, it fluctuates around 0.1 and 0.2 for D1

and D2, respectively.

• The metric scores achieved by the SCC algorithm with respect

to the variation of τ are displayed in Figure 1N. It shows a

main finding, that is, the metrics are not affected by changes in

τ , regardless of the dataset considered. In fact, except for the

growth (descent) of Silhouette and Calinski (Davies) observed

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

for τ < 15 in the case of D1 and D2, subsequent trends are

almost stable. However, although SCC is advantageous from

the point of view of training time, it appears to be ineffective

from the rest of the scores.

• Figure 1O depicts the performance analysis for the DenMune

algorithm. For D1 and D2, both Silhouette and CH scores

are bounded in the ranges [0, 0.2] and [−0.35, 0], respectively;
therefore, it results in unattractive performance for the first

two datasets. Furthermore, in the D2 case, the DBI was

logged merely for Knn ∈ [20, 45] without causing a memory

segmentation error, because the calculation of this index is

very expansive. Promising results are obtained for D3 when

Knn > 75. A key result is related to the trend in training time,

which increases linearly with Knn and appears lower for D3

than the other datasets.

Table 6 summarizes the configuration and metric score

achieved by the top-performing algorithms. Recall that selection

is done by considering the hyper-parameter that most frequently

leads to the optimum value of the metrics evaluated. For example,

the K-means algorithm for D3 reaches the maximum Silhouette for

K = 2 and the minimum training time for K = 4. However, for

K = 20, the maximum CH and the minimum DBI were found (see

Figure 1A); therefore, the best configuration is K = 20. Note that

in case there are several hyper-parameters with an equal selection

frequency, the one that results in the highest value of Silhouette

is chosen. We consider the latter metric to be the most relevant

among the evaluated ones, as it incorporates both separation and

cohesion to evaluate the performance of unsupervised learning

algorithms (Palacio-Niño and Berzal, 2019). Furthermore, Figure 2

illustrates the performance of the clustering approaches per dataset

using conditional coloring, so that the orange bars represent scores

better than the average result achieved for the measure considered.

It is possible to observe that in some cases, the frequency of

algorithms showing better-than-average performance is influenced

by edge cases (spikes or troughs). For example, in the case of D3,

only one algorithm results in a CH value higher than the average,

namely HDBSCAN. This denotes the performance dominance of

this algorithm, a particular dataset (also orange bars for Silhouette

and DBI), except for the training time. In addition, such a graphical

representation is very useful for performing robustness analysis of

the algorithms, i.e., to evaluate the capability of the algorithms to

continue to produce good performance despite input data changes.

In this regard, K-means (and derivatives) and fuzzy c-means are on

average robust in about 92% of cases.

5.2 Cluster density analysis

Cluster density analysis is performed on the algorithms listed in

Table 6 using parallel coordinate plots. This type of graph comprises

vertical lines. In our case, it is designed such that (i) the first

line defines the top hyper-parameter setting; (ii) the second line

includes the cluster indexes associated with the previous setting;

and (iii) the third line shows the number of samples for each

cluster index, i.e., the density ρ. This representation was selected

for two main reasons: (i) each vertical line can represent a different

physical measure; and (ii) parallel coordinate plots can effectively

handlemultidimensional measures. The complete analysis is shown

in Figure 3 that includes 15 parallel coordinate plots (one for each

algorithm). For visualization purposes to make the magnitudes

of each measure comparable, we use a min-max normalization

strategy so that each measure score is scaled in [0,1].

We use the notation ρindex to indicate the number of samples

corresponding to the index − th cluster, with index ∈ {0,Tcf − 1},
where Tcf represents the total cluster found (Tcf = K, whenK is the

hyper-parameter involved, except for OPTICS). The main insights

of this analysis can be summarized as follows:

• Figure 3A illustrates the ρ distribution for the evaluated

datasets according to the top configuration of the K-means

algorithm. Specifically, in the case of D1, the algorithm

generates two clusters with ρ0 = 95,471 and ρ1 = 70,003,

respectively. On the other hand, for D2, two significant

density peaks were found in the seven clusters found, that

is, ρ0 = 35,3146 and ρ2 = 134,113, while all the remaining

clusters contained fewer objects. Finally, the distribution of the

samples for the 20 clusters generated in the case of the third

dataset is balanced, in fact, ρ ∈ [5,410, 7,780].
• The fuzzy c-means examination is presented in Figure 3B.

Regarding D1, the results are very similar to those obtained for

the K-means algorithm, in fact, ρ0 = 77,544 and ρ1 = 87,930.

Similarly, in the case of D2, despite a lower K, the two inferred

clusters have a distribution of samples very similar to the two

notable among the seven found for K-means. Specifically, in

this case, ρ0 = 353,291 and ρ1 = 134,155. Finally, despite the

green patterns in Figures 3A, B appearing similar, in this case,

the distribution range is more unbalanced than the previous,

as ρ ∈ [1,834, 12,560].
• As seen in Figure 3C, the GMM top configuration is achieved

for two Gaussian components in the cases of D1 and D3. For

the first dataset, the distribution of samples in the inferred

clusters is similar to that obtained for the fuzzy c-means

algorithm; in fact, ρ0 = 90,934 and ρ1 = 74,540. The two

clusters created for D3 are unbalanced because one contains

∼ 18% of the total number of samples. To be specific, ρ0 =
24,088 and ρ1 = 108,036. For the second dataset, optimal

performance is achieved for K = 4, where ρ0 = 134,154,

ρ1 = 260, ρ2 = 1, and ρ3 = 353,031.

• As reported in Figure 3D, the DBSCAN algorithm identifies

two clusters for ε = 3.2 in the case of D1, with ρ0 = 55

and ρ1 = 165,419, respectively. Meanwhile, Tcf = 61 for

D2, of which four are characterized by a significant number

of samples, i.e., ρ9 = 191,835, ρ32 = 113,033, ρ34 = 66,640,

and ρ10 = 62,971.

• According to the results provided in Figure 3E, the

inconsistent distribution of the samples can be observed

for the two groups inferred for D1 and D2 by the BIRCH

algorithm. In particular, two clusters consisting of only one

sample and two samples were produced for these datasets.

With regard to D3, the distribution of samples is slightly more

unbalanced than that obtained using the algorithms that yield

the two clusters examined so far, i.e., ρ0 = 77,699 and ρ1 =
54,425.

• The distribution of samples per cluster resulting from the

application of the OPTICS algorithm is represented in

Figure 3F. A complete triangular pattern was observed for D1

Frontiers in BigData 16 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

TABLE 6 Clustering metric scores achieved by optimally configured algorithms.

