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Introduction: In response to the increasing prevalence of electronic medical

records (EMRs) stored in databases, healthcare sta� are encountering di�culties

retrieving these records due to their limited technical expertise in database

operations. As these records are crucial for delivering appropriate medical care,

there is a need for an accessible method for healthcare sta� to access EMRs.

Methods: To address this, natural language processing (NLP) for Text-to-SQL has

emerged as a solution, enabling non-technical users to generate SQL queries

using natural language text. This research assesses existing work on Text-to-

SQL conversion and proposes the MedT5SQL model specifically designed for

EMR retrieval. The proposedmodel utilizes the Text-to-Text Transfer Transformer

(T5) model, a Large Language Model (LLM) commonly used in various text-

based NLP tasks. The model is fine-tuned on the MIMICSQL dataset, the first

Text-to-SQL dataset for the healthcare domain. Performance evaluation involves

benchmarking the MedT5SQL model on two optimizers, varying numbers of

training epochs, and using two datasets, MIMICSQL and WikiSQL.

Results: For MIMICSQL dataset, the model demonstrates considerable

e�ectiveness in generating question-SQL pairs achieving accuracy of 80.63%,

98.937%, and 90% for exact match accuracy matrix, approximate string-

matching, andmanual evaluation, respectively. When testing the performance of

the model on WikiSQL dataset, the model demonstrates e�ciency in generating

SQL queries, with an accuracy of 44.2% on WikiSQL and 94.26% for approximate

string-matching.

Discussion: Results indicate improved performance with increased training

epochs. This work highlights the potential of fine-tuned T5 model to convert

medical-related questions written in natural language to Structured Query

Language (SQL) in healthcare domain, providing a foundation for future research

in this area.
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1 Introduction

Large businesses, government departments, healthcare
providers, financial services and many others store their vast
amounts of data in large relational databases or [data centers. To
handle, manage and retrieve information from these databases, it is
required to know the necessary technical background which non-
technical people lack. For example, Structured Query Language
(SQL), a standardized programming language that performs a
variety of data operations to manage databases, provides special
communication with databases typically required for efficient data
management, including retrieval, deletion and updating records
(Groff et al., 2002). One prominent use of relational databases is in
today’s healthcare domain, where patients’ health information is
stored in databases as electronic medical records (EMRs), designed
to ensure that every patient receives the correct medical care,
based on their entire health history. EMRs also help researchers
gather the statistics required for clinical trials, in turn helping the
study of diseases and the provision of suitable cures. To carry out
their duties, healthcare professionals must be able to access EMRs,
however, while they are considered experts in their medical fields,
they often lack formal training in database query languages like
SQL. This can result in significant inefficiencies when attempting
to extract relevant patient information from Electronic Medical
Records (EMRs). Studies have shown that clinicians spend a
considerable amount of their time on documentation and data
entry tasks, often leading to frustration and burnout (Shanafelt
et al., 2012; Sinsky et al., 2016). A survey of over 4,000 physicians
revealed that 49% reported spending more than half their workday
interacting with EHRs (American Medical Association, 2018).
Moreover, the complexity of EMR databases, with their intricate
schemas and vast amounts of data, can further exacerbate these
challenges. This difficulty in accessing data can hinder clinical
decision-making, delay patient care, and impede research efforts.
For instance, a study found that difficulties in retrieving relevant
information from EMRs contributed to diagnostic errors in 25%
of cases (Singh et al., 2013). Therefore, an intermediate system is
therefore needed that can assist end-users, such as the healthcare
staff, to handle database records smoothly without needing to
learn SQL.

Responding to this need, researchers started to explore
the possibility of employing automated Text-to-SQL conversion,
using machine learning (ML) and natural language processing
(NLP) to convert questions written in natural language to
SQL queries; the principle is shown in Figure 1 (Iyer et al.,
2017; Kate et al., 2018; Kim et al., 2020). NLP is a pervasive
artificial intelligence (AI) technology in which computers simulate
human intelligence through machine learning. Without explicit
programming, machine learning automates the learning of
computers using a collected data based on the required task. In
this way, computers are given the ability to understand human
language and turn it into machine language to perform required
tasks, such as text summarization and translation. Text-to-SQL
conversion facilitates the development of flexible, highly interactive
communication with databases to handle the records without the
need for end-users to know SQL.

Previous research papers have analyzed the creation of SQL
through NLP and proposed Text-to-SQL conversion models such

as SQLNet, proposed by Xu et al. (2017), Seq2SQL, developed
by Zhong et al. (2017) and MedTS, created by Pan et al.
(2021). Recently, the NLP technology has progressed with the
development of Transformer, a deep neural network architecture
capable of multiple NLP tasks, such as automatic summarization
and translation (Vaswani et al., 2017). This architecture became
the baseline for various language models trained on large data to
perform NLP tasks, such as Bidirectional Encoder Representations
from Transformers (BERT), proposed by Devlin et al. (2019)
and Multi-Task Deep Neural Networks (MT-DNN) for Natural
Language, proposed by Liu X. et al. (2019). Transfer learning these
pre-trained models, in which they are fine-tuned on a downstream
task such as translation, has become an effective approach in
NLP research. In Text-to-SQL conversion, fine-tunning pre-trained
models has raised the performance of Text-to-SQL models to near
human performance levels (Guo et al., 2019; Wang et al., 2019;
Pan et al., 2021). Subsequently, Raffel et al. (2020) proposed their
model, namely Text-to-Text Transfer Transformer (T5) as a unified
model for various NLP tasks and is considered one of the first
Large language Models (LLMs). The T5 model transforms text-
based language problems, such as translation, into a text-to-text
format and has become the state-of-the-art for various NLP tasks,
such as summarization, question answering and text classification
(Raffel et al., 2020; Xie et al., 2022). Using the T5 model for Text-
to-SQL conversion resulted in a significant improvement in the
performance of such task (Scholak et al., 2021; Xie et al., 2022).

While many researchers have proposed Text-to-SQL
conversion models, few have focused explicitly on the healthcare
domain to assist healthcare staff in managing and retrieving
information from EMRs (Wang et al., 2020; Pan et al., 2021).
This relative scarcity can be attributed to several factors. First,
healthcare data presents unique challenges, including complex
medical terminologies, diverse data formats across different
EMR systems, and stringent privacy and security requirements.
These challenges necessitate the development of specialized
Text-to-SQL models that can accurately understand medical
language and comply with healthcare-specific regulations. Second,
the integration of Text-to-SQL systems with existing EMR
systems can be complex and time-consuming. The heterogeneity
of EMR systems across different healthcare institutions, with
varying data structures and terminologies, poses a significant
barrier to generalizability. Developing a Text-to-SQL model that
seamlessly integrates with diverse EMR systems requires extensive
customization and validation, which may deter researchers and
practitioners from focusing on this domain.

Despite these challenges, the need for efficient and user-
friendly access to EMR data remains critical for healthcare
professionals. Therefore, this work aims to develop a T5-based
model, namely MedT5SQL, which is a transformers-based fine-
tuned large language model to perform Text (questions)-to-
SQL conversion specifically within the healthcare domain. The
objective of the MedT5SQL model is to empower medical staff by
enabling them to express their data requests in natural language,
thereby overcoming the barriers associated with traditional SQL
query formulation.

In achieving the above, this paper is structured as follows.
First, a theoretical background of the work related to text-to-SQL
conversion is discussed. The following section clarifies the research
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FIGURE 1

Text-to-SQL conversion model.

methodology, namely CRoss Industry Standard Process for Data
mining (CRISP-DM), that is followed to pre-process the data and
develop and validate MedT5SQL model. Third, the evaluation
results are discussed in detail and compared to past research.
Finally, the conclusion section concludes this work and offers some
suggestions for future research.

2 Theoretical background

Nowadays, patients’ health information is stored in a digital
format in electronic medical records (EMRs) that are used by
healthcare staff to retrieve patients’ historical health details or
to use for clinical trials. At the beginning of 2020, the world
experienced a global pandemic of coronavirus known as COVID-
19. This pandemic has left hospitals overloaded with patients,
causing enormous stress on healthcare workers due to shortages
of medical staff in relation to the number of patients (Birkmeyer
et al., 2020; Kruizinga et al., 2021; Iness et al., 2022). The pandemic
highlighted the importance of EMRs and revealed the need for a
faster communication method to handle it (Dagliati et al., 2021). It
is essential to have an interface that provides easy user-to-database
interactions; in particular, a system that generates an SQL query
in response to a question in human language. This section reviews
the state-of-the-art in natural language processing for Text-to-SQL
conversion to facilitate interactions between users and databases.

2.1 Rule-based systems

Converting natural language to SQL is a subtask of semantic
parsing, in which natural language is converted into a machine-
understandable logical form (Zettlemoyer and Collins, 2005).
Semantic parsing seeks to understand the meaning of natural
language and map it to logical forms such as SQL. Rule-
based systems were used to support non-technical users in
communicating with databases through a set of predefined rules
mapping natural language words with SQL keywords and database
schemas (Androutsopoulos et al., 1995; Popescu et al., 2004; Li and
Jagadish, 2014; Saha et al., 2016). An expert programmer constructs
these rules to translate users’ requirements into SQL queries (Masri
et al., 2019). However, it is required for non-technical users to train
before using them and are domain-specific, since each system is

built for a specific schema. These systems have limited intelligence,
as they only operate based on the rules created by humans and do
not learn, change or update on their own (Kamath and Das, 2018).
This limits the ability of non-technical users to manage their data
without relying on expert programmers.

2.2 Deep learning models for text-to-SQL

To increase usability and generalize Text-to-SQL conversion,
researchers began using deep learning (DL) by training neural
networks to generate executable SQL queries. Training neural
networks means performing supervised learning, in which the
network is provided with natural language questions and their
corresponding SQL queries so it can learn the conversion. The
trained neural networks is called a DL model that generates a query
from a given question. This has led to the release of several Text-
to-SQL datasets that boost the accuracy of the models by delivering
sufficient data for supervised learning: GeoQuery, created by Zelle
(1996) for US geography and updated later by Iyer et al. (2017) to
include SQL; ATIS, created by Price (1990) for flight bookings and
updated by Iyer et al. (2017) to include SQL; Scolar, created by Iyer
et al. (2017) for academic publications; WikiSQL, created by Zhong
et al. (2017) fromWikipedia; and Spider, created by Yu et al. (2018a)
and representing a cross-domain dataset.

Due to their large sizes and multiple domain coverage, Spider
and WikiSQL are the most used datasets among researchers.
WikiSQL is a corpus of 80,654 hand-annotated pairs of questions
and corresponding SQL queries for 24,241 tables covering multiple
domains. However, each question-SQL pair is related to a single
table in which the SQL only has SELECT and WHERE clauses,
as presented in Figure 2. The Spider dataset was introduced to
overcome WikiSQL’s simple SQL structure and to present the
first cross-domain dataset. It includes 200 complex databases with
multiple tables, 10,181 questions, and 5,693 corresponding complex
SQL queries with nested queries. Table 1 presents a comparison of
existing datasets for text-to-SQL translation.

2.2.1 Deep learning models architecture
Deep learning models for Text-to-SQL conversion are

built as neural networks in an encoder-decoder architecture
that was initially embraced by Sutskever et al. (2014) for
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FIGURE 2

Sample of WikiSQL question-SQL pairs (Xu et al., 2017).

TABLE 1 Comparison of existing text-to-SQL benchmarking databases.

Dataset #Databases #Tables per database #Question-SQL pairs SQL query level

ATIS 1 32 5,280 Complex (no HAVING and
ORDER BY)

GeoQuery 1 6 877 Complex

Scolar 1 7 817 Simple

Spider 200 On average 5 10,181 Complex

WikiSQL 24241 1 80,654 Simple

translation purposes. Given a natural language question (NLQ)
and its corresponding SQL as source sequences, models operate
as follows:

• The source sequences are always tokenized into tokens before
encoding, and each token represents a word in the sequence
(Webster and Kit, 1992).

• As deep learning models only take numbers as inputs, each
token is embedded into a vector representation, called word
embedding, using embedding algorithms such as Glove or
Word2vec (Mikolov et al., 2013; Pennington et al., 2014). This
process reveals the relationship between tokens and reduces
input dimensionality as tokens with similar meanings have
similar vector representation.

• The encoder takes the NLQ tokens’ embeddings and
encodes their information/features into a vector named
“hidden states.”

• For training purposes, the decoder takes the encoder’s hidden
states and the word embedding of the SQL tokens for the
supervised training. The decoder is built and trained as a
classifier to decode the hidden states into a target SQL query.

• For generalization to an unseen schema, the database schema
is usually considered as an input to the models.

To provide an accurate conversion, models must develop
an understanding of source sequences by understanding words’
dependencies and memorizing previously gathered information.
To meet this need, researchers have built encoders and decoders
with recurrent neural networks (RNNs), particularly long short-
termmemory (LSTM) (Hochreiter and Schmidhuber, 1997). LSTM
can remember long-term information and capture dependencies
between sequence tokens. The understanding and encoding of each

token depends on the previously seen token. Therefore, it can
improve natural language understanding and help with translation
tasks (Graves, 2013; Yin et al., 2017).

Encoders built using LSTM take input tokens sequentially
and produce their hidden states one at a time. At the end, it
outputs a single hidden states vector compressing all the tokens’
hidden states. The decoder alone needs to interpret the information
compressed in this vector into a complex target sequence, leading
to the risk of information loss. To circumvent this risk, an attention
mechanism was proposed to allow the decoder to look at all tokens’
hidden states when predicting the final output (Bahdanau et al.,
2014; Galassi et al., 2021). This is accomplished by passing the
weighted sum of the hidden states to the decoder, allowing it
to focus on the required information to generate the next target
token. This simplifies the encoder task by avoiding encoding the
entire source sequence into a single vector. The architecture of the
encoder-decoder with and without attention mechanism can be
seen in Figure 3 where ‘h’ corresponding to hidden states vectors.

2.2.2 Deep learning approaches
In Text-to-SQL tasks, this sub-section outlines the approaches

used as (1) sequence-to-sequence (2) sequence-to-set (3) fine-
tuning a pre-trained language model (transfer learning).

Sequence-to-sequence (Seq2Seq), introduced by Sutskever et al.
(2014), is an LSTM-based machine translation that operates
by sequentially taking source tokens and translating them into
sequence target tokens. Seq2Seq relies on a single ground truth
query as the optimal correct query. This raises the issue of “order
matter” because in SQL, the order in the WHERE clause does not
matter, making it a challenge when using this approach. Seq2Seq
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FIGURE 3

Various encode-decoder architectures. (A) Encoder-Decoder architecture and (B) Encoder-Decoder architecture with attention.

does not require the attention mechanism; however, it is possible to
combine the two for better results.

Sequence-to-set was first introduced by Xu et al. (2017). It is
similar to Seq2Seq, apart from its ability to overcome the order
matter by producing an unordered set of sequences after dividing
the prediction into sections. The decoder prediction is performed
based on the dependency between the predicted tokens, which is
captured using the attention mechanism. Sequence-to-set usually
uses an approach of sketch matching and slot filling, where each
slot has its own decoder. The slots present parts of the SQL, such
as the column name or the aggregation operator, in the SELECT
clause. Using a sketch structure presenting the dependencies of
the query slots, the decoding of each slot in the query is based
only on the decoding of other slots it depends on. For example,
decoding the aggregation operator in the SELECT clause depends
on the decoding of the column name and is independent of the
WHERE clause.

Pre-trained language models are transformer-based neural
networks for word embedding that learn contextual relations
between tokens without recurrent connections (Peters et al., 2018;
Yang et al., 2019). The Transformer is an encoder-decoder-based
neural network proposed by Vaswani et al. (2017). It is built and

trained to work on multiple NLP tasks, such as summarization and
translation. The transformer has three main functioning concepts.
The first is positional encoding, in which transformers are fed
with all the tokens at once, with each token appended with its
order, unlike the recurrent neural network of sequential input of
token. Second, through learning from training data, transformers
use the attention mechanism and consider each input token in the
source before any translation prediction is generated. Third, both
the encoder and decoder use a self-attention mechanism in which
a word is understood based on the context of the words around it
(Vaswani et al., 2017).

Although transformers are encoder-decoder neural networks,
pre-trained language models only use the encoding mechanism,
as they aim to learn representations of a language. The most
commonly used language model in text-to-SQL conversion is
bidirectional encoder representation from transformers (BERT),
introduced by Devlin et al. (2019). The term “bidirectional”
means positional encoding and the term “representation” refers
to the attention mechanisms. BERT is a multi-layer bidirectional
transformer encoder for contextual-bidirectional embeddings that
can be finetuned for specific NLP tasks. It was trained by two
learning mechanisms—masked learning mechanism (MLM) and
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next sentence prediction (NSP)—to increase its accuracy and
minimize the loss values. In MLM, 15% of input tokens are
placed with masked tokens (MASK) before being given to BERT.
Therefore, through contextual relations between tokens, BERT
learns to predict the original token. In NSP, BERT is given pairs of
sentences and trained to predict whether the pairs are subsequent
to each other in the source text. It is fed by 50% subsequent pairs
during training, where sentences are separated by special tokens at
the start of the first sentence in each pair and at the end of each
sentence. Most pre-trained models were built later, based on BERT
(Sanh et al., 2019; Liu X. et al., 2019).

To apply transfer learning with pre-trained models, researchers
must perform fine-tuning by re-training the model using one of
the Text-to-SQL datasets. In GloVe and Word2Vec, each token
is embedded into one static vector representation. However, as
a result of the attention mechanism in BERT, a token appearing
in multiple locations in the source is treated as different tokens,
thus embedded into multiple word embeddings/vectors based on
its context.

Most of the text-to-SQL models were evaluated using:
Execution accuracy: this metric compares the results of

executing the ground truth query (gold standard) with the results
of executing the model-generated query. While intuitive, it can be
misleading, especially in situations where multiple queries produce
the same result. For instance, consider a query to find the average
age of patients. Both SELECT AVG(age) FROM patients and
SELECT AVG(age), COUNT(∗) FROM patients would yield the
same average age, but only the first query accurately captures the
intent of the natural language question.

Logical form accuracy (exact match): This metric compares
the structure of the ground truth query with the generated query
using an accuracy matrix. It addresses the limitation of execution
accuracy by focusing on structural correctness. However, it can
be overly strict, as minor variations in query formulation (e.g.,
different ordering of clauses) can lead to incorrect results even if
the queries are functionally equivalent.

Manual matching: In this approach, human evaluators
manually compare the structure of the ground truth query with the
generated query, often using a set of predefined criteria. Manual
matching offers a nuanced assessment of query correctness, but it
can be time-consuming and subjective.

Combination of metrics: Given the limitations of individual
metrics, using a combination of execution accuracy, logical form
accuracy, and manual matching provides a more comprehensive
evaluation. Execution accuracy verifies the functional correctness
of the query, while logical form accuracy and manual matching
assess its structural correctness and alignment with the natural
language question’s intent.

2.2.3 Text-to-SQL in single domain dataset
WikiSQL is considered the biggest single dimension dataset

used for Text-to-SQL, where each SQL is related to a single database
table. Seq2SQL, created by Zhong et al. (2017), was the first model
trained with WikiSQL. It uses a Seq2Seq approach designed to
leverage the structure of SQL commands with three decoders for
the SELECT column clause, aggregation operator and WHERE

FIGURE 4

SQLNet SQL sketch.

clause separately. It uses two encoders, one for the question tokens
and another for the column name, to train the model to generate
the SQL query given the question and column. The decoder
was designed as an LSTM-augmented pointer network created by
Vinyals et al. (2015). It augments the encoder’s output along with
an SQL vocabulary of required SQL operations to produce the SQL
query with tokens taken exclusively from this augmentation. To
minimize the effect of the order matter problem, Seq2SQL uses
reinforcement learning with policy gradients presented by Sutton
et al. (1999), allowing the decoder to evaluate the predicted query
based on whether it is well formed or not. The model achieved
an execution accuracy of 59.4% and a logical form of 48.3%.
Even though it presented a state-of-the-art model for WikiSQL, an
accuracy below 50% is considered insufficient.

SQLNet is a sequence-to-set sketch-based approach developed
by Xu et al. (2017) to avoid the order matter. The dependency
between the slots is based on the SQL sketch shown in Figure 4,
where five decoders were used. Tokens between “< >” are the
slots to be filled, while (∗) indicates zero or more conditions. The
aggregator options are NULL, MAX, MIN, COUNT, SUM and
AVG, while the operator options are =, > and <. Additionally,
SQLNet uses a column-attention mechanism in which one LSTM
encoder is used over each column name and another is used to
encode the NLQ conditional in each column. In this way, the model
reflects the most relevant word in the question when predicting the
column name. SQLNet structure allowed it to achieve around 10%
improvement in the execution accuracy compared to Seq2SQL.
TYPESQL, developed by Yu et al. (2018c), is an improved version
of SQLNet with a 5.5% increase in accuracy. TYPESQL achieves
2% higher accuracy by concatenating each NLQ token with a
type before encoding to assist the decoder in filling the slots. For
example, the model uses INTEGER, FLOAT, DATE or YEAR for
number tokens, COLUMN for column name tokens and PERSON,
PLACE, COUNTRY, ORGANIZATION and SPORT for named
entities. TYPESQL achieves the other 3.5% by grouping related slots
together, resulting in three decoders. All models use GloVe word
embedding for the encoder embedding layer.

Due to their functionality, pre-trained models are effective in
revealing the connections between source sequences as well as
portraying the meaning of the question. Therefore, researchers
began using them to connect questions with table schema to
produce accurate SQL queries. Hwang et al. (2019) developed
SQLova, the first model to utilize BERT in text-to-SQL tasks for
word embedding on WikiSQL. SQLova was created following a
sequence-to-set approach with LSTM. It has two separate encoders:
one for the question and one for the column names. BERT is used
on top of the encoders to performword embedding for the question
and column names. This allows the model to capture a larger
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context of the input with any possible different pronunciations
of the question. Inspired by SQLNet, SQLova follows the same
decoding process as well as a sixth decoder for “where-number,”
indicating the number of conditions. SQLova uses the execution
guided (EG) decoding proposed by Wang et al. (2018) to exclude
non-executable generated queries from the decoder output. By
using BERT, SQLova achieves 80.7% logical form accuracy and
86.2% execution accuracy without EG and 83.6% and 89.6% with
EG. Therefore, using a pre-trained model increased the accuracy of
this task.

X-SQL, created by He et al. (2019), was built based on the
SQLova structure. Similar to SQLova, X-SQL uses two encoders for
the question and table schema. However, the question encoder is
built using the multi-task deep neural network (MT-DNN), a pre-
trained model proposed by Liu X. et al. (2019) based on BERT.
With and without EG, X-SQL outperforms SQLova by 2–4%. This
implies that using a pre-trained model as an encoder rather than
a word embedder results in better performance. Lyu et al. (2020)
argued that neither SQLova nor X-SQL benefit correctly from using
a pre-trained language model and added complexity to the models.
They proposed Hydranet, employing BERT alone as its encoder
without using any other encoders. Instead of pairing the question
with all table schemas, Hydranet pairs the question with each
column one at a time before encoding. Hydranet was able to achieve
state-of-the-art on WikiSQL by reaching 91.8% execution accuracy
using EG and 92.2% when replacing BERT with RoBERTa (Liu Y.
et al., 2019). Even though those models keep increasing accuracy
for text-to-SQL, they are trained on WikiSQL, which means they
can manage simple SQL structures.

2.2.4 Text-to-SQL in cross domain dataset
To develop text-to-SQL tasks for complex SQL queries, the

Spider dataset was proposed, motivating researchers to develop
models for more realistic SQL tasks. Yu et al. (2018c) evaluated
SQLNet and TYPESQL on Spider to study their functionality for
complex queries. It was found that both models failed to manage
nested queries because they limited the query to a defined sketch
structure. Motivated by SQLNet, they proposed SyntaxSQLNet
(Yu et al., 2018b). As Spider question-SQL pairs can relate to
multiple tables, SyntaxSQLNet encoding considers both tables and
column names for column embeddings. They employed grammar-
based decoding, in which a series of grammar rules are applied
sequentially to generate the SQL query. By recursively calling nine
independent sequence-to-set decoders, they obtained their SQL
syntax tree to generate the SQL. In SyntaxSQLNet, decoders share
their decoding history to facilitate the prediction of nested queries;
thus, given the current training sample’s SQL tokens and the history
of previous decoded SQL, the relevant decoder is invoked. Even
though its performance was better than SQLNet and TYPESQL on
Spider, it achieved an accuracy below 30% due to the complexity of
Spider’s SQL.

Lee (2019) presented RCSQL, a clause-wise SQL decoding
model, to predict syntactically correct SQL. Each clause decoder
consists of sub-models matching its clause syntax and implied
history sharing. For further improvement, they conducted a self-
attention mechanism on database schema encoding. RCSQL’s

exact matching accuracy was 28.8%, indicating that improvement
is still needed. IRNet, created by Guo et al. (2019), adopted
the grammar-based model of SyntaxSQLNet. It focused on
addressing the challenge of out-of-domain words affecting column
prediction. They proposed the use of schema linking, where
the model identifies the dataset’s columns, tables and conditions
appearances in the question. This enhanced the question and
schema representations, aiding in their understanding. The model
achieved around 20% improvement over SyntaxSQLNet. Inspired
by SQLova, Guo et al. (2019) augmented BERT with both
SyntaxSQLNet and IRNet. As a result, the performance of both
models increased by around 5%. Choi et al. (2021) proposed a
complete sketch to synthesize nested queries in the SELECT clause.
They also proposed statement position code (SPC) to transform
nested SQL queries into non-nested SELECT clauses and to apply
sketch-based slot-filling decoding recursively on each statement.
With BERT as an encoder, their model RYANSQL achieved 58.2%
exact match accuracy on the Spider benchmark.

Unlike models built on WikiSQL, which deals with table
schema, Spider models need to handle table schema relations or
database schemas since the question-SQL pair represents multi-
table relations. Accordingly, the researchers began contextualizing
the dataset schema with the question to boost performance. As seen
in IRNet, th performance improved with schema linking. RAT-
SQL is a grammar-based model presented by Wang et al. (2019)
with an encoder that contextualizes the schema and the question
using a relation-aware self-attention mechanism. According to
their alignment and schema relations, RAT-SQL explicitly links
columns with corresponding question tokens, achieving logical
form accuracy of 57.2% on Spider and 65.6% when augmenting
with BERT. In BRIDGE, created by Lin et al. (2020), the relational
DB schema is represented as a tagged sequence concatenated to the
question. Using the database content, the model accesses the values
of the columns identified in the question and appends them to their
column names in the question. As a result, the input is a hybrid
question-schema serialization containing the question, followed by
the table name, column names, and column values. BRIDGE uses
BERT to shape dependencies in the serialization and two single-
layer LSTM encoders with a single LSTM-based pointer-generator
with attention for decoding. This allowed the model to exceed the
RAT-SQL by 1.9%.When applied toWikiSQL, BRIDGE was able to
achieve 86.5% with EG.

2.2.5 Text-to-SQL in healthcare domain
Despite WikiSQL and Spider being multi-domain benchmarks,

they lack sufficient suitable medical records. Therefore, Wang
et al. (2020) proposed the first dataset for healthcare named
MIMICSQL. It consists of five tables and 10,000 question-SQL
pairs of real-world medical information. The syntax for SQL
does not include nested queries, but includes multiple tables
connected by the JOIN operation. The pairs are divided into
template questions and natural language questions based on the
collection method: machine-generated (template questions) or
human-annotated. Along with the database, they released TREQS,
a translate-edit model operating in two stages. Stage one involves
translating a natural language question into SQL using a Seq2Seq
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TABLE 2 Summary of T5 model sizes.

T5 Model Model Size

Small 60 million parameters

Base 220 million parameters

Large 770 million parameters

3b 3 billion parameters

11b 11 billion parameters

model with attention, while stage two performs editing to the
generated SQL using a look-up table. The look-up table contains
the table’s names, columns and keywords of each column to recover
the exact information between the question and the schema. They
also proposed a technique to ensure query execution by retrieving
the condition values of the predicted SQL and matching them
against the dataset. As they introduced the model with their
dataset, their accuracy measurements were broken down based on
the question-SQL pairs. They achieved 85.3% and 92.4% logical
form accuracy and execution accuracy, respectively, for template
questions and 55.6% and 65.4% for human-annotated questions.
Pan et al. (2021) claimed that because TREQS is based on Seq2Seq,
it did not consider SQL’s intrinsic structure. To incorporate the
results of IRNET, they proposed a model named MedTS, which
applied schema linking and BERT as an encoder. MedTS adopts
a grammar-based LSTM decoding strategy with designed grammar
rules based on the MIMICSQL dataset. A logical form of 78.4% and
execution accuracies of 89.9% were obtained by MedTS.

2.3 Text-to-text transfer transformer (T5)

Raffel et al. (2020) conducted a large-scale survey on existing
transfer learning techniques in natural language processing, such
as ELMO created by Peters et al. (2018) and BERT created by
Devlin et al. (2019). After testing and refining several models
in NLP, they created a Text-to-Text Transfer Transformer (T5)
model built on insights from the survey. The T5 model is a pre-
trained language model that uses the complete encoder-decoder
architecture of the transformer (Vaswani et al., 2017). In addition,
T5 uses layer normalization to stabilize the hidden state and reduce
training time (Ba et al., 2016). It is a very large neural network
that takes the source sequence tokens all at once and relies on
self-attention alone to compute its source input and target output.
The T5 model was created as a unified framework covering all
NLP tasks, such as summarization and translation, by converting
every language problem into a text-to-text format. Unlike other
pre-trained models, this model takes the source sequence as input
and produces a target text string rather than word embedding.

The T5 model has various sizes depending on the number of
parameters used for building and training it, as summarized in
Table 2. The model was trained with two learning methodologies,
as follows:

• Unsupervised training, in which T5was trained on the colossal
clean crawled corpus (C4) created by Raffel et al. (2020). C4 is

a huge clean dataset of English text collected from the web for
pre-training the T5 model.

• Supervised training, in which T5 was fine-tuned for several
NLP tasks by training it with labeled data for each task. T5 was
pre-trained using the Adafactor optimizer created by Shazeer
and Stern (2018) and cross-entropy loss function. The loss
function is used to evaluate the model performance during
training by comparing the generated result with the expected
result to produce a loss value (Demirkaya et al., 2020). The
optimizer is an algorithm used to update themodel parameters
to reduce the loss value, such as inputs’ weight presenting the
impact of an input on the model output.

In Raffel et al.’s (2020) evaluation, the T5 model achieved
promising results on many NLP benchmarks and was shown to be
flexible for fine-tuning a variety of NLP problems. Its development
has shown that deep learning approaches are moving toward
reaching human-level accuracy in performing NLP tasks. Xie et al.
(2022) proposed a large-scale multi-task learning framework using
T5 and studied its performance in 21 NLP tasks, including Text-
to-SQL. On many SQL benchmarks, such as Spider and WikiSQL,
their study showed that the T5 model achieved near and above the
state-of-the-art performance of these benchmarks.

Inspired by Raffel et al. (2020), researchers have started
considering the T5 model to directly convert NLQ into SQL with
simpler architecture. Shaw et al. (2020) showed by experiment
that the T5 model without modification achieved promising results
compared to previous models on Spider. They proposed NQG-T5,
a hybrid model combining a grammar-based approach with the
T5 model, achieving competitive results with the state-of-the-art
model on the Spider dataset with a 70% exact match accuracy using
the T5-3b. In a study conducted by Scholak et al. (2021), the T5
model was fine-tuned on Spider and augmented with an additional
method called PICARD at decoding. PICARD was implemented to
guarantee semantically correct SQL by rejecting invalid tokens at
each decoding step. To match the generated SQL with the question,
PICARD uses the table schema when evaluating SQL tokens. They
concluded that the conversion was accelerated, and performance
was improved using the T5 model. Their T5+PICARD model
became the state-of-the-art on Spider with 71% exact match and
75% execution accuracy.

2.4 Summary

In summary, for improved accuracy, Text-to-SQL conversion
models are developed by deep learning with encoder-decoder
architecture. As pre-trained models were introduced, researchers
began focusing on employing transfer learning for Text-to-
SQL conversion, which led to near-human performance level.
Furthermore, using pre-trained models instead of building models
from scratch simplified the process of model development. Upon its
introduction, the Text-to-Text transfer transformer (T5) captured
the attention of researchers due to its encoder-decoder transformer
architecture and its multi-task training covering various NLP
tasks, such as summarization and question answering. Researchers
started fine-tuning the T5 model for Text-to-SQL conversion,
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which significantly improved the performance, making it state-
of-the-art. Table 3 presents a summary of the Text-to-SQL
models discussed in this review where ACCLF, ACCEX and EG
indicate logical form accuracy, execution accuracy, and execution-
guided, respectively.

Existing text-to-SQL models have not been fully embraced in
the healthcare domain. Wang et al. (2020) stated that Text-to-SQL
for EMRs was still under-explored. Based on literature review, only
MedTS and TRESQ were introduced to assist medical staff with
databases. Encouraged by previous success in the improvements of
Text-to-SQL with transfer learning of the T5 model, this research
aims to utilize transfer learning by fine-tuning the T5 model to
develop a Text-to-SQL conversion model on EMRs and evaluate its
performance. To the best of our knowledge, no existing work has
fine-tuned the T5 model in Text-to-SQL for the healthcare domain.
Furthermore, this study uses the WikiSQL dataset to benchmark
the intended model against other models, in which WikiSQL was
used, for performance comparison.

3 Research methodology

This research leverages the MIMICSQL dataset (Wang et al.,
2020), the first publicly available dataset designed for Text-to-
SQL tasks in the healthcare sector, to train and evaluate the
MedT5SQL model.

We adopted the Cross-Industry Standard Process for Data
Mining (CRISP-DM) methodology (Ncr and Clinton, 1999) to
guide our research process. CRISP-DM is a widely used, structured
approach for data mining projects, encompassing six key stages:
business understanding, data understanding, data preparation,
modeling, evaluation, and deployment (Marbán et al., 2009). This
methodology has been successfully applied in various domains,
including healthcare (Martínez-Plumed et al., 2021; Marshan et al.,
2021).

To implement the MedT5SQL model, we utilized the Python
programming language along with the PyTorch and HuggingFace
Transformers libraries (Paszke et al., 2019; Huggingface.co, 2022)
on the Google Colaboratory platform. Google Colab’s provided
GPU resources accelerated the computationally intensive deep
learning processes involved in model training and evaluation.

4 Data analysis and results

4.1 Clinical objectives definition (business
understanding)

The primary aim of this work is to generate an SQL query
from written questions in the healthcare domain by utilizing
natural language processing (NLP) through deep learning. The
review of the relevant literature has revealed that the current
state-of-the-art for Text-to-SQL conversion is to employ deep
learning approaches with encoder-decoder architecture to achieve
the required conversion.With the rise of the transformer’s encoder-
decoder architecture, various language conversion models were
developed to improve NLP tasks using the transformer’s encoder.

They present large neural networks operating under a pre-train-fine
tune paradigm where they are pre-trained over a large text corpus
for a generic task, such as understanding a language, and then
fine-tune on specific downstream tasks, such as summarization.
Pre-training and fine-tuning these models facilitate leveraging
transfer learning to improve the accuracy of various NLP tasks,
including Text-to-SQL.

Throughout the literature review, it was observed that with the
growth of transfer learning through pre-trained language models,
deep learning has achieved promising results in this field (Guo et al.,
2019; Hwang et al., 2019; Lyu et al., 2020; Choi et al., 2021; Pan et al.,
2021). To get the most out of the transformer’s encoder-decoder
architecture and explore the limits of transfer learning, Raffel et al.
(2020) built the Text-to-Text transfer transformer (T5) model as
a unified large language model for all NLP tasks. The T5 model
operates as an encoder-decoder with position encoding, attention
mechanism, and self-attention for modeling all source tokens at
once while understanding each token based on the context of the
words around it. In Text-to-SQL conversion, Shaw et al. (2020)
showed that the T5 model is able to learn Text-to-SQL conversion
and operate with promising results. Encouraged by this work,
research has been conducted presenting significant improvements
in both WikiSQL and Spider benchmarks (Scholak et al., 2021; Xie
et al., 2022). Despite the wealth of research in the field of Text-
to-SQL, however, only two studies have been conducted focusing
on the healthcare domain, proposing TREQS and MedTS models
(Wang et al., 2020; Pan et al., 2021). TREQS is an original model
developed entirely by Wang, Shi and Reddy, and MedTS benefits
from transfer learning using a pre-trained model encoder, allowing
it to outperform TREQS.

Considering the findings from the literature review, this study
utilizes deep learning for Text-to-SQL conversion in the healthcare
domain to develop a Text-to-SQL model named MedT5SQL
employing transfer learning of the T5 transformer model. To
the best of our knowledge, this work establishes the first model
employing T5 in the healthcare Text-to-SQL conversion. This work
focuses on using supervised deep learning to train the model on
a healthcare-related dataset to achieve high conversion accuracy.
Furthermore, MedT5SQL is benchmarked on WikiSQL dataset to
evaluate its performance between the two datasets.

4.2 EMR data exploration (data
understanding)

In this research we use MIMICSQL dataset that is created by
Wang et al. (2020), to train and evaluate the MedT5SQL model.
MIMICSQL is the first dataset created for Text-to-SQL tasks in the
healthcare field. It is a large-scale dataset with 10,000 question-
SQL pairs collected based on the Medical Information Mart for
Intensive Care III (MIMIC III) dataset (Johnson et al., 2016).
The medical information from MIMIC III was grouped into five
tables for MIMICSQL as: demographics (Demo), laboratory tests
(Lab), diagnosis (Diag), procedures (Pro) and prescriptions (Pres)
(See Table 4 for information regarding MIMICSQL dataset). The
question-SQL pairs were carefully constructed based on these
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TABLE 3 Summary of text-to-SQL model.

Research Model specs

DL approach Domain Performance Transfer learning
(Yes/No)

Opportunity

Seq2SQL
(Zhong et al., 2017)

Seq2Seq Single ACCLF: 48.3%
ACCEX: 59.4%

No The first model on WikiSQL

SQLNet
(Xu et al., 2017)

Sequence-to-set sketch-based Single ACCEX: 68.0% No Avoid the “Order-Matter

TYPESQL
(Yu et al., 2018c)

Sequence-to-set sketch-based Single ACCEX: 73.5% No Improving SQLNet

SQLova
(Hwang et al., 2019)

Sequence-to-set Single ACCLF: 80.7%
ACCEX: 86.2%
–with EG—
ACCLF: 83.6%
ACCEX: 89.6%

Yes
(BERT)

Utilize BERT in Text-to-SQL

X-SQL
(He et al., 2019)

Sequence-to-set Single ACCLF: 83.3%
ACCEX: 88.7%
–with EG—
ACCLF: 86.0%
ACCEX: 91.8%

Yes
(MT-DNN)

Utilize MT-DNN in
Text-to-SQL

Hydranet
(Lyu et al., 2020)

Pre-trained language model Single –with EG–
ACCLF: 86.0%
ACCEX: 91.8%

Yes
(BERT)

BERT alone as encoder

–with EG–
ACCLF: 86.5%
ACCEX: 92.2%

Yes
(RoBERTa)

RoBERTa alone as encoder

SyntaxSQLNet
(Yu et al., 2018b)

Sequence-to-set
grammar-based

Cross-domain ACCLF: 27.2% No First Model on Spider

RCSQL
Lee (2019)

Sequence-to-set self-attention
mechanism

Cross-domain ACCLF: 28.8% No clause-wise SQL decoding
with attention mechanism

IRNet
(Guo et al., 2019)

Sequence-to-setgrammar-
based

Cross-domain –without BERT—
ACCLF: 46.7%
–with BERT—
ACCLF: 54.7%

Yes
(BERT)

Handle out-of-domain words
in columns prediction+

schema linking

RYANSQL
(Choi et al., 2021)

Pre-trained language model Cross-domain ACCLF: 58.2% Yes
(BERT)

Handle nested SELECT clause
+BERT as encoder

RAT-SQL
(Wang et al., 2019)

Grammar-based with
Pre-trained language model

Cross-domain –without BERT—
ACCLF: 57.2%
–with BERT—
ACCLF: 65.6%

Yes
(BERT)

propose relation-aware
self-attention mechanism

BRIDGE
(Lin et al., 2020)

Pre-trained language model Single+
cross-domain

–on Spider–
ACCLF: 67.5%
–on WikiSQL–
ACCLF: 91.9%

Yes
(BERT)

hybrid question-schema
serialization

TREQS
(Wang et al., 2020)

Seq2Seq healthcare ACCLF: 55.6%
ACCEX: 65.4%

No First Healthcare Domain
Text-to-SQL model

MedTS
(Pan et al., 2021)

Grammar-based with
pre-trained language model

healthcare ACCLF: 78.4%
ACCEX: 89.9%

Yes
(BERT)

Introduce transfer learning to
healthcare domain

NQG-T5
(Shaw et al., 2020)

Transformer Cross-domain
(In this work, the
focus is on Spider)

On Spider
development set:
-Using T5-base-
ACCLF: 57.1%
-Using T5-3b-
ACCLF: 70%

Yes
(T5)

First grammar-based
approach with T5 on Spider

PICARD
(Scholak et al., 2021)

Transformer Cross-domain ACCLF: 71%
ACCEX: 75%

Yes
(T5)

Fine-tune T5 on Spider and
introduce PICARD for
semantically correct SQL

UnifiedSKG
(Xie et al., 2022)

Transformer Single
(In this work, the
focus is on
WikiSQL)

-Using T5-base-
ACCLF: 82.63%
-Using T5-3b-
ACCLF: 85.96%

Yes
(T5)

Benchmarking T5 on
Text-to-SQL

ACCLF, ACCEX, and ACCASM indicate the logical form accuracy, the execution accuracy, and approximate string-matching respectively.

EG stands for Execution guided.
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TABLE 4 Statistical summary of MIMICSQL dataset.

Data Stats

Number of patients 46,520

Number of tables 5

Number of columns per table Demo: 23, Diag: 5, Pro: 5, Pres: 7, and
Lab: 9

Number of question-SQL pairs 10,000

Average template question length
(in words)

18.39

Average natural language question
length (in words)

16.45

Average SQL query length 21.14

tables. The pairs include questions to retrieve patient information
directly from the database and reasoning questions to collect
patient information from multiple tables. The pairs are divided
into template questions (machine-generated) and natural language
questions (human-annotated).

The general structure of the SQL queries adopted in
MIMICSQL is shown in Figure 5 and described as following:

• The SELECT clause allows multiple columns.
• The aggregation operators (AGG_OP) vary between NULL,

MAX, MIN, COUNT and AVG.
• The column headers in the tables represent the question

topic; therefore, AGG_COLUMN holds the question topic to
retrieve the required information.

• The queries either retrieve the data from a single table or a new
table generated from joining multiple tables through INNER
JOIN by a condition.

• WHERE clause allows for one or multiple conditions.
• Only five condition operations (COND_OP) are considered in

MIMICSQL, including=, >, <, >= and <=.

The WikiSQL dataset is used to benchmark MedT5SQL against
other models that have usedWikiSQL. This dataset contains 80,654
question-SQL pairs and it is larger than MIMICSQL with similar
SQL structure.

4.3 Data acquisition and pre-processing

4.3.1 Data acquisition
MIMICSQL was downloaded from Wang and Shi’s (2020)

repository onGitHub. They uploadedMIMICSQL in three separate
files as data partitioning of the dataset, in the ratio of 0.8:0.1:0.1
for training, validation and test sets, respectively. In this work, we
adopt the same data partitioning, using 8,000 pairs for training,
1,000 pairs for validation, and 1,000 pairs for testing theMedT5SQL
model. The sets were stored on GitHub in the form of JSON
files, and we extracted them into Pandas dataframes for easier
manipulation. Similarly, WikiSQL is partitioned into three sets
collected from the Hugging Face dataset library.

4.3.2 Feature selection
The features relevant to this research in MIMICSQL dataset

are (question_refine) and (sql), which represent the question-SQL
pairs. Therefore, they were extracted for the training, validation
and test datasets used in this research. The (question_refine)
presents the (source_text) for the model, while (sql) presents
the (target_text). In WikiSQL dataset, the question-SQL pairs are
presented by (question) and (sql) features, renamed (source_text)
and (target_text). However, this (target_text) was found to be a
dictionary object where its entry (human_readable) presents the
text form of the SQL, and thus, the SQL was extracted to form
the (target_text).

4.3.3 Handling missing and duplicate records
The datasets are inspected for missing data or duplicate pairs.

In addition, the structure of the question-SQL pairs was inspected
by checking random records to detect irrelevant records. No
issues were identified in MIMICSQL, while WikiSQL had 189
duplicate pairs in the training set, 42 in the test set, and 29 in the
validation set. These pairs were deleted before feeding the model
with the data for the purpose of maintaining accuracy and avoiding
biased performance.

4.3.4 Tokenization
Prior to fine-tuning the T5 model, the source and target

sequences were tokenized by splitting each text into its list of
tokens (words) to understand the context. For the testing process,
only the source text was tokenized before using it to generate
the equivalent SQL query for model evaluation. A pre-trained
T5Tokenizer from the T5ForConditionalGeneration module in
the Hugging Face transformer package was used in this step.
After number of experiments, the maximum number of tokens
we were able to use for the source and target texts and train
the MedT5SQL model are 150 tokens (original question) and 256
tokens (SQL Query), respectively. The pre-trained tokenizer not
only splits the text into tokens but also converts the tokens into
numeric representations to prepare the data before feeding it to
the transformer-based deep neural model (Marshan et al., 2023).
The tokenizer also adds padding tokens, which are used to fill the
source and target text with extra tokens to standardize the number
of tokens in each as required by deep neural models. Padding
tokens also include guidance tokens that indicate the start and end
of each text. As a result, the tokenizer results in “input_ids” and
“attention_masks” fields, where the “input_ids” presents the list of
tokens’ IDs given to the model and “attention_masks” is a value of
0 or 1 mapped to each token, enabling the model to ignore padding
tokens: 0=masked/ignore and 1= not masked.

4.3.5 Data loader
In order to accelerate the training, validation and testing

processes, PyTorch DataLoader was used to create data loaders for
the tokenized datasets. Data loaders make it easier to manage the
data and simplify the deep learning pipeline. They navigate the
dataset by synchronously loading multiple batches of data using
background processes called workers. Batches present the number
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FIGURE 5

MIMICSQL SQL query structure.

of data samples run by the model in each training, validation, or
test epoch. An epoch presents a complete pass of the whole dataset
through the model. Following the work done by Pan et al. (2021)
on MIMICSQL dataset, we used eight data samples per batch. The
number of workers is set to four to allow faster data loading. To
make the model more robust and avoid overfitting, shuffling was
enabled for the training data loader to shuffle the data in every
training epoch.

4.4 Modeling: developing the MedT5SQL
model

Shaw et al. (2020) and Scholak et al. (2021) have showed that
a pre-trained T5 model, especially the T5-base and T5-3b models
have shown promising results as the current state-of-the-art for
Text-to-SQL conversion. Motivated by these papers, this study
developed the MedT5SQL model as a fine-tuned T5 model for
text-to-SQL conversion in the healthcare domain. The MedT5SQL
model went through several iterations until the successful model
was achieved, as explained below. However, they all used the same
model configurations.

4.4.1 Model configuration and development
environment

This study uses the T5ForConditionalGenerationmodule in the
huggingface package to load the pre-trained T5-base model with its
weights and operative configurations for fine-tuning. A list of the
most important configurations related to the T5 architecture can
be found in Table 5.

MedT5SQL is trained on the Tesla P100 GPU from NVIDIA
Corp offered by Google Colab and we used the parameters settings
presented in Table 6. MedT5SQL sets the training and validation
batch sizes to 8, similar to Pan et al. (2021) on MIMICSQL and the
learning rate to 1e-4 as used by Shaw et al. (2020) and Scholak et al.
(2021) for fine-tuning T5. TheMedT5SQLmodel was trained using
three different Epochs numbers 10, 15, 20, 50 and 100 to study its
effect on the model performance. The validation was done using 15
epochs. The remaining parameters follow Pytorch-lightning (2022).

4.4.2 MedT5SQL model
Initially, we attempted to fine-tune the Hugging Face T5-

base model directly using PyTorch. However, despite successful
training, the model failed to generalize to the Text-to-SQL task
during testing, simply reproducing the input question instead of
generating the corresponding SQL query. This indicated that the

TABLE 5 T5-base configurations from hugging face transformers

package.

Configuration Description Value

vocab_size The number of different
tokens represented by
‘inputs_ids’ passed to the
model

32,128

d_model Encoder layers and the pooler
layer size

768

num_layers Number of encoder’s hidden
layers

12

feed_forward_proj The activation function in the
encoder

Relu

num_decoder_layers Number of decoder’s hidden
layers

12

dropout_rate Dropout rate for
regularization

0.1

transformers_version The version of transformers
package

4.20.1

num_beams Transformers use greedy
decoding to select tokens with
the highest probability

4

early_stopping Use early stopping for
regularization

True

model had not adequately learned the translation task, likely due to
insufficient task-specific guidance during fine-tuning.

To address this, we incorporated a task-specific prefix
(“translate English to SQL”) into the input sequence. This prefix acts
as an explicit instruction to the model, prompting it to interpret
the input as a Text-to-SQL translation problem. Additionally,
we modified the T5-base model’s configuration file to include
parameters that reinforce the desired task (see Figure 6). These
modifications guided the model’s learning process and significantly
improved its ability to generate correct SQL queries in response to
natural language questions.

Nonetheless, training the T5 model with the new configuration
file prevented it from using the weights of the pre-trained T5-
base, and thus, the model functioned as a new model and not as
a transfer learning of the T5 model, and with 8,000 training data,
it achieved poor accuracy of <1% despite changing parameters,
including training epochs, the optimizer, and the learning rate.
Thus, as alluded to by Raffel et al. (2020) it is concluded that the
T5 model should be able to understand the translation task without
specifying the prefix.

To ensure that all the proper fine-tuning steps are performed,
we developed the MedT5SQL model by utilizing the PyTorch
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TABLE 6 MedT5SQL model configurations.

Parameter Value

MODEL t5-3b

TRAIN_BATCH_SIZE 8

VALID_BATCH_SIZE 8

TRAIN_EPOCHS 10, 15, 20, 50 and 100

VAL_EPOCHS 15

LEARNING_RATE 1e-4

MAX_SOURCE_TEXT_LENGTH 150

MAX_TARGET_TEXT_LENGTH 256

SEED 42

adam_epsilon 1e-8

weight_decay 0.0

n_gpu 1

gradient_accumulation_steps 16

warmup_steps 0

fp_16 False

output_dir “/content/drive/MyDrive/MedT5SQL”

opt_level apex

max_grad_norm 1.0

FIGURE 6

Modification on T5-base configuration model.

Lightning framework (Lightning, 2022), which organizes and
facilitates the process of building a model by abstracting the details
of the training. It has a good Graphics Processing Unit (GPU)
utilization and makes deep learning models flexible and easier to
reproduce (Sawarkar, 2022). Using the Lightning Framework to
build and train deep learning models requires the configuration
of a LightningModule and Trainer parameters. LightningModule
is used to structure the intended module to specify its behavior

with each batch of training and validation data. Trainer uses the
LightningModule with a specified dataset to automate the training
and validation processes for the intended module.

4.4.3 Lightning module configuration
In more details, to fine-tune the T5-base model using

the Lightning Framework, MedT5SQL uses LightningModule to
structure its implementation into four sections: initialization,
training loop, validation loop and optimizer configuration
(Pytorch-lightning, 2022). The LightningModule contains a
function for each section to easily adopt any deep learning model
to automate the training and validation loops with all the required
components, such as epochs and optimizers. Overriding each of
its functions allows MedT5SQL to specify its behavior in the
training and validation to fine-tune the T5 model as required. The
LightningModule for MedT5SQL was created and initialized given
the model parameters listed in Table 6 and shown in Figure A1 in
the Supplementary material.

4.4.4 Training loop configuration
To activate the training loop of Lightning Framework

for the fine-tuned T5-base model, MedT5SQL overrides the
training functions of the LightningModule: training_step

and training_epoch_end, as shown in Figure A2 in the
Supplementary material. This loop is performed on the training
dataset, loaded as batches by the data loader, to fine-tune the T5
model and obtains the training loss value using the training_step

and _step functions as displayed in Figures A2, A3 in the
Supplementary material. In T5 training, the T5 model’s encoder
uses the source tokens’ IDs and masked values as input, while
the decoder takes the encoder’s output along with the target
tokens’ IDs (labels) to compute the training loss. The T5 model
uses the cross-entropy loss function to compute the loss value
required to modify the model’s parameters during training (Raffel
et al., 2020). The function training_epoch_end returns the average
loss value of each training epoch. Lower loss values indicate a
well-trained model.

4.4.5 Validation loop configuration
To activate the validation loop of the Lightning Framework,

MedT5SQL overrides the validation functions of LightningModule,
as presented in Figure A4 in the Supplementary material. This
loop uses the validation dataset, loaded as batches by the data
loader, in the method _step to validate the model and obtain the
validation loss (see Figure A3 in the Supplementary material). The
_step method allows the model to generate the target text using
the source text and evaluate the performance by comparing the
generated query against the expected query and calculate the loss
value. The function validation_epoch_end returns the average loss
value of each validation epoch.

4.4.6 Optimizer configuration
MedT5SQL is trained using Adafactor optimizer, the same

optimizer used to pre-train the T5 model by Raffel et al. (2020)
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and other Text-to-SQL models built using the T5 model (Shaw
et al., 2020; Scholak et al., 2021). The optimizer configuration is
shown in Figure A5 in the Supplementary material. Moreover, we
used AdamW optimizer, created by Loshchilov and Hutter (2017)
to compare its performance against that of Adafactor (see Figure A6
in the Supplementary material).

4.4.7 Trainer configuration
To develop MedT5SQL, PyTorch Lightning Trainer we

automate the training and validation loops as presented in
Figure A7 in the Supplementary material. The trainer was first
created with the required arguments for the training process,
such as the number of epochs, and was then given an object
of MedT5SQL LightningModule class that contained the training
and validation DataLoaders and loops. The developed MedT5SQL
model presents a structured version of the first model we have
developed using the Lightning framework, yet, without the use of
a task-specific prefix, since the fine-tuning process was performed
and organized successfully by the Lightning Framework.

4.5 Evaluation

To evaluate MedT5SQL model performance, the test dataset
was used to assess the model on unseen data. The source text was
tokenized and loaded in a DataLoader to feed MedT5SQL with
natural language questions to generate equivalent SQL queries,
as seen in Figure A8 in the Supplementary material. To generate
the target text given the source text, the function “generate()”
from the module T5ForConditionalGeneration is used. At the
end, the tokenizer decodes the generated tokens into string
form to output the SQL query sequence. This generated query
was evaluated against the test dataset’s target text to measure
MedT5SQL performance.

MedT5SQL’s performance was evaluated using logical form
accuracy, known as exact match, and manual evaluation, in line
with previous papers (Hwang et al., 2019; Wang et al., 2020; Pan
et al., 2021). Additionally, we used approximate string matching
to evaluate how close the MedT5SQL predicted query is to the
expected query. The performance evaluation for MedT5SQL is
presented in Figure A9 in the Supplementary material.

The manual evaluation was conducted by an independent
reviewer with expertise in the medical domain. The reviewer was
presented with a random sample of generated SQL queries paired
with their corresponding expected queries from the test dataset.
They assessed each generated query’s correctness based on the
following criteria:

• Correctness: Does the generated query accurately reflect the
intended meaning and structure of the expected query?

• Completeness:Does the generated query include all necessary
clauses and conditions?

• Syntax: Is the generated query syntactically valid?
• Functional Equivalence: If there are minor differences, does

the generated query produce the same result as the expected
query when executed on the database?

The reviewer assigned a score of “correct,” “partially correct,” or
“incorrect” to each query. The manual evaluation score reported in
our results represents the percentage of queries deemed “correct.”

A breakdown of logical form accuracy was performed on
each SQL clause for further inspection. Figure A10 in the
Supplementary material presents the evaluation process for the
SELECT clause. MedT5SQL performance was evaluated in terms of
the number of training epochs, as well as the optimizers, AdamW
and Adafactor. It was also benchmarked against MIMICSQL and
WikiSQL to examine its performance on different datasets.

5 Results and discussion

In this research, a Text-to-SQL conversion model named
MedT5SQL was developed as the first fine-tuned T5-base model
in the healthcare domain. The model was developed using
MIMICSQL, a healthcare Text-to-SQL dataset. This section
discusses the results of model evaluation and outlines its findings.

5.1 Performance evaluation on di�erent
training epochs and di�erent optimizers

To understand the contribution of the number of training
epochs to the performance of the model, MedT5SQL was trained
on three different numbers of epochs: 10, 15, 20, 50 and 100.
The performance was evaluated through accuracy measurement
by comparing the generated SQL query against the expected SQL
query using the test dataset (Hwang et al., 2019; Wang et al.,
2020; Pan et al., 2021). The results are presented in Table 7, which
shows that the accuracy measurements of MedT5SQL performance
increased with the increasing number of training epochs.

To select the most efficient optimizer, the MedT5SQL model
was developed using two different optimizers, Adafactor and
AdamW, one at a time, and their performance was compared,
as presented in Table 7. According to the analysis, Adafactor was
more efficient for MedT5SQL, since it allowed the model to achieve
higher accuracy compared to AdamW. Only when trained on 10
epochs did the model achieve 97.455% ACCASM with AdamW,
compared to 97.369% with Adafactor. Nevertheless, it is worth
noting that ACCLF dropped by 0.2% when trained with AdamW
on 20 epochs, compared to 15 epochs which could be a result of
overfitting. ACCLF rose by 0.5 under the same conditions using
Adafactor. In general, Adafactor elevated MedT5SQL performance
by 0.1–2% ACCLF, 0.3% ACCASM and 5% ACCmanual, compared
to AdamW. MedT5SQL achieved its highest accuracy of 80.1%
ACCLF, 98.937% ACCASM, and 90% ACCmanual when trained using
Adafactor on 100 epochs. The values of ACCASM were extremely
high, indicating the high similarities between the generated and
the expected queries. Therefore, a breakdown evaluation was
conducted on the SQL clauses to understand the reasons behind
the differences between the ACCLF and ACCASM values.

5.2 Performance on each SQL clause

To further analyse the generated SQL and investigate ACCASM

values, we calculate the logical form accuracy (ACCLF) for each
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TABLE 7 MedT5SQL performance evaluation using di�erent parameter.

# Training Epoc AdamW Optimizer Adafactor Optimizer

ACCLF ACCASM ACCManual ACCLF ACCASM ACCManual

10 epochs 57.9 % 97.455% 60%, 12 out of 20 58% 97.369% 65%, 13 out of 20

15 epochs 61.3% 97.716% 65%, 13 out of 20 62.6% 98.054% 75%, 15 out of 20

20 epochs 61.1% 97.81% 75%, 15 out of 20 63.1% 98.1% 80%, 16 out of 20

50 epochs 63.2% 97.926% 80%, 16 out of 20 68.9% 98.572% 85%, 17 out of 20

100 epochs 66.7% 98.016% 90%, 18 out of 20 80.63% 98.937% 90%, 18 out of 20

ACCLF , logical form accuracy by exact string matching; ACCASM , approximate string-matching accuracy. ACCmanual , manual evaluation derived by randomly examining 20 generated

SQL queries.

clause and shows the results in Table 8. The results confirm that
Adafactor is more efficient for the MedT5SQL model. On the
best performance, the exact match between the generated and
expected queries was 96.8% and 97.01% for the SELECT and FROM
clauses, respectively, while achieving 68.6% on theWHERE clause,
which indicates that the model suffers mostly when generating the
WHERE clause.

As shown in Table 9, the reason for this is related to the
condition’s value and operator as found by the manual evaluation.
This was also demonstrated by Pan et al.’s (2021) evaluation of
the accuracy of each component of the SQL query using multiple
models, which confirmed that the condition’s operation and values
had lower accuracy than other components.

Furthermore, the manual evaluation showed that the reasons
behind the failed 3.2% ACC(SELECT) and 2.9% ACC(FROM) are
related to column names and aggregators in the SELECT clause and
the INNER JOIN or table names in the FROM clause as it can be
noticed in Table 10. It was noted that a false INNER JOIN results in
incorrectWHERE conditions.

5.3 Benchmarking MedT5SQL on two
datasets

Based on findings from past research, MedT5SQL on
MIMICSQL was developed using the Adafactor optimizer.
MedT5SQL was benchmarked on the WikiSQL dataset, explained
in Section 2.1, to compare the performance on different
types of questions. Table 11 presents a performance comparison
between MedT5SQL developed using WikiSQL and MedT5SQL
developed using MIMICSQL. It was found that the MedT5SQL
model performed better when fine-tuned on MIMICSQL. Using
MIMICSQL, ACCLF achieved 58% and 62.6% when trained on
10 and 15 epochs, respectively, compared to 43.63% and 44.2%
when using WikiSQL on the same number of epochs. Similarly, the
ACCASM values obtained using MIMICSQL were 3.2–3.7% higher
than those attained using WikiSQL.

The difference in size between the datasets could be a
contributing factor to this difference in performance. MIMICSQL
has 8,000 question-SQL pairs for training and 1000 pairs for
validation, while WikiSQL has 56,166 pairs for training and 8,392
for validation. Therefore, WikiSQL may need more training epochs
to achieve better accuracies. However, benchmarking MedT5SQL

on WikiSQL required longer execution time due to its enormous
size, as shown in Table 11. For 20, 50 and 100 training epochs,
the MedT5SQL did not run when it is trained on WikiSQL
due to resource limitations, as Google Colab kept crashing when
using the WikiSQL dataset on more than 15 epochs due to GPU
memory shortage.

OnWikiSQL, Xie et al.’s (2022) logical form accuracy evaluation
of the UnifiedSKG model, baselined on T5-base, was shown
to be 82.63% when trained on epochs between 50 and 200.
In this work, WikiSQL achieved 43.63% on 10 epochs and
44.2% on 15 epochs. With sufficient resources, MedT5SQL may
achieve equivalent results to UnifiedSKG. OnMIMICSQL, Table 12
presents a comparison of the logical form accuracy between the
developed model MedT5SQL and MedTS, the state-of-the-art
model of MIMICSQL proposed by Pan et al. (2021). MedT5SQL
outperforms MedTS knowing that it relies entirely on transfer
learning, which offers a simpler architecture. According to Scholak
et al. (2021) and Shaw et al. (2020), however, using T5-3b
instead of T5-base, which we used in this research, can further
improve the performance by around 13.5%. In this project, our
attempt to create MedT5SQL by refining the T5-3b model was
unsuccessful. The experiment faced challenges due to limitations
in resources, specifically when the GPU exhausted its memory
while processing the T5-3b model. This setback can be attributed
to the substantial size of the T5-3b model, which comprises 3
billion parameters, in contrast to the 220 million parameters in the
T5-base model.

Recent advancements in Text-to-SQL models have shown
significant promise in improving the accuracy and efficiency of
natural language interfaces for databases. In particular, models like
ChatGPT (Liu et al., 2023), RASAT (Qi et al., 2022), and RESDSQL
(Li et al., 2023) have reported impressive performance on various
benchmark datasets. These models leverage large-scale pre-training
and fine-tuning techniques, often employing transformers-based
architectures, to achieve state-of-the-art results. However, their
performance on healthcare-specific tasks and datasets remains
less explored.

In the context of healthcare Text-to-SQL, the TREQS method
proposed by Wang et al. (2020) stands out due to its reported 85%
accuracy on the MIMICSQL dataset. While this accuracy is higher
than that achieved by ourMedT5SQLmodel, it is important to note
that TREQS employs a rule-based approach with domain-specific
templates, which may limit its generalizability to new datasets or
query types. In contrast, our MedT5SQL model, based on the T5
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TABLE 8 Break down logical form accuracy (ACCLF) of MedT5SQL.

# Training Epoc AdamW Optimizer Adafactor Optimizer

ACC
(SELECT)

ACC
(FROM)

ACC
(WHERE)

ACC
(SELECT)

ACC
(FROM)

ACC
(WHERE)

10 epochs 93.6 % 95.1% 63.2% 90.2% 95.9% 64.2%

15 epochs 95.4% 95.4% 64.9% 95% 96.2% 66.4%

20 epochs 93.1% 96.1% 65.5% 95.4% 96.6% 66.2%

50 epochs 93.9% 97.03% 67.9% 96.1% 96.8% 67.6%

100 epochs 94.8% 97.53% 72.1% 96.8% 97.01% 68.6%

Bold values highlight the best performance of the model.

TABLE 9 Manual evaluation of MedT5SQL with Adafactor on 20 Epoch.

Generated SQL query Expected SQL query

SELECT COUNT (DISTINCT
DEMOGRAPHIC.“SUBJECT_ID”) FROM DEMOGRAPHIC
INNER JOIN LAB on DEMOGRAPHIC.HADM_ID=

LAB.HADM_ID
WHERE DEMOGRAPHIC.”AGE“ ”30“ AND LAB.”FLAG“=
”abnormal“

SELECT COUNT (DISTINCT
DEMOGRAPHIC.”SUBJECT_ID”) FROM DEMOGRAPHIC
INNER JOIN LAB on DEMOGRAPHIC.HADM_ID
= LAB.HADM_IDWHERE DEMOGRAPHIC.“AGE” < “30”
AND LAB.“FLAG”= “abnormal”

SELECT COUNT (DISTINCT
DEMOGRAPHIC.“SUBJECT_ID”)
FROM DEMOGRAPHIC INNER JOIN PRESCRIPTIONS on
DEMOGRAPHIC.HADM_ID= PRESCRIPTIONS.HADM_ID
WHERE PRESCRIPTIONS.”DRUG“= ”Capso Fungin“

SELECT COUNT
(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM
DEMOGRAPHIC INNER JOIN PRESCRIPTIONS on
DEMOGRAPHIC.HADM_ID= PRESCRIPTIONS.HADM_ID
WHERE PRESCRIPTIONS.“DRUG”= “Caspofungin”

SELECT COUNT (DISTINCT
DEMOGRAPHIC.“SUBJECT_ID”)
FROM DEMOGRAPHIC INNER JOIN LAB on
DEMOGRAPHIC.HADM_ID= LAB.HADM_ID
WHERE DEMOGRAPHIC.”DOB_YEAR“ ”2170“ AND
LAB.”LABEL“= ”Other Cells“

SELECT COUNT
(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM
DEMOGRAPHIC INNER JOIN LAB on
DEMOGRAPHIC.HADM_ID= LAB.HADM_IDWHERE
DEMOGRAPHIC.“DOB_YEAR” < “2170” AND LAB.“LABEL”
= “Other Cells”

large language model, offers greater flexibility and potential for
adaptation to different healthcare contexts.

5.4 Limitations and future work

An accurate Text-to-SQL conversion model (MedT5SQL) is
successfully developed for the healthcare domain, with a promising
performance of 80.63% using transfer learning of the T5-base
model. We argue that employing a larger T5 variant such as T5-
3B model may yield improved performance due to their increased
capacity. Also, using higher number of epochs would result in
superior performance compared to existing models. In this study,
we opted for the T5-base model due to resource constraints. Also,
our research aimed to establish the feasibility and effectiveness of
fine-tuning the T5 architecture for the specific task of Text-to-SQL
conversion in the healthcare domain.We viewed the T5-basemodel
as a suitable starting point for this initial exploration, allowing us
to assess the potential of this approach before committing to the
resource-intensive fine-tuning of the T5-3B model. Additionally,
leveraging transfer learning by pre-training themodel on larger and
more diverse datasets beyond MIMICSQL could further enhance
its ability to generalize to a wider range of healthcare queries.
In addition, incorporating domain-specific knowledge into the
model’s architecture or training process could be a promising

direction. This could involve incorporating medical ontologies,
semantic representations, or rules-based components to guide the
model’s understanding and generation of healthcare-related SQL
queries. Furthermore, while we focused on question-SQL pairs in
this study, future work could explore the model’s ability to handle
a wider range of SQL queries, including complex queries with
multiple clauses and conditions. Expanding the scope of supported
queries would make the MedT5SQLmodel even more versatile and
valuable for real-world healthcare applications.

Our research acknowledges the dynamic nature of large
language model (LLM) development. While the T5model served as
an effective foundation for our study, we recognize that its relative
performance may have evolved since our initial experiments,
potentially impacting its standing among other state-of-the-art
models. In this work, our primary objective was to investigate
the potential of fine-tuning the T5 model for the specific domain
of healthcare. This targeted approach allowed us to thoroughly
explore the unique challenges and opportunities presented by this
domain, revealing insights that may not be as readily apparent in
broader, comparative studies. We believe that this deep dive into
domain-specific fine-tuning holds considerable value, regardless of
the T5 model’s shifting position in the broader LLM landscape.

While a direct comparison of our fine-tuned T5 model with
other state-of-the-art, fine-tuned LLMs would undoubtedly offer
valuable insights, such an undertaking was beyond the scope of this
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TABLE 10 Evaluation of the SELECT and FROM clauses for MedT5SQL with Adafactor on 20 Epoch.

Generated SQL query Expected SQL query Argument

SELECT MAX (DEMOGRAPHIC.“AGE”)
FROM DEMOGRAPHICWHERE
DEMOGRAPHIC.”MARITAL_STATUS“ =
”MARRIED“ AND
DEMOGRAPHIC.”DOB_YEAR“ > ”2064“

SELECT COUNT (DISTINCT
DEMOGRAPHIC.”SUBJECT_ID”) FROM
DEMOGRAPHICWHERE
DEMOGRAPHIC.“MARITAL_STATUS”= “MARRIED”
AND DEMOGRAPHIC.“DOB_YEAR” < “2064”

Failed SELECT clause:
Incorrect aggregator and column name
Failed WHERE clause:
Incorrect operator

SELECT AVG (DEMOGRAPHIC.“AGE”)
FROM DEMOGRAPHIC
WHERE DEMOGRAPHIC.”ETHNICITY“=
”WHITE“ AND DEMOGRAPHIC.”DIAGNOSIS“
= ”BRADYCARDIA“

SELECT COUNT (DISTINCT
DEMOGRAPHIC.”SUBJECT_ID”)
FROM DEMOGRAPHICWHERE
DEMOGRAPHIC.“ETHNICITY”= “WHITE” AND
DEMOGRAPHIC.“DIAGNOSIS”= “BRADYCARDIA”

Failed SELECT clause:
Incorrect aggregator and column name

SELECT COUNT (DISTINCT
DEMOGRAPHIC.“SUBJECT_ID”)
FROM DEMOGRAPHIC
WHERE DEMOGRAPHIC.”DIAGNOSIS“=
”ACIDOSIS“ AND
DEMOGRAPHIC.”DAYS_STAY“ > ”7“

SELECT COUNT
(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM
DEMOGRAPHIC INNER JOIN DIAGNOSES on
DEMOGRAPHIC.HADM_ID= DIAGNOSES.HADM_ID
WHERE DEMOGRAPHIC.“DAYS_STAY” > “7” AND
DIAGNOSES.“SHORT_TITLE”= “Acidosis”

Failed FROM clause:
Unidentified INNER JOIN
Failed WHERE clause:
Incorrect WHERE condition

SELECT COUNT (DISTINCT
DEMOGRAPHIC.“SUBJECT_ID”)
FROM DEMOGRAPHIC
WHERE DEMOGRAPHIC.”DIAGNOSIS“=
”SYNCOPE; COLLABORATION“ AND
DEMOGRAPHIC.”ADMITYEAR“ ”2145“

SELECT COUNT
(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM
DEMOGRAPHIC INNER JOIN DIAGNOSES on
DEMOGRAPHIC.HADM_ID= DIAGNOSES.HADM_ID
WHERE DEMOGRAPHIC.“ADMITYEAR” < “2145” AND
DIAGNOSES.“SHORT_TITLE”= “Syncope and collapse”

Failed FROM clause:
Unidentified INNER JOIN
Failed WHERE clause:
Incorrect WHERE condition and
operator

SELECT DEMOGRAPHIC.“DIAGNOSIS”,
PROCEDURES.”SHORT_TITLE“
FROM DEMOGRAPHIC INNER JOIN
PROCEDURES on DEMOGRAPHIC.HADM_ID
= PROCEDURES.HADM_ID
WHERE DEMOGRAPHIC.”NAME“= ”Bruce
Harris“

SELECT
DEMOGRAPHIC.”DIAGNOSIS”, DIAGNOSES.“ICD9_CODE”
FROM DEMOGRAPHIC INNER JOIN DIAGNOSES on
DEMOGRAPHIC.HADM_ID= DIAGNOSES.HADM_ID
WHERE DEMOGRAPHIC.“NAME”= “Bruce Harris”

Failed FROM clause:
Incorrect table name resulting in
incorrect INNER JOIN condition

SELECT COUNT (DISTINCT
DEMOGRAPHIC.“SUBJECT_ID”)
FROM DEMOGRAPHIC INNER JOIN
PROCEDURES on DEMOGRAPHIC.HADM_ID
= PROCEDURES.HADM_ID
WHERE DEMOGRAPHIC.”AGE“ ”54“ AND
PROCEDURES.”LONG_TITLE“= ”Squamous
cell carcinoma of oral tongue/sda“

SELECT COUNT
(DISTINCT DEMOGRAPHIC.”SUBJECT_ID”) FROM
DEMOGRAPHICWHERE
DEMOGRAPHIC.“DIAGNOSIS”= “SQUAMOUS CELL
CARCINOMA ORAL TONGUE/SDA” AND
DEMOGRAPHIC.“AGE” < “54”

Failed FROM clause:
Incorrectly generating INNER JOIN
Failed WHERE clause:
Incorrect WHERE condition

TABLE 11 Accuracy evaluation of benchmarking MedT5SQL on two datasets.

# Training Epoc WikiSQL MIMICSQL

ACCLF ACCASM Time
consumed

ACCLF ACCASM Time
consumed

10 epochs 43.63% 94.1% 13 h 58% 97.369% 1 h 20 min

15 epochs 44.2% 94.26% 17 h 62.6% 98.054% 2 h

20 epochs Model did not run 63.1% 98.1% 3 h

50 epochs Model did not run 68.9% 98.572% 7 h 25 min

100 epochs Model did not run 80.63% 98.937% 13 h 40 min

initial study due to limitations on time and resources. However, we
acknowledge the importance of such a comparison and consider
it a crucial direction for future research. In our ongoing work,
we aim to broaden our investigation by conducting comparative
analyses that include other fine-tuned LLMs, further elucidating
the strengths and weaknesses of various approaches in the context
of healthcare.

We also acknowledge that the MIMICSQL dataset, while
valuable, may not fully represent the diversity of EMR data and
clinical queries encountered in real-world healthcare settings.

This could lead to the model underperforming or exhibiting
biases when applied to different patient populations or healthcare
institutions. Additionally, the T5 model, like other large language
models, can inadvertently learn and perpetuate biases present
in its vast pre-training corpus. These biases could manifest as
discriminatory or inequitable behavior in generated SQL queries.
To deal with these biases, expanding and diversifying the training
data to include a wider range of EMR types and clinical scenarios
can help mitigate data bias. Model bias, on the other hand,
can be addressed by developing evaluation metrics specifically
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TABLE 12 MedT5SQL and MedTS performance comparison.

Model ACCLF

MedTS, trained on 100 epochs 78.4%

MedT5SQL, trained on 100 epochs 80.63%

for assessing bias in generated SQL queries and continuously
monitoring the model’s performance for potential biases. Finally,
we argue that exploring techniques for fine-tuning the model to
explicitly reduce biases, such as incorporating fairness constraints
or re-weighting training examples should be an important direction
of future research.

6 Conclusion

In recent times, patient health data is stored digitally in
electronic medical records (EMRs), which healthcare professionals
use to access patients’ historical health information or for clinical
trials. The onset of the global COVID-19 pandemic in early 2020
overwhelmed hospitals with patients, straining healthcare workers
due to a shortage of medical staff relative to the patient load
(Birkmeyer et al., 2020; Kruizinga et al., 2021; Iness et al., 2022).
This crisis underscored the significance of EMRs and underscored
the necessity for a more efficient communication method (Dagliati
et al., 2021). The critical need is for an interface that facilitates
seamless interactions between end users and databases, specifically
a system capable of generating SQL queries in response to human
language inquiries.

To meet this requirement, natural language processing (NLP)
for Text-to-SQL, which allows non-technical users to generate SQL
queries to communicate with databases using natural language
text conversion has emerged as a suitable solution. This research
reviews existing research on Text-to-SQL conversion and proposes
a Text-to-SQL conversion model for EMRs retrieval. In this
work we employ Large Language Model (LLM), namely Text-
to-Text Transfer Transformer (T5) model, a transformer-based
pre-trained model for all text-based NLP tasks, to develop the
Text-to-SQL model.

The proposed model was developed by fine-tunning the
T5 model on MIMICSQL dataset, the first Text-to-SQL dataset
for healthcare domain. The model was benchmarked on two
optimizers, different training epochs, and two datasets to compare
the performance: WikiSQL and MIMICSQL datasets. The model’s
performance was evaluated by comparing the generated query,
in which the model was given a text, against the expected query
of the text. The experiments showed that the model was able to
achieve high accuracy in generating SQL queries from natural
language questions, particularly for medical question-SQL pairs.
Further, evaluations of the performance on each SQL clause have
shown the model’s efficiency in generating these specific query
types. This research demonstrates the potential of fine-tuning the
T5 model to achieve state-of-the-art results for generating SQL
queries from natural language questions in the healthcare domain.
While the model’s current scope is focused on question-SQL pairs,
it provides a solid foundation for future research to expand into
more comprehensive SQL generation tasks.

This research demonstrates the potential of fine-tuning the
T5 model to achieve state-of-the-art results for generating SQL
queries from natural language questions in the healthcare domain.
While the model’s current scope is focused on question-SQL
pairs, it provides a solid foundation for future research to expand
into more comprehensive SQL generation tasks. The MedT5SQL
model, while promising, represents a significant step toward
empowering healthcare professionals with efficient and intuitive
access to EMR data. Its potential real-world deployment in clinical
settings could revolutionize how medical staff interact with patient
information, enabling them to quickly retrieve relevant data
for informed decision-making. However, practical considerations
such as seamless integration with existing Electronic Health
Record (EHR) systems, development of user-friendly interfaces,
and ensuring data security and privacy are crucial for successful
implementation. Additionally, addressing potential limitations of
the model, such as its current focus on question-SQL pairs and
the need to adapt to varying EMR schemas, will be essential to
maximize its impact.

Moving forward, further research should focus on expanding
the model’s capabilities to encompass a broader range of SQL
queries, thoroughly evaluating its performance in real-world
clinical environments, and exploring its potential applications in
areas such as clinical decision support and medical research. By
addressing these challenges and opportunities, MedT5SQL has the
potential to transform the way healthcare professionals leverage
EMR data, ultimately improving patient care and clinical outcomes.
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