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An encoding framework for
binarized images using
hyperdimensional computing

Laura Smets*, Werner Van Leekwijck, Ing Jyh Tsang and
Steven Latré

IDLab, Department of Computer Science, University of Antwerp-imec, Antwerp, Belgium

Introduction: Hyperdimensional Computing (HDC) is a brain-inspired and
lightweight machine learning method. It has received significant attention in
the literature as a candidate to be applied in the wearable Internet of Things,
near-sensor artificial intelligence applications, and on-device processing. HDC
is computationally less complex than traditional deep learning algorithms and
typically achieves moderate to good classification performance. A key aspect
that determines the performance of HDC is encoding the input data to the
hyperdimensional (HD) space.

Methods: This article proposes a novel lightweight approach relying only
on native HD arithmetic vector operations to encode binarized images that
preserves the similarity of patterns at nearby locations by using point of interest
selection and local linear mapping.

Results: Themethod reaches an accuracy of 97.92%on the test set for theMNIST
data set and 84.62% for the Fashion-MNIST data set.

Discussion: These results outperform other studies using native HDC with
di�erent encoding approaches and are on par with more complex hybrid HDC
models and lightweight binarized neural networks. The proposed encoding
approach also demonstrates higher robustness to noise and blur compared to
the baseline encoding.
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1 Introduction

Because of the rising interest in the wearable Internet of Things (IoT), near-sensor

artificial intelligence (AI) applications, and on-device processing, there is a considerable

need for energy-efficient algorithms. Hyperdimensional computing (HDC), and in

particular binary HDC, has been proposed in the literature as a brain-inspired, lightweight,

and energy-efficient method because it has the advantages of few data requirements

(Rahimi et al., 2019), robustness to noise (Kanerva, 2009; Widdows and Cohen, 2015;

Rahimi et al., 2019), low latency (Rahimi et al., 2019), and fast processing (Rahimi et al.,

2019). HDC maps input data to a hyperdimensional (HD) space in which information

is distributed across thousands of vector elements, inspired by the large number of

neurons that store information in the human brain. Since HDC uses simple HD arithmetic

operations, it is computationally less complex than traditional deep learning (DL). HDC

has already been used in several applications, such as speech recognition (Imani et al.,

2017), human activity recognition (Kim et al., 2018), hand gesture recognition (Rahimi

et al., 2016a; Moin et al., 2021; Zhou et al., 2021), text classification (Rachkovskij,

2007), classification of medical images (Kleyko et al., 2017a; Watkinson et al., 2021),

character recognition (Manabat et al., 2019), robotics (Neubert et al., 2019), and time series

classification (Schlegel et al., 2022).
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A key aspect that determines the performance of HDC is

encoding the input data to the HD space, which highly depends

on the type of input data. To date, studies have clearly defined

how text data (Rahimi et al., 2016b), numeric data (Imani et al.,

2017; Kim et al., 2018), and time-series data (Rahimi et al.,

2016a) can be encoded in a simple way using the HD arithmetic

operations. However, what is still missing in the literature is a

uniform framework to encode (binarized) images. Therefore, this

article aims to propose a novel lightweight HD approach to encode

binarized images relying only on native HD arithmetic vector

operations. In this aspect, the current article brings forward the

following novelties:

1. Local linear mapping is introduced as a novel mapping

method for numeric data, whereby nearby numerical values

are represented by similar HD vectors, and all other values

by orthogonal HD vectors. In particular, we demonstrate its

application for encoding positions in 2D images;

2. A parameterized framework to encode binary images into HD

vectors is defined which uses point of interest (POI) selection as

a local feature extractionmethod and unifies existing approaches

for native HD encoding of images;

3. The proposed framework is applied on benchmark data sets,

reaching 97.92% classification accuracy on MNIST and 84.62%

accuracy on Fashion-MNIST.

This article is organized as follows: It begins with a brief

description of the HDC model for classification. Afterward, local

linear mapping for numeric data is defined and its application

to 2D position encoding is illustrated. This is then followed by

an overview of encoding approaches for binarized images found

in the literature, the introduction of our parameterized unified

framework, and a description of the performed experiments to test

the proposed encoding framework. Section 3 presents the results

which are discussed in the fourth section. Finally, the last section

will concern the conclusions of the article.