Algorithm Dataset Hyper-
parameter

Value Silhouette CH DBI Training
time (s)

K-means D1 K 2 1.60× 10−1 3.10× 104 2.24 3.14

D2 7 3.40× 10−1 8.36× 104 9.53× 10−1 5.54

D3 20 5.70× 10−1 2.85× 106 4.80× 10−1 19.11

Fuzzy c-means D1 K 2 1.54× 10−1 3.09× 104 2.25 2.84

D2 2 3.36× 10−1 6.36× 104 1.21 32.54

D3 20 5.25× 10−1 1.67× 106 4.66× 10−1 31.17

GMM D1 K 2 1.29× 10−1 2.36× 104 2.58 3.72

D2 4 3.45× 10−1 6.45× 104 1.41 35.15

D3 2 −5.76× 10−4 4.39 1.15× 102 2.14× 102

DBSCAN D1 ε 3.2 6.04× 10−1 5.78× 102 5.93× 10−1 1.12× 103

D2 1.6 1.58× 10−1 4.12× 103 2.37 91.67

D3 None None None None None

BIRCH D1 K 2 5.97× 10−1 21.60 37.59 2.27× 102

D2 2 9.96× 10−1 5.38× 104 2.69× 10−3 2.81× 103

D3 2 6.13× 10−1 3.61× 105 4.98× 10−1 7.35× 103

OPTICS D1 K 2 −2.62× 10−1 15.02 19.14 1.12× 103

D2 9 3.60× 10−1 3.80× 104 2.21 2.22× 104

D3 2 3.58× 10−1 1.12× 105 4.50 9.44× 102

Mini-Batch D1 K 2 1.56× 10−1 3.10× 104 2.25 7.70× 10−1

K-means D2 2 3.36× 10−1 6.36× 104 1.20 1.59

D3 2 6.26× 10−1 3.95× 105 5.00× 10−1 3.06

Scalable D1 K 16 1.53× 10−1 1.34× 104 1.80 38.61

K-means++ D2 2 3.36× 10−1 6.36× 104 1.20 3.55

D3 2 6.26× 10−1 3.95× 105 5.00× 10−1 18.02

HDBSCAN D1 mclustersize 12 3.08× 10−2 3.53× 102 1.82 86.43

D2 25 −3.76× 10−3 1.41× 103 1.73 2.45× 104

D3 5 9.98× 10−1 9.93× 1011 1.71× 10−3 2.00× 104

Nested D1 K 2 1.68× 10−1 3.03× 104 2.20 11.37

mini-batch D2 2 3.36× 10−1 6.36× 104 1.21 22.32

K-means D3 2 6.26× 10−1 3.95× 105 5.00× 10−1 24.42

SSC-OMP D1 K 3 2.96× 10−2 4.20× 102 6.34 1.38× 103

D2 2 −2.92× 10−2 9.79× 10−1 1.03 4.26× 104

D3 2 −2.92× 10−4 3.13× 102 17.39 2.89× 104

EnSC D1 K 2 1.29× 10−2 1.98× 103 2.63 2.14× 104

D2 None None None None None

D3 2 −1.07× 10−2 2.19 31.26 1.49× 104

FINCH D1 K 7 1.24× 10−1 1.61× 104 1.44 61.36

D2 10 2.78× 10−1 1.68× 104 1.44 64.65

D3 2 3.66× 10−3 1.04× 103 9.28 54.37

SCC D1 τ 70 −7.41× 10−2 1.28× 103 1.69 2.23

D2 80 9.94× 10−2 2.34× 103 1.87 5.81

D3 5 3.99× 10−2 3.39× 103 5.21 1.36

(Continued)

Frontiers in BigData 17 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

TABLE 6 (Continued)

Algorithm Dataset Hyper-
parameter

Value Silhouette CH DBI Training
time (s)

DenMune D1 Knn 15 1.82× 10−2 2.03× 102 1.28 5.63× 102

D2 5 1.13× 10−1 19.09 None 1.45× 103

D3 95 9.98× 10−1 4.23× 106 4.53 7.72× 102

FIGURE 2

Top-performer algorithms achieving a score greater (in the cases of Silhouette and CH) or lower (in the cases of DBI and training time) than average.

because 1923 clusters were generated. Among these, the first

group includes 69512 samples, while the rest verifies ρ ≤ 145.

On the other hand, five and eight clusters were obtained for

D2 and D3, respectively. Once again, two main groups were

found for the second (third) dataset with ρ1 = 313,927 (ρ4 =
58,175) and ρ4 = 134,113 (ρ0 = 34,597).

• The cluster density examination for Mini-Batch K-means is

represented in Figure 3G. This confirms the results obtained

for D1 using the K-means-based algorithms discussed above.

In particular, ρ0 = 90, 096 and ρ1 = 75,378 were found.

For D2, the result obtained perfectly overlaps that obtained

using fuzzy c-means. On the other hand, this algorithm

configuration splits D3 into two well-balanced groups, i.e.,

ρ0 = 65,717 and ρ1 = 66,407.

• Figure 3H shows the evaluation of scalable K-means++.

For the second dataset, this algorithm achieves the same

result as the fuzzy c-means; therefore, ρ0 = 353,291 and

ρ1 =134,155. Similarly, the same trend was observed for the

third dataset. The main difference from the above-discussed

K-means-based algorithms is the outcome obtained for D1.

In this case, 16 groups were identified, so ρ6 = 2,692

(ρ7 = 19,313) is the smallest (highest) number of samples in

a cluster.

• The cluster density analysis of the HDBSCAN algorithm

reported in Figure 3I points out the following main findings

per dataset: (i) Tcf =1,164 clusters were identified for D1,

with a dominant distribution for the first group, i.e., ρ0 =
28,610, while ρindex < 859 for index = 1, ...,Tcf − 1;

(ii) in the case of the second dataset, Tcf = 400 and

among these, the 1.75%(13.5%) groups contains more than

104(103) samples, i.e., most groups are composed of few

samples; (iii) Tcf = 70 in correspondence of D3, with

a well-balanced sample distribution for each cluster, as

ρ ∈ [1,746, 2,000].
• The nested mini-batch K-means cluster density

analysis shown in Figure 3J provides the same results

obtained for the mini-batch algorithm variant for the

D2 and D3 datasets. In contrast, two clusters were

generated from D1, with ρ0 = 108,149 and ρ1 =
57,325, respectively.

• Figure 3K depicts the SSC-OMP distribution of samples

within the identified groups. The two clusters found for

D2, consisting of ρ0 = 487,443 and ρ1 = 3 samples.

Instead, in the case of the third dataset, the distribution

obtained is ρ1 = 53,838 and ρ0 = 78,286, which is

slightly unbalanced compared with the others identified by the

algorithms discussed above when searching for two clusters for

the same dataset. As a final point, the first dataset is divided

into three clusters, one of which is prominent with ρ0 =
161,803.

• The results obtained for the EnSC algorithm (see Figure 3L)

denote an unequal distribution of samples for both the D1 and

Frontiers in BigData 18 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

A B C

D E F

G H I

J K L

M N O

FIGURE 3

Cluster density analysis per algorithm. (A) K-means. (B) Fuzzy c-means. (C) GMM. (D) DBSCAN. (E) BIRCH. (F) OPTICS. (G) Mini-Batch K-means. (H)

Scalable K-means++. (I) HDBSCAN. (J) Nested mini-batch K-means. (K) SSC-OMP. (L) EnSC. (M) FINCH. (N) SCC. (O) DenMune.

Frontiers in BigData 19 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

D3 datasets in the two predicted clusters. In particular, ρ0 =
160,629 (131,390) and ρ1 = 4,845 (734) for D1 (D3).

• According to the results provided in Figure 3M, D1 samples

are distributed among seven clusters with ρ ∈ [11,926,

37,532]. The distribution of D3 samples is divided into two

groups consisting of ρ0 = 84,233 and ρ1 = 47, 891 samples.

As a final consideration, the second dataset is divided into

Tcf = 10 clusters, where the predominant one contains ρ3 =
134,155 clusters.

• Figure 3N shows the distribution of samples within the

groups inferred by the SCC algorithm. Consequently, the D1

dataset is divided into 138 groups, and these two groups are

predominant, namely ρ5 = 39,168 and ρ20 = 17,192. The

number of clusters produced doubled in the case of the second

dataset. Specifically, 40 groups havemore than 3×103 samples

and of these two are dominant, since they contain ρ5 = 39,168

and 17,192 samples, respectively. Finally, in the case of D3,

the samples are divided into two groups, comprising 57.8 and

42.2% of the total, separately.

• As seen in Figure 3O, the results obtained by the DenMune

algorithm for such an analysis reveal that Tcf = 5,103 (49,884)

for D1 (D2). In both cases, the distribution of samples per

cluster is unequal, since: (i) ρ0 = 16,127 and ρindex < 847 with

1 < index < Tcf − 1 for D1; and (ii) ρ0 = 53,038, ρ1 = 10,993

and ρindex < 282 with 2 < index < Tcf − 1 for D2. For the

third dataset, the cluster density examination is similar to that

of HDBSCAN. In fact, Tcf = 71 with a well-balanced sample

distribution for each group, as ρ ∈ [1,759, 2,000], and only one
cluster with 62 samples.

6 Discussion

The main findings of our comprehensive study can be listed as

follows:

• Two algorithms, namely BIRCH and DBSCAN, provided very

promising results when using D1. In particular, the DBSCAN

configuration we found in our work, combined with our pre-

processing strategy, outperforms its counterpart in the study

by Datta et al. (2021). The K-means-based algorithms, GMM,

BIRCH, and FINCH, have shown promising performance

on the D2 dataset. Given the volume of data, the clustering

algorithms provided satisfactory outcomes for a set of real

behaviors that were subsequently hijacked. As far as this

dataset is concerned, the cluster density analysis showed

in most cases the presence of two dominant clusters, even

for a larger number of identified groups. The 50% of the

algorithms evaluated yielded encouraging results for the third

dataset. Among these, very positive results are obtained from

HDBSCAN and DenMune, which divide the dataset into 70

groups, each of which contains a number of samples very

close to the number of users in the dataset (see Table 4). As a

consequence, combining the pre-processing strategy proposed

in the study by Le et al. (2020) with clustering algorithms

(e.g., one can set K = 70) can be a valuable approach to

develop an effective UEBA engine using the CERT dataset,

which, however, remains an artificial dataset.

• It was possible to realize that there is no direct relationship

between the effectiveness highlighted by the metric scores and

the number of samples per cluster inferred. We can assume

that the metrics scores undergo considerable differences

depending on which (not how many) samples are part of

the identified groups. To support this thesis, we represented

in a bidimensional space, obtained through the PCA, the

distribution of samples in the clusters identified by some

cases of interest. Specifically, we considered the two best-

performing algorithms for D1, i.e., BIRCH and DBSCAN.

Although their performance is comparable, the clusters differ

in terms of the obtained densities and sample placement, as

shown in Figures 4A, B. In addition, in the case of D2, we

considered BIRCH (high-quality performance) and SSC-OMP

(poor performance), both resulting in two groups, one of

which is extremely dense and the other consists of a single

sample. Figures 4C, D reveal that the different arrangement

of a single sample can lead to a considerable change in the

Silhouette score (see Table 6), which uses distances as the basis

for scoring. As further evidence, in the case of the third dataset,

a balanced distribution of samples within two inferred clusters

leads to an overall benefit of metrics scores. This discovery

is shown in Figures 4E, F, which compares the positioning

of the samples in the two clusters found by the GMM

(poor performance) and the Mini-batch K-means (positive

performance achieved by each K-means-based algorithm with

K = 2). In the absence of such a relationship, in some cases,

such as BIRCH for D1 and D2, it would not be reliable to use

clustering algorithms as anomaly detection systems based on

cluster density analysis, as in the study by Parwez et al. (2017).

For such purposes, an external evaluation methodology would

be more appropriate, net of ground-truth knowledge (Palacio-

Niño and Berzal, 2019).

7 Clustering algorithms feasibility for
User and Entity Behavior Analytics

Clustering algorithms can be applied within UEBA systems

to group similar behaviors or entities together based on various

features or attributes. However, our investigation shows that the

reliability of clustering algorithms in UEBA depends on several

factors:

• Data volume: UEBA systems deal with large amounts of data

from various sources, such as network logs, user activity, and

application logs. The challenge lies in effectively processing

and analyzing these data in real-time. Clustering algorithms

must be scalable and efficient to handle the large volume

and complexity of data generated by modern IT systems.

To the best of our knowledge, our study is the first to

consider this factor in such an investigation. Among the

scalable algorithms evaluated, the variants of the K-means

algorithm and BIRCH result in an acceptable trade-off

between performance and capability in handling large data

with a low execution time. In contrast, there is no evidence

of satisfactory performance from emerging scalable subspace-

type algorithms. Furthermore, according to the hardware

Frontiers in BigData 20 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

FIGURE 4

Analysis of points placement within the clusters inferred by some algorithms in a bi-dimensional space. (A) BIRCH (D1). (B) DBSCAN (D1). (C)

SSC-OMP (D2). (D) BIRCH (D2). (E) GMM (D3). (F) Mini-Batch K-means (D3).

architecture and software configurations used, we observed

that not all clustering approaches could handle large amounts

of data, and this was verified for both popular (DBSCAN on

D3) and emerging (EnSC on D2) algorithms.

• Feature engineering and selection: The choice of data pre-

processing strategy used to represent user or entity behavior is

crucial. Identifying relevant features that characterize normal

and abnormal behavior can be challenging, especially in

dynamic environments where behaviors evolve over time,

amplifying the concept drift effect of the data. Effective feature

selection can improve the performance of some clustering

algorithms by capturing relevant patterns in the data. In

this regard, a slight difference in the pre-processing strategy

adopted by us and Datta et al. (2021) in D1 results in an

evident deviation of the algorithm performance. Although our

approach left the total variance of the data unchanged, the

most classical clustering algorithm, namely K-means, benefits

more from the pre-processing proposed by the study by

Datta et al. (2021). In this case, it might be preferable to

use dummy variables to encode categorical variables. On the

contrary, DBSCAN gains from our data elaboration method.

Meanwhile, the feature engineering method proposed by Le

et al. (2020) for D3 makes the data very suitable for the

HDBSCAN and DenMune algorithms, so they can achieve

very promising performance, although this benefit is not

observed for all approaches. As a final point of discussion,

in the case of the second dataset, some relevant variables

can most likely be identified by experts in the cloud

communications domain.

• Domain-specific considerations: The effectiveness of

clustering algorithms in UEBA also depends on the specific

domain and context in which they are applied. Different use

cases, emulated in this study using three different datasets,

require tailored approaches to user and entity behavior

analysis. For example, the effectiveness of the HDBSCAN and

DenMune is valid only for the domain modeled by the D3

datasets, whereas they do not seem suitable for operation in

real use cases, such as D2.

• Explainability: From a cybersecurity perspective, it is essential

to interpret and explain the reasoning behind the results of

ML algorithms to facilitate effective detection and response

to threats. The user abnormal behavior detection strategy

used in the study by Parwez et al. (2017) appears to be

not suitable for the UEBA use cases considered in our

investigation, as shown by cluster density analysis, because

each algorithm produces different results. Interpreting a

sparse cluster as anomalous cannot be considered true as

a general rule. In addition, as shown in our study, the

variation in performance is sensitive to the adjustments in the

hyper-parameters of the algorithm. Furthermore, by varying

the algorithmic setting, the implemented anomaly detection

strategy also changes; therefore, it is not straightforward

to infer that clustering algorithms can actually operate as

real-time detection tools, as stated in the study by Datta

et al. (2021). The explainability can benefit from combining

several analyses, as was done in our article that showed

how the HDBSCAN and DenMune algorithms were able to

segment the dataset into user behaviors so that each group

consists of statistical units close to the number of users

in the dataset.

The comprehensive analysis proposed in our study highlighted

the existence of a gap between the validation of clustering

algorithms in proof-of-concept experiments and their deployment

Frontiers in BigData 21 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

as UEBA engines. The critical outcomes provided by our

investigation indicate that to allow clustering algorithms to

actually be employed in real use cases, further investigation is

required to highlight the strengths and critical aspects of these

methodologies.

8 Conclusion and future work

The challenge of UEBA is gaining attention in the cybersecurity

scientific community, as cyber threats often stem from human

actions. With the rapid advancement of ML, systems capable of

detecting insider threats from user behavior datasets have emerged.

However, it is crucial to thoroughly examine the reliability of

these techniques before applying them in the cybersecurity field.

This study extensively evaluated the performance of a specific

type of approach within the unsupervised learning paradigm, i.e.,

clustering algorithms. For this purpose, we used three datasets

from the existing literature. Our study encompassed 15 clustering

algorithms, ranging from the most traditional to the most recent.

The experimental phase involved analyzing the trends of tailored

metrics as the value of a characteristic hyper-parameter of the

evaluated algorithm varied. In addition, we examined the density

of the samples within the inferred clusters. A key finding was

the partitioning of the CERT dataset achieved by HBDSCAN

and DenMune. The resulting groups had a density very similar

to the number of users in the data. While clustering algorithms

provide the great advantage of grouping unlabeled data, making

them suitable for discovering anomalous not-known-in-advance

user and entity behaviors, validating these methodologies in

proof-of-concept experiments can lead to approaches that hardly

generalize to complex scenarios without rigorously considering

factors such as feature engineering, domain constraints and

specifications, the size of data involved, and the interpretability of

the results obtained. In the context of future research endeavors,

a significant avenue to explore involves conducting an ablation

study on top-performing models, with a particular emphasis

on the second dataset. In particular, its composition includes

real-world user behavior collected from various anonymized

users of a cloud sharing platform, which can be seamlessly

blended to replicate scenarios of account hijacking, presenting a

novel opportunity to tailor clustering algorithms specifically for

anomaly detection applications. Furthermore, online clustering

algorithms, which can update clusters in real-time or periodically

re-cluster the data, will be valued for UEBA applications, because

it is essential to satisfy the requirement of adaptability to

dynamic environments.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found here: D1-link: https://doi.org/10.24432/

C5QK7X, name: clickstream data for online shopping, an (DOI):

10.24432/C5QK7X; D2-link: https://zenodo.org/records/7119953,

name: Cloud-based User Entity Behavior Analytics Log Data Set, an

(DOI): 10.5281/zenodo.7119953; D3-link: https://insights.sei.cmu.

edu/library/insider-threat-test-dataset/, name: Insider Threat Test

Dataset, an (DOI): 10.1184/R1/12841247.v1.

Author contributions

PA: Conceptualization, Data curation, Resources, Software,

Supervision, Validation, Visualization, Writing—review &

editing. AMac: Conceptualization, Formal analysis, Investigation,

Methodology, Validation, Visualization, Writing—original draft,

Writing—review & editing. AMag: Data curation, Methodology,

Software, Visualization, Writing—review & editing.

Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

study was supported in part by the Fondo Europeo di Sviluppo

Regionale Puglia Programma Operativo Regionale (POR) Puglia

2014-2020-Axis I-Specific Objective 1a-Action 1.1 (Research and

Development)-Project Title: CyberSecurity and Security Operation

Center (SOC) Product Suite by BV TECH S.p.A., under Grant

CUP/CIG B93G18000040007.

Conflict of interest

PA, AMac, and AMag were employed by BV TECH S.p.A.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abbas, M., El-Zoghabi, A., and Shoukry, A. (2021). Denmune: density peak-
based clustering using mutual nearest neighbors. Pattern Recognit. 109:107589.
doi: 10.1016/j.patcog.2020.107589

Abbas, M. A., El-Zoghabi, A., and Shoukry, A. (2023). pymune: a
python package for complex clusters detection. Softw. Impacts 17:100564.
doi: 10.1016/j.simpa.2023.100564

Ahmad, A., and Khan, S. S. (2019). Survey of state-of-the-art mixed data
clustering algorithms. IEEE Access 7, 31883–31902. doi: 10.1109/ACCESS.2019.29
03568

Alkhudaydi, O. A., Krichen, M., and Alghamdi, A. D. (2023). A deep learning
methodology for predicting cybersecurity attacks on the internet of things. Information
14:550. doi: 10.3390/info14100550

Frontiers in BigData 22 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://doi.org/10.24432/C5QK7X
https://doi.org/10.24432/C5QK7X
https://doi.org/10.24432/C5QK7X
https://zenodo.org/records/7119953
https://doi.org/10.5281/zenodo.7119953
https://insights.sei.cmu.edu/library/insider-threat-test-dataset/
https://insights.sei.cmu.edu/library/insider-threat-test-dataset/
https://doi.org/10.1184/R1/12841247.v1
https://doi.org/10.1016/j.patcog.2020.107589
https://doi.org/10.1016/j.simpa.2023.100564
https://doi.org/10.1109/ACCESS.2019.2903568
https://doi.org/10.3390/info14100550
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

Al-Mhiqani, M. N., Ahmad, R., Zainal Abidin, Z., Yassin, W., Hassan, A.,
Abdulkareem, K. H., et al. (2020). A review of insider threat detection: classification,
machine learning techniques, datasets, open challenges, and recommendations. Appl.
Sci. 10:5208. doi: 10.3390/app10155208

Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J. (1999). “Optics: ordering
points to identify the clustering structure,” in Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’99 (New York, NY:
Association for Computing Machinery), 49–60.

Anumol, E. T. (2015). “Use of machine learning algorithms with siem for attack
prediction,” in Intelligent Computing, Communication and Devices, eds. L. C. Jain, S.,
Patnaik, and N. Ichalkaranje (New Delhi: Springer), 231–235.

Ariyaluran Habeeb, R. A., Nasaruddin, F., Gani, A., Amanullah, M. A., Abaker
Targio Hashem, I., Ahmed, E., et al. (2019). Clustering-based real-time anomaly
detection—a breakthrough in big data technologies. Transact. Emerg. Telecommun.
Technol. 33:e3647. doi: 10.1002/ett.3647

Arthur, D., and Vassilvitskii, S. (2007). “K-means++: the advantages of careful
seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (New Orleans, LO: Society for Industrial and Applied Mathematics),
1027–1035.

Astakhova, L., and Muravyov, N. (2019). “A data collection and analysis system for
managing the vulnerabilities of users of an information system in a small business,”
in 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information
Technology (USBEREIT) (Yekaterinburg: IEEE), 193–196.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R., andVassilvitskii, S. (2012). Scalable
k-means++. Proc. VLDB Endow. 5, 622–633. doi: 10.14778/2180912.2180915

Ban, T., Takahashi, T., Ndichu, S., and Inoue, D. (2023). Breaking alert fatigue:
AI-assisted siem framework for effective incident response. Appl. Sci. 13:6610.
doi: 10.3390/app13116610

Banerjee, A., and Dave, R. (2004). “Validating clusters using the hopkins statistic,”
in 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542),
Vol. 1 (Budapest: IEEE), 149–153.

Benabdellah, A. C., Benghabrit, A., and Bouhaddou, I. (2019). A survey of
clustering algorithms for an industrial context. Proc. Comp. Sci. 148, 291–302.
doi: 10.1016/j.procs.2019.01.022

Bengfort, B., and Bilbro, R. (2019). Yellowbrick: visualizing the Scikit-learn model
selection process. J. Open Source Softw. 4:1075. doi: 10.21105/joss.01075

Bezdek, J. C., Ehrlich, R., and Full, W. (1984). Fcm: the fuzzy c-means clustering
algorithm. Comput. Geosci. 10, 191–203. doi: 10.1016/0098-3004(84)90020-7

Bin Sarhan, B., and Altwaijry, N. (2023). Insider threat detection using machine
learning approach. Appl. Sci. 13:259. doi: 10.3390/app13010259

Botello, J. V., Mesa, A. P., Rodríguez, F. A., Díaz-López, D., Nespoli, P., andMármol,
F. G. (2020). Blocksiem: protecting smart city services through a blockchain-based and
distributed siem. Sensors 20:4636. doi: 10.3390/s20164636

Campello, R. J., Moulavi, D., and Sander, J. (2013). “Density-based clustering
based on hierarchical density estimates,” in Advances in Knowledge Discovery
and Data Mining: 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast,
Australia, April 14-17, 2013, Proceedings, Part II 17 (Berlin; Heidelberg: Springer),
160–172.

Carrera, F., Dentamaro, V., Galantucci, S., Iannacone, A., Impedovo, D., and Pirlo,
G. (2022). Combining unsupervised approaches for near real-time network traffic
anomaly detection. Appl. Sci. 12:1759. doi: 10.3390/app12031759

Castellano, G., Mesto, F., Minunno, M., and Torsello, M. A. (2007). “Web
user profiling using fuzzy clustering,” in Applications of Fuzzy Sets Theory (Berlin;
Heidelberg: Springer), 94–101.

Cinque, M., Cotroneo, D., and Pecchia, A. (2018). “Challenges and directions
in security information and event management (siem),” in 2018 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW) (Memphis, TN:
IEEE), 95–99.

Coscia, A., Dentamaro, V., Galantucci, S., Maci, A., and Pirlo, G. (2024). Automatic
decision tree-based nidps ruleset generation for dos/ddos attacks. J. Inf. Sec. Appl.
82:103736. doi: 10.1016/j.jisa.2024.103736

Cui, J., Zhang, G., Chen, Z., and Yu, N. (2022). Multi-homed abnormal behavior
detection algorithm based on fuzzy particle swarm cluster in user and entity behavior
analytics. Sci. Rep. 12:22349. doi: 10.1038/s41598-022-26142-w

Das, S., Mahfouz, A. M., Venugopal, D., and Shiva, S. (2019). “Ddos intrusion
detection through machine learning ensemble,” in 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security Companion (QRS-C) (Sofia:
IEEE), 471–477.

Datta, J., Dasgupta, R., Dasgupta, S., and Reddy, K. R. (2021). “Real-time threat
detection in ueba using unsupervised learning algorithms,” in 2021 5th International
Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech)
(Kolkata: IEEE), 1–6.

Dhillon, G., Smith, K., and Dissanayaka, I. (2021). Information systems security
research agenda: exploring the gap between research and practice. J. Strat. Inf. Syst.
30:101693. doi: 10.1016/j.jsis.2021.101693

Di Sarno, C., Garofalo, A., Matteucci, I., and Vallini, M. (2016). A novel
security information and event management system for enhancing cyber
security in a hydroelectric dam. Int. J. Crit. Infrastruct. Protect. 13, 39–51.
doi: 10.1016/j.ijcip.2016.03.002

Diwandari, S., and Zaky, U. (2021). “Analysis of customer purchase behavior using
association rules in e-shop,” in 2021 IEEE 5th International Conference on Information
Technology, Information Systems and Electrical Engineering (ICITISEE) (Purwokerto:
IEEE), 144–149.

Eke, C. I., Norman, A. A., Shuib, L., and Nweke, H. F. (2019). A survey of user
profiling: state-of-the-art, challenges, and solutions. IEEE Access 7, 144907–144924.
doi: 10.1109/ACCESS.2019.2944243

Elhamifar, E., and Vidal, R. (2009). “Sparse subspace clustering,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition (Miami, FL: IEEE), 2790–2797.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining (Portland,
OR: AAAI Press), 226–231.

Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke,
C. I., et al. (2022). A comprehensive survey of clustering algorithms: State-of-the-art
machine learning applications, taxonomy, challenges, and future research prospects.
Eng. Appl. Artif. Intell. 110:104743. doi: 10.1016/j.engappai.2022.104743

Fausto, A., Gaggero, G. B., Patrone, F., Girdinio, P., and Marchese, M. (2021).
Toward the integration of cyber and physical security monitoring systems for critical
infrastructures. Sensors 21. doi: 10.3390/s21216970

Feng, C., Wu, S., and Liu, N. (2017). “A user-centric machine learning framework
for cyber security operations center,” in 2017 IEEE International Conference on
Intelligence and Security Informatics (ISI) (Beijing: IEEE), 173–175.

Fysarakis, K., Lekidis, A., Mavroeidis, V., Lampropoulos, K., Lyberopoulos, G.,
Vidal, I. G.-M., et al. (2023). “Phoeni2x—a european cyber resilience framework with
artificial-intelligence-assisted orchestration, automation & response capabilities for
business continuity and recovery, incident response, and information exchange,” in
2023 IEEE International Conference on Cyber Security and Resilience (CSR) (Venice:
IEEE), 538–545.

Gao, M., Li, B., Wang, C., Ma, L., and Xu, J. (2019). User behavior clustering
scheme with automatic tagging over encrypted data. IEEE Access 7, 170648–170657.
doi: 10.1109/ACCESS.2019.2956019

Glasser, J., and Lindauer, B. (2013). “Bridging the gap: a pragmatic approach to
generating insider threat data,” in 2013 IEEE Security and Privacy Workshops (San
Francisco, CA: IEEE), 98–104.

Glasser, J., and Lindauer, B. (2016). Insider Threat Test Dataset. CERT and
ExactData, LLC. Available online at: https://insights.sei.cmu.edu/library/insider-
threat-test-dataset/ (accessed October 5, 2023).

González-Granadillo, G., González-Zarzosa, S., and Diaz, R. (2021). Security
information and event management (siem): analysis, trends, and usage in critical
infrastructures. Sensors 21. doi: 10.3390/s21144759

Hu, S., Xiao, Z., Rao, Q., and Liao, R. (2018). “An anomaly detection model of user
behavior based on similarity clustering,” in 2018 IEEE 4th Information Technology and
Mechatronics Engineering Conference (ITOEC) (Chongqing: IEEE), 835–838.

Hunter, J. D. (2007). Matplotlib: a 2d graphics environment. Comp. Sci. Eng. 9,
90–95. doi: 10.1109/MCSE.2007.55

Iglesias Perez, S., and Criado, R. (2023). Increasing the effectiveness of network
intrusion detection systems (nidss) by using multiplex networks and visibility graphs.
Mathematics 11. doi: 10.3390/math11010107

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., and Heming, J. (2023). K-
means clustering algorithms: a comprehensive review, variants analysis, and advances
in the era of big data. Inf. Sci. 622, 178–210. doi: 10.1016/j.ins.2022.11.139

Kamil, I. S., and Al-Mamory, S. O. (2023). Enhancement of optics?
time complexity by using fuzzy clusters. Mater. Today Proc. 80, 2625–2630.
doi: 10.1016/j.matpr.2021.06.441

Kan, X., Fan, Y., Zheng, J., Kudreyko, A., Chi, C.-,h., Song, W., et al.
(2023). User-level malicious behavior analysis model based on the nmf-
gmm algorithm and ensemble strategy. Nonlinear Dyn. 111, 21391–21408.
doi: 10.1007/s11071-023-08954-1

Kaur, J., Kaur, K., Kant, S., and Das, S. (2022). “Ueba with log analytics,” in 2022
3rd International Conference on Computing, Analytics and Networks (ICAN) (Rajpura:
IEEE), 1–7.

Khaliq, S., Abideen Tariq, Z. U., and Masood, A. (2020). “Role of user and entity
behavior analytics in detecting insider attacks,” in 2020 International Conference on
Cyber Warfare and Security (ICCWS) (Islamabad: IEEE), 1–6.

Kim, J., Park, M., Kim, H., Cho, S., and Kang, P. (2019). Insider threat detection
based on user behavior modeling and anomaly detection algorithms. Appl. Sci. 9.
doi: 10.3390/app9194018

Kuiper, E., Constantinides, E., de Vries, S. A., Marinescu-Muster, R. F., and
Metzner, F. (2019). “A framework of unsupervised machine learning algorithms for
user profiling,” in 48th Annual European Marketing Academy (EMAC) Conference
(Hamburg: European Marketing Academy, Belgium).

Frontiers in BigData 23 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://doi.org/10.3390/app10155208
https://doi.org/10.1002/ett.3647
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.3390/app13116610
https://doi.org/10.1016/j.procs.2019.01.022
https://doi.org/10.21105/joss.01075
https://doi.org/10.1016/0098-3004(84)90020-7
https://doi.org/10.3390/app13010259
https://doi.org/10.3390/s20164636
https://doi.org/10.3390/app12031759
https://doi.org/10.1016/j.jisa.2024.103736
https://doi.org/10.1038/s41598-022-26142-w
https://doi.org/10.1016/j.jsis.2021.101693
https://doi.org/10.1016/j.ijcip.2016.03.002
https://doi.org/10.1109/ACCESS.2019.2944243
https://doi.org/10.1016/j.engappai.2022.104743
https://doi.org/10.3390/s21216970
https://doi.org/10.1109/ACCESS.2019.2956019
https://insights.sei.cmu.edu/library/insider-threat-test-dataset/
https://insights.sei.cmu.edu/library/insider-threat-test-dataset/
https://doi.org/10.3390/s21144759
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3390/math11010107
https://doi.org/10.1016/j.ins.2022.11.139
https://doi.org/10.1016/j.matpr.2021.06.441
https://doi.org/10.1007/s11071-023-08954-1
https://doi.org/10.3390/app9194018
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

Landauer, M., Skopik, F., Höld, G., and Wurzenberger, M. (2022a). “A user and
entity behavior analytics log data set for anomaly detection in cloud computing,” in
2022 IEEE International Conference on Big Data (Big Data) (Osaka: IEEE), 4285–4294.

Landauer, M., Skopik, F., Höld, G., and Wurzenberger, M. (2022b). Cloud-based
User Entity Behavior Analytics Log Data Set. Zenodo. Available online at: https://
zenodo.org/records/7119953 (accessed October 16, 2023).

Landauer, M., Skopik, F., Wurzenberger, M., and Rauber, A. (2020). System log
clustering approaches for cyber security applications: a survey. Comp. Sec. 92:101739.
doi: 10.1016/j.cose.2020.101739

Łapczyński, M., and Białowa̧s, S. (2013). Discovering patterns of users’ behaviour in
an e-shop - comparison of consumer buying behaviours in poland and other european
countries. Studia Ekonomiczne 151, 144–153.

Łapczyński, M., and Białowa̧s, S. (2019). Clickstream Data for Online Shopping. UCI
Machine Learning Repository. Available online at: https://doi.org/10.24432/C5QK7X
(accessed April 18, 2023).

Lavanya, P., and Shankar Sriram, V. (2022). Detection of insider threats
using deep learning: a review. Comp. Intell. Data Mining 2021, 41–57.
doi: 10.1007/978-981-16-9447-9_4

Le, D. C., Zincir-Heywood, N., and Heywood, M. I. (2020). Analyzing data
granularity levels for insider threat detection using machine learning. IEEE Transact.
Netw. Serv. Manag. 17, 30–44. doi: 10.1109/TNSM.2020.2967721

Li, T., and Yan, L. (2017). “Siem based on big data analysis,” inCloud Computing and
Security, eds. X. Sun, H.-C. Chao, X. You, and E. Bertino (Cham: Springer International
Publishing), 167–175.

Lipor, J., Hong, D., Tan, Y. S., and Balzano, L. (2020). Subspace clustering using
ensembles of K-subspaces. Inf. Infer. 10, 73–107. doi: 10.1093/imaiai/iaaa031

Liu, S. (2022). User and entity behavior analytics method based on adaptive
mixed-attribute-data density peaks clustering. Int. J. Data Sci. Anal. 8, 163–168.
doi: 10.1155/2022/6742120

Lukashin, A., Popov, M., Bolshakov, A., and Nikolashin, Y. (2020). “Scalable data
processing approach and anomaly detection method for user and entity behavior
analytics platform,” in Intelligent Distributed Computing XIII, eds. I. Kotenko, C.
Badica, V. Desnitsky, D. El Baz, and M. Ivanovic (Cham: Springer International
Publishing), 344–349.

Maci, A., Santorsola, A., Coscia, A., and Iannacone, A. (2023). Unbalanced
web phishing classification through deep reinforcement learning. Computers 12:118.
doi: 10.3390/computers12060118

Maci, A., Tamma, N., and Coscia, A. (2024). “Deep reinforcement learning-
based malicious url detection with feature selection,” in 2024 IEEE 3rd International
Conference on AI in Cybersecurity (ICAIC) (Houston, TX: IEEE), 1–7.

MacQueen, J. (1967). “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the Fifth Berkeley Symposium onMathematical Statistics
and Probability, Vol. 1 (Los Angeles, CA), 281–297.

Madhur Arora, S. A., and Patel, R. (2023). User location prediction using hybrid
birch clustering and machine learning approach. J. Integr. Sci. Technol. 12:701.

Mahdi, M. A., Hosny, K. M., and Elhenawy, I. (2021). Scalable clustering algorithms
for big data: a review. IEEE Access 9, 80015–80027. doi: 10.1109/ACCESS.2021.3084057

Maher, D. (2017). Can artificial intelligence help in the war on cybercrime? Comp.
Fraud Sec. 2017, 7–9. doi: 10.1016/S1361-3723(17)30069-6

Martín, A. G., Beltrán, M., Fernández-Isabel, A., and Martín de Diego, I. (2021). An
approach to detect user behaviour anomalies within identity federations. Comp. Sec.
108:102356. doi: 10.1016/j.cose.2021.102356

Martín, G. A., Fernández-Isabel, A., Martín de Diego, I., and Beltrán, M. (2021).
A survey for user behavior analysis based on machine learning techniques: current
models and applications. Appl. Intell. 51, 6029–6055. doi: 10.1007/s10489-020-0
2160-x

Mayhew, M., Atighetchi, M., Adler, A., and Greenstadt, R. (2015). “Use of machine
learning in big data analytics for insider threat detection,” in MILCOM 2015 - 2015
IEEE Military Communications Conference (Tampa, FL: IEEE), 915–922.

McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: hierarchical density based
clustering. J. Open Source Softw. 2:205. doi: 10.21105/joss.00205

Mclachlan, G., and Basford, K. (1988). Mixture Models: Inference and Applications
to Clustering. Vol. 38. New York, NY: Marcel Dekker.

Meng, Q., Qian, H., Liu, Y., Cui, L., Xu, Y., and Shen, Z. (2023). Mhccl: Masked
hierarchical cluster-wise contrastive learning for multivariate time series. Proc. AAAI
Conf. Artif. Intell. 37, 9153–9161. doi: 10.1609/aaai.v37i8.26098

Mochurad, L., Sydor, A., and Ratinskiy, O. (2023). A fast parallelized dbscan
algorithm based on openmp for detection of criminals on streaming services. Front.
Big Data 6:1292923. doi: 10.3389/fdata.2023.1292923

Monath, N., Dubey, K. A., Guruganesh, G., Zaheer, M., Ahmed, A.,
McCallum, A., et al. (2021). “Scalable hierarchical agglomerative clustering,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, KDD ’21 (New York, NY: Association for Computing Machinery),
1245–1255.

Mughal, A. A. (2022). Building and securing the modern security operations center
(soc). Int. J. Bus. Intell. Big Data Anal. 5, 1–15.

Muhammad, A. R., Sukarno, P., and Wardana, A. A. (2023). Integrated security
information and event management (siem) with intrusion detection system (ids)
for live analysis based on machine learning. Proc. Comp. Sci. 217, 1406–1415.
doi: 10.1016/j.procs.2022.12.339

Najafi, P., Koehler, D., Cheng, F., and Meinel, C. (2021). “Nlp-based entity behavior
analytics for malware detection,” in 2021 IEEE International Performance, Computing,
and Communications Conference (IPCCC) (Austin, TX: IEEE), 1–5.

Newling, J., and Fleuret, F. (2016). “Nested mini-batch k-means,” in Advances in
Neural Information Processing Systems, Vol. 29, eds. D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett (Barcelona: Curran Associates, Inc.)

Nguyen, D. T., and Jung, J. E. (2017). Real-time event detection for online
behavioral analysis of big social data. Fut. Gen. Comp. Syst. 66, 137–145.
doi: 10.1016/j.future.2016.04.012

Novikov, A. (2019). Pyclustering: data mining library. J. Open Source Softw. 4:1230.
doi: 10.21105/joss.01230

Ramos-Carreño, C., Torrecilla, J. L., Carbajo-Berrocal, M., Marcos, P., and Suárez,
A. (2023). scikit-fda: a python package for functional data analysis. arXiv [preprint].
arXiv:2211.02566.

Palacio-Niño, J.-O., and Berzal, F. (2019). Evaluation metrics for unsupervised
learning algorithms. arXiv. [preprint]. arXiv:1905.05667.

Park, C., Lee, J., Kim, Y., Park, J.-G., Kim, H., and Hong, D. (2023). An enhanced ai-
based network intrusion detection system using generative adversarial networks. IEEE
Int. Things J. 10, 2330–2345. doi: 10.1109/JIOT.2022.3211346

Parwez, M. S., Rawat, D. B., and Garuba, M. (2017). Big data analytics for
user-activity analysis and user-anomaly detection in mobile wireless network. IEEE
Transact. Ind. Inf. 13, 2058–2065. doi: 10.1109/TII.2017.2650206

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Pichara, K., and Soto, A. (2011). Active learning and subspace clustering for
anomaly detection. Intell. Data Anal. 15, 151–171. doi: 10.3233/IDA-2010-0461

Piñón-Blanco, C., Otero-Vázquez, F., Ortega-Fernandez, I., and Sestelo, M. (2023).
“Detecting anomalies in industrial control systems with lstm neural networks and
ueba,” in 2023 JNIC Cybersecurity Conference (JNIC) (Vigo: IEEE), 1–8.

Podzins, O., and Romanovs, A. (2019). “Why siem is irreplaceable in a secure
it environment?,” in 2019 Open Conference of Electrical, Electronic and Information
Sciences (eStream) (Vilnius: IEEE), 1–5.

Potula, S. R., Selvanambi, R., Karuppiah, M., and Pelusi, D. (2023). “Artificial
intelligence-based cyber security applications,” in Artificial Intelligence and Cyber
Security in Industry 4.0 (Singapore: Springer), 343–373.

Radoglou-Grammatikis, P., Sarigiannidis, P., Iturbe, E., Rios, E., Martinez,
S., Sarigiannidis, A., et al. (2021). Spear siem: a security information and
event management system for the smart grid. Comp. Netw. 193:108008.
doi: 10.1016/j.comnet.2021.108008

Raschka, S., Patterson, J., and Nolet, C. (2020). Machine learning in python: main
developments and technology trends in data science, machine learning, and artificial
intelligence. Information 11. doi: 10.3390/info11040193

Rashid, F., and Miri, A. (2021). “User and event behavior analytics on differentially
private data for anomaly detection,” in 2021 7th IEEE Intl Conference on Big Data
Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security
(IDS) (New York, NY: IEEE), 81–86.

Rengarajan, R., and Babu, S. (2021). “Anomaly detection using user entity behavior
analytics and data visualization,” in 2021 8th International Conference on Computing
for Sustainable Global Development (INDIACom) (New Delhi: IEEE), 842–847.

Robinson, M., Jones, K., and Janicke, H. (2015). Cyber warfare: issues and
challenges. Comp. Sec. 49, 70–94. doi: 10.1016/j.cose.2014.11.007

Rosenberg, M., Schneider, B., Scherb, C., and Asprion, P. M. (2023). An
adaptable approach for successful siem adoption in companies. arXiv [preprint].
arXiv:2308.01065.

Salitin, M. A., and Zolait, A. H. (2018). “The role of user entity behavior analytics
to detect network attacks in real time,” in 2018 International Conference on Innovation
and Intelligence for Informatics, Computing, and Technologies (3ICT) (Sakhier: IEEE),
1–5.

Sarfraz, S., Sharma, V., and Stiefelhagen, R. (2019). “Efficient parameter-free
clustering using first neighbor relations,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Los Alamitos, CA: IEEE Computer Society),
8926–8935.

Sarker, I. H. (2021). Machine learning: algorithms, real-world applications and
research directions. SN Comp. Sci. 2:160. doi: 10.1007/s42979-021-00592-x

Savenkov, P. A., and Ivutin, A. N. (2020). “Methods of machine learning in system
abnormal behavior detection,” in Advances in Swarm Intelligence, eds. Y. Tan, Y. Shi,
and M. Tuba (Cham), 495–505.

Frontiers in BigData 24 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://zenodo.org/records/7119953
https://zenodo.org/records/7119953
https://doi.org/10.1016/j.cose.2020.101739
https://doi.org/10.24432/C5QK7X
https://doi.org/10.1007/978-981-16-9447-9_4
https://doi.org/10.1109/TNSM.2020.2967721
https://doi.org/10.1093/imaiai/iaaa031
https://doi.org/10.1155/2022/6742120
https://doi.org/10.3390/computers12060118
https://doi.org/10.1109/ACCESS.2021.3084057
https://doi.org/10.1016/S1361-3723(17)30069-6
https://doi.org/10.1016/j.cose.2021.102356
https://doi.org/10.1007/s10489-020-02160-x
https://doi.org/10.21105/joss.00205
https://doi.org/10.1609/aaai.v37i8.26098
https://doi.org/10.3389/fdata.2023.1292923
https://doi.org/10.1016/j.procs.2022.12.339
https://doi.org/10.1016/j.future.2016.04.012
https://doi.org/10.21105/joss.01230
https://doi.org/10.1109/JIOT.2022.3211346
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.3233/IDA-2010-0461
https://doi.org/10.1016/j.comnet.2021.108008
https://doi.org/10.3390/info11040193
https://doi.org/10.1016/j.cose.2014.11.007
https://doi.org/10.1007/s42979-021-00592-x
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Artioli et al. 10.3389/fdata.2024.1375818

Sculley, D. (2010). “Web-scale k-means clustering,” in Proceedings of the 19th
International Conference on World Wide Web, WWW ’10 (New York, NY: Association
for Computing Machinery), 1177–1178.

Sekharan, S. S., and Kandasamy, K. (2017). “Profiling siem tools and correlation
engines for security analytics,” in 2017 International Conference on Wireless
Communications, Signal Processing and Networking (WiSPNET) (Chennai: IEEE),
717–721.

Serpanos, D., and Komninos, T. (2022). The cyberwarfare in ukraine. Computer 55,
88–91. doi: 10.1109/MC.2022.3170644

Sharma, B., Pokharel, P., and Joshi, B. (2020). “User behavior analytics for anomaly
detection using lstm autoencoder - insider threat detection,” in Proceedings of the 11th
International Conference on Advances in Information Technology, IAIT2020 (NewYork,
NY: Association for Computing Machinery).

Shashanka, M., Shen, M.-Y., and Wang, J. (2016). “User and entity behavior
analytics for enterprise security,” in 2016 IEEE International Conference on Big Data
(Big Data) (Washington, DC: IEEE), 1867–1874.

Singh, A., Amutha, J., Nagar, J., Sharma, S., and Lee, C.-C. (2022).
Automl-id: automated machine learning model for intrusion detection
using wireless sensor network. Sci. Rep. 12:9074. doi: 10.1038/s41598-022-1
3061-z

Singh, M., Mehtre, B., and Sangeetha, S. (2019). “User behavior profiling using
ensemble approach for insider threat detection,” in 2019 IEEE 5th International
Conference on Identity, Security, and Behavior Analysis (ISBA) (Hyderabad: IEEE), 1–8.

Singh, M., Mehtre, B., and Sangeetha, S. (2022). User behavior based insider
threat detection using a multi fuzzy classifier. Multim. Tools Appl. 81, 22953–22983.
doi: 10.1007/s11042-022-12173-y

Tang, B., Hu, Q., and Lin, D. (2017). “Reducing false positives of user-to-entity first-
access alerts for user behavior analytics,” in 2017 IEEE International Conference on Data
Mining Workshops (ICDMW) (New Orleans, LA: IEEE), 804–811.

Vielberth, M., Böhm, F., Fichtinger, I., and Pernul, G. (2020). Security operations
center: A systematic study and open challenges. IEEE Access 8, 227756–227779.
doi: 10.1109/ACCESS.2020.3045514

Vikram, A., and Mohana (2020). “Anomaly detection in network traffic using
unsupervised machine learning approach,” in 2020 5th International Conference on
Communication and Electronics Systems (ICCES) (Coimbatore: IEEE), 476–479.

Wang, G., Zhang, X., Tang, S., Zheng, H., and Zhao, B. Y. (2016). “Unsupervised
clickstream clustering for user behavior analysis,” in Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems (San Jose, CA: Association for
Computing Machinery), 225–236.

Waskom, M. L. (2021). seaborn: statistical data visualization. J. Open Source Softw.
6:3021. doi: 10.21105/joss.03021

Xie, X., and Wang, B. (2018). Web page recommendation via twofold clustering:
considering user behavior and topic relation. Neur. Comp. Appl. 29, 235–243.
doi: 10.1007/s00521-016-2444-z

Yaochuang, W. (2023). “Research on application system of artificial intelligence
in informatics based on computer machine learning,” in 2023 IEEE International
Conference on Sensors, Electronics and Computer Engineering (ICSECE) (Jinzhou:
IEEE), 218–222.

You, C., Li, C., Robinson, D. P., and Vidal, R. (2016a). “Oracle based active set
algorithm for scalable elastic net subspace clustering,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV: IEEE), 3928–3937.

You, C., Robinson, D., and Vidal, R. (2016b). “Scalable sparse subspace
clustering by orthogonal matching pursuit,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV: IEEE),
3918–3927.

Yousef, R., and Jazzar, M. (2021). Measuring the effectiveness of user and entity
behavior analytics for the prevention of insider threats. J. Xi’an Univ. Arch. Technol.
XIII, 175–181. doi: 10.37896/JXAT13.10/313918

Zahid, H., Hina, S., Hayat, M. F., and Shah, G. A. (2023). Agentless approach
for security information and event management in industrial iot. Electronics 12.
doi: 10.3390/electronics12081831

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch: an efficient
data clustering method for very large databases. SIGMOD Rec. 25, 103–114.
doi: 10.1145/235968.233324

Zhang, Z., Ning, H., Shi, F., Farha, F., Xu, Y., Xu, J., et al. (2022). Artificial
intelligence in cyber security: research advances, challenges, and opportunities. Artif.
Intell. Rev. 55, 1–25. doi: 10.1007/s10462-021-09976-0

Zola, F., Segurola, L., Bruse, J. L., and Galar, M. (2021). Temporal
graph-based approach for behavioural entity classification. arXiv.
doi: 10.18239/jornadas_2021.34.12

Zunair Ahmed Khan, M., Mubashir Khan, M., and Arshad, J. (2022). “Anomaly
detection and enterprise security using user and entity behavior analytics (ueba),” in
2022 3rd International Conference on Innovations in Computer Science & Software
Engineering (ICONICS) (Karachi: IEEE), 1–9.

Frontiers in BigData 25 frontiersin.org

https://doi.org/10.3389/fdata.2024.1375818
https://doi.org/10.1109/MC.2022.3170644
https://doi.org/10.1038/s41598-022-13061-z
https://doi.org/10.1007/s11042-022-12173-y
https://doi.org/10.1109/ACCESS.2020.3045514
https://doi.org/10.21105/joss.03021
https://doi.org/10.1007/s00521-016-2444-z
https://doi.org/10.37896/JXAT13.10/313918
https://doi.org/10.3390/electronics12081831
https://doi.org/10.1145/235968.233324
https://doi.org/10.1007/s10462-021-09976-0
https://doi.org/10.18239/jornadas_2021.34.12
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	A comprehensive investigation of clustering algorithms for User and Entity Behavior Analytics
	1 Introduction
	2 Literature review
	2.1 Methodologies for User and Entity Behavior Analytics
	2.2 Clustering algorithms for User and Entity Behavior Analytics
	2.3 Motivation

	3 Clustering algorithms selected for this investigation
	3.1 Partitioning
	3.1.1 K-means
	3.1.2 Fuzzy c-means
	3.1.3 Gaussian mixture models
	3.1.4 DBSCAN
	3.1.5 OPTICS
	3.1.6 Mini-batch K-means
	3.1.7 Scalable K-means++
	3.1.8 Nested mini-batch K-means
	3.1.9 SSC-OMP
	3.1.10 EnSC
	3.1.11 DenMune

	3.2 Hierarchical
	3.2.1 BIRCH
	3.2.2 HDBSCAN
	3.2.3 FINCH
	3.2.4 SCC


	4 Experimental setup
	4.1 User and Entity Behavior Analytics Data
	4.1.1 Description
	4.1.2 Pre-processing strategies

	4.2 Metrics used
	4.3 Implementation details and hardware setting

	5 Results
	5.1 Performance comparison
	5.2 Cluster density analysis

	6 Discussion
	7 Clustering algorithms feasibility for User and Entity Behavior Analytics
	8 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