2 Materials and methods

2.1 Hyperdimensional computing

HDC is a mathematical framework using HD vectors [i.e.,

vectors with very high dimension typically up to ten thousand,

also called hypervectors (HVs)] and simple HD arithmetic vector

operations to represent data. The focus of this article is on dense

binary HVs (i.e., the elements are 0 or 1 with an equal probability

of occurrence of both values) of dimension 10,000 (Kanerva, 2009;

Kleyko et al., 2018). The analysis of data relies on the similarity

between HVs which is calculated using the normalized Hamming

distance between two binary HVs v1 and v2
1:

s(v1, v2) = 1−
h(v1, v2)

D
(1)

1 A list of used symbols can be found in Supplementary Table S1.

with s the similarity between v1 and v2, D the HV dimension and h

the Hamming distance between v1 and v2:

h(v1, v2) =

D
∑

d=1

(v1[d] XOR v2[d]). (2)

The HD arithmetic vector operations include:

(a) bundling⊕: B ×H → B: (B, v) → B+ v where B = N
D and

H = {0, 1}D (i.e., element-wise addition) after which the bundle B

can be binarized into the HV v with the majority rule [.] :B → H:

B → v according to:

v[d] = [B[d]] =















1 ifB[d] > n
2

0 ifB[d] < n
2

rand(0, 1) ifB[d] = n
2

(3)

with n the number of HVs bundled in B and rand(0, 1) means that

the component v[d] is randomly assigned to 0 or 1 in the presence

of ties;

(b) binding⊗:H×H → H: (v1, v2) → v1 XOR v2; and

(c) permutation ρ:H → H (i.e., cyclic shift in binary HDC).

Figure 1 gives a schematic overview of the framework of HDC

in which twomain building blocks can be distinguished: an encoder

and a classifier. The encoder is responsible for mapping the input

to an HV. Typically, it maps each input value of a sample to an

atomic HV that is stored in (continuous) item memories ((C)IM).

This procedure is called mapping and will be explained in Section

2.2. Then, different atomic HVs are combined using the HD vector

operations to obtain one sample HV for each input.

Commonly, an input sample f having n features is encodedwith

the so-called record-based encoding (Rachkovskij, 1990; Kussul

and Rachkovskij, 1991; Imani et al., 2018) as Figure 2: Each feature

(j = 1...n) is assigned a random HV to represent the feature ID

which is stored in an IM. Feature values are translated inHVswith a

CIM that is created with linear mapping (see Section 2.2.2) (Rahimi

et al., 2016a; Kleyko et al., 2018). Next, each feature ID HV vj is

bound with the HV representing its value vf [j]. Finally, these ID-

value bound pairs of all features are bundled together to form the

sample bundle S by initializing

B0 = {0}D (4)

and bundling each bound pair vf [j] ⊗ vj one at a time:

Bj = Bj−1 ⊕ (vf [j] ⊗ vj). (5)

The sample bundle S is then simply:

S = Bn. (6)

For notation purposes, this iterative bundling (Equations 4–6)

will be written in short as:

S =

n
⊕

j=1

(vf [j] ⊗ vj) (7)

Finally, the sample bundle (Equation 7) is binarized into the

HV s = [S] with the majority rule (Equation 3).

As the second main building block, the classifier has two modes

of operation: (1) during training, the sample HVs and associated
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FIGURE 1

Schematic overview of the HDC framework in which two main building blocks can be distinguished: an encoder and a classifier.

FIGURE 2

Schematic overview of the record-based encoding (Rachkovskij, 1990; Kussul and Rachkovskij, 1991; Imani et al., 2018) with an IM for the feature IDs
and a CIM for the feature values.

class labels are used to produce class prototypes by first bundling all

sample HVs belonging to the same class and then updating these

class bundles using misclassified samples; and (2) during inference,

a sample HV is compared with each of the class prototypes and

predicts the corresponding class label by selecting the class with

highest similarity (Equations 1, 2). Different variants of training

methods exist for which the interested reader is referred to our

previous work (Smets et al., 2023) or the Supplementary material.

Since the encoder is a crucial part of the system, and a uniform

framework to encode (binarized) images is still lacking in the

literature, we propose a novel encoding framework (Section 2.3.2).

2.2 Data mapping techniques

2.2.1 Orthogonal mapping
Orthogonal mapping assigns a randomly chosen atomic HV

to each possible value present in the data. These random HVs are

pseudo-orthogonal due to the high dimensionality which converges

to exact orthogonality with increasing dimensionality (Kleyko et al.,

2022). This type of mapping is suitable for nominal data where each

value is independent from other values.

2.2.2 Linear mapping

In the case of ordinal or discrete data, there is a natural ordering

of levels or values such that closer levels should be mapped to more

similar HVs than levels further apart, and similarity-preserving

HVs are preferred for this type of data. Therefore, linear mapping

of levels to atomic HVs is applied (Rahimi et al., 2016a; Kleyko

et al., 2018). Namely, the lowest level is assigned a random atomic

HV, whereafter each level’s atomic HV is obtained by flipping
D/2
L−1 bits in the atomic HV of the previous level, where L is the

number of levels (without flipping a bit that has already been

flipped before). Similarly, continuous data can be mapped to HVs

with linearmapping after being quantized into a predefined number

of discrete levels.

As an example, Figure 3 illustrates the application of linear

mapping for a feature with discrete values ranging from −100 to

100 with steps of 10 and thus 21 levels. It shows the similarity

of values to the lowest level (feature value = −100) that decreases

linearly up until orthogonality (similarity = 0.5) and the similarity

of values to the feature value equal to −30 that decreases linearly

for smaller and larger feature values.

2.2.3 Local linear mapping

Encoding numeric data with original linear mapping results in

small differences between the HVs of two adjacent values when

working with a relatively large number of levels, and even values

that are far apart are always somewhat similar (s > 0.5). Therefore,

we introduce local linear mapping which splits the range of values

in S splits such that a smaller number of HVs (i.e., L−1
S + 1 HVs)

is present in each split to which linear mapping can be applied. As
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FIGURE 3

Example of linear mapping (Rahimi et al., 2016a; Kleyko et al., 2018)
for a feature with discrete values ranging from −100 to 100 with
steps of 10 and thus 21 levels. The similarity of each feature value’s
level hypervector to the lowest level hypervector (feature value
= −100) and the hypervector for the feature value of −30 is shown.

such, there are S + 1 edge vectors, i.e., v0, v L−1
S
, v 2(L−1)

S
, ...vL−1. The

HV of the lowest level v0 is assigned randomly after which linear

mapping is applied to the split between v0 and v L−1
S

(Section 2.2.2)

such that these two edge vectors are D/2 bits apart. The latter is

then used to apply linear mapping in the following split, and so

on. Consequently, two adjacent values within one split will have

a larger difference in HVs [i.e., D/2
((L−1)/S)

different bits] compared

to when applying original linear mapping to the whole range of

values. Additionally, an HV will be similar to HVs within a certain

range from the considered HV and dissimilar, thus approximately

orthogonal, to all HVs further away from the considered HV (i.e.,

outside that certain range). As a result, small differences in values

are emphasized and large differences are ignored. Note that local

linear mapping with 1 split or L splits correspond to the original

linear mapping (Section 2.2.2) and orthogonal mapping (Section

2.2.1), respectively.

Figure 4 illustrates the concept of the proposed local linear

mapping with four splits and thus six vectors in one split since

there are 21 levels (i.e., 21−1
4 + 1). In each of the four splits (e.g.,

between the edge vectors for values −100 and −50), original linear

mapping is applied. Two adjacent values within one split will be

highly similar; an HV will be similar to vectors at nearby positions

to the left and right; an HV is orthogonal to vectors further to the

left and right.

Local linear mapping has some resemblance to a technique

introduced by Rachkovskij et al. (2005) and Neubert and Schubert

(2021) for encoding position in images, which concatenates

orthogonal edge vectors Bleft and Bright to obtain the position

vectors within one split as [Bleft[1 :α],Bright[α+ 1 : end]]. The ratio

of concatenation α depends on the distance δ of the considered

pixel to both edge vectors, and is equal toD·
δright

δleft+δright
. However, the

decrease in similarity for pixels further away from the considered

pixels is not as gradual as with the proposed local linear mapping.

This is shown in Figure 5 which illustrates the difference in

similarity between all pixels’ position HV and the position HV of

the pixel at location (21,11) for an image of size 28-by-28. The

position HVs are all encoded as vx ⊗ vy of which the x and y

positions are mapped to vectors vx and vy using the different types

of mapping: (1) orthogonal mapping, (2) linear mapping (Rahimi

FIGURE 4

Example of local linear mapping with four splits for a feature with
discrete values ranging from −100 to 100 with steps of 10 and thus
21 levels and 21−1

4 + 1 = 6 levels in one split. The similarity of each
feature value’s level hypervector to each edge hypervector (feature
value = −100, −50, 0, 50, and 100) is shown.

et al., 2016a; Kleyko et al., 2018), (3) the concatenation approach of

Rachkovskij et al. (2005) and Neubert and Schubert (2021) using 10

edge vectors and (4) our proposed local linear mapping using nine

splits and thus also 10 edge vectors. We believe that the decrease in

similarity for local linear mapping in Figure 5D is more intuitive

than for the concatenation approach (Rachkovskij et al., 2005;

Neubert and Schubert, 2021) (Figure 5C). Furthermore, local linear

mapping builds further on the concept of linear mapping which is

commonly used in HDC encoding approaches. In this aspect, it

is also similar to float code, which builds further on thermometer

code by making the similarity decay local (Rachkovskij et al., 2005;

Frady et al., 2021).

2.3 Encoding techniques for binary images

2.3.1 Related work
Several ways to encode binarized images with HDC have been

proposed in the literature and can be divided into two main

categories: (1) native HDC, i.e., end-to-end use of native HD

vector operations (from raw pixel to output), and (2) hybrid HDC,

i.e., external feature extraction methods are used in combination

with HDC. Table 1 gives an overview of the different encoding

approaches which are discussed in the following section.

2.3.1.1 Native HDC
Assume an image I of size w × h is given as an input which

is binarized, denoted here as Ibin. The binarized image is either

flattened into an array p of length w ∗ h where p[x] is the value

of the pixel in the array p at position x or used in its original 2D

format where Ibin[x, y] is the value of the pixel in the binary image

Ibin at position (x, y).

The native HDC encoding methods can be further divided

into two categories depending on whether the position is encoded

while preserving similarity between nearby positions (i.e., linearly

mapped) or not (i.e., orthogonally mapped).

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2024.1371518
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Smets et al. 10.3389/fdata.2024.1371518

FIGURE 5

Similarity between all pixel’s position vector and the position vector of the pixel at location (21,11) for an image of size 28-by-28 that are encoded as
vx ⊗ vy of which the x and y positions are mapped to vectors with (A) orthogonal mapping, (B) linear mapping (Rahimi et al., 2016a; Kleyko et al.,
2018), (C) the concatenation approach of Rachkovskij et al. (2005) and Neubert and Schubert (2021) using 10 edge vectors for each axis (dotted lines)
and (D) our proposed approach of local linear mapping with nine splits and thus 10 edge vectors (dotted lines).

TABLE 1 Summary of the already proposed approaches for the encoding

of binarized images.

Description Encoded image vI

Native Ortho-

gonal

Permutation 1Da [
⊕w∗h

x=1(ρ
p[x]vx)]

2Db [
⊕w

x=1

⊕h
y=1(ρ

x
Xρ

y
YvIbin[x,y])]

Binding 1Dc [
⊕w∗h

x=1(vx ⊗ vp[x])]

2Dd [
⊕w

x=1

⊕h
y=1(vx ⊗ vy ⊗ vIbin[x,y])]

Both 1De [
⊕(w∗h)−n+1

x=1 (vx ⊗
⊗n−1

j=0 (ρ
jvx[i+j]))]

Linear Binding 2Df [
⊕w

x=1

⊕h
y=1(vx ⊗ vy ⊗ vIbin[x,y])]

Hybrid Feature extraction’s outputg voutput

Record-based feature encodingh [
⊕n

i=1(vf [i] ⊗ vi)]

The table includes a short description of the type of encoding, and the formula to obtain the

encodedHV of the image. The symbols used in this table are listed in Supplementary Table S1.
aKleyko et al. (2016, 2017b), Manabat et al. (2019), and Hassan et al. (2022).
bKussul et al. (2006), Mitrokhin et al. (2019), Kleyko et al. (2020), and Rachkovskij (2022).
cYang and Ren (2017), Ma et al. (2021), Watkinson et al. (2021), Bosch et al. (2022), Duan

et al. (2022a), and Ma and Jiao (2022).
dKelly et al. (2013).
eKhaleghi et al. (2022).
fKussul et al. (1992), Gallant and Culliton (2016), and Weiss et al. (2016).
gYilmaz (2015), Kleyko et al. (2017a), Karvonen et al. (2019), and Zou et al. (2021a).
hKussul and Rachkovskij (1991).

2.3.1.1.1 Orthogonally mapped position vectors

(a) Permutation. When considering the flattened image, a

unique random HV is assigned to each pixel position in the array p

after which the obtained position HV vx is shifted with one position

if the corresponding pixel value p[x] is one and not shifted if it is

zero (Kleyko et al., 2016, 2017b; Manabat et al., 2019; Hassan et al.,

2022). To encode the 2D binarized image, two unique permutations

ρX and ρY are assigned to represent the x- and y-axis of the

image, respectively. These permutations are applied x and y times,

respectively, to the pixel value HV vIbin[x,y] (Kussul et al., 2006;

Mitrokhin et al., 2019; Kleyko et al., 2020; Rachkovskij, 2022).

(b) Binding. A unique random HV is assigned to each possible

pixel value (i.e., zero and one). Thereafter, the pixel value HV vp[x]

or vIbin[x,y] is bound with its corresponding position HV vx or

(vx ⊗ vy) for the flattened image (Yang and Ren, 2017; Ma et al.,

2021; Watkinson et al., 2021; Bosch et al., 2022; Duan et al., 2022a;

Ma and Jiao, 2022) or 2D image (Kelly et al., 2013), respectively,

which are mapped orthogonally.

(c) Combination of permutation and binding. In analogy

to the n-gram encoding in language identification applications

(Rahimi et al., 2016b), Khaleghi et al. (2022) apply a sliding

window of length n to the image. The window is then encoded

by binding all pixel value HVs which are permuted based on

the position in the window, i.e., the first pixel value’s HV is

not permuted, the second is permuted once, the third is twice

permuted, etc. This could be seen as extracting local features

from the image. To account for the global position of these

features in the image, each window HV is bound with a random

position HV.

The encoding approaches mentioned so far represent similar

pixels at nearby positions by dissimilar HVs, because of the

property of permutation that a permuted HV is dissimilar to its

original, and because of orthogonal position HVs. Hence, these
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encoding approaches do not preserve similarity which might be

crucial to solving an image classification task.

2.3.1.1.2 Linearly mapped position vectors

Kussul et al. (1992), Gallant and Culliton (2016), and Weiss

et al. (2016) apply linear mapping such that nearby x and y positions

are represented by similar HVs. The image is then encoded using

the binding operation for a 2D image, as mentioned in Section

2.3.1.1.1(b).

An alternative approach to preserving similarity for nearby

positions is proposed by Komer et al. (2019), Voelker et al. (2021),

and Frady et al. (2022) whomake use of fractional binding. For this,

two randomHVs x and y are assigned to represent the x- and y-axis,

respectively. The (x, y) position is then constructed as xx⊗yy where

xx =
⊗x

n=1 x, i.e., the HV x is repeatedly bound with itself x times.

This bound pair representing the position is then bound with the

pixel value HV vIbin[x,y]. However, this type of position encoding

cannot be applied to binary HVs since binding in binary HDC is

performed with XOR such that a binary HV bound with itself for

an even or odd amount of times results in an HV containing all

zeros or the original binary HV, respectively.

2.3.1.2 Hybrid HDC
Instead of encoding the raw image using HD vector operations,

external non-HD-based feature extraction methods are used. These

approaches can be subdivided into two categories: (a) those that

use the output layer of a neural network (NN) or cellular automata

(CA) as single feature HV to represent the image (Yilmaz, 2015;

Kleyko et al., 2017a; Karvonen et al., 2019; Zou et al., 2021a);

and (b) those that use external methods (NN or other) to extract

multiple features which are encoded via the record-based encoding

(Figure 2) (Kussul and Rachkovskij, 1991).

2.3.2 Proposed unified framework
Figure 6 gives an overview of the proposed approach to

encode binarized images which can be divided into four steps: (1)

binarization, (2) POI selection and patch creation around POIs, (3)

patch vector encoding, and (4) image vector encoding.

2.3.2.1 Binarization
As a first step, the pixel values of an input image I are binarized

using a predefined binarization threshold Tbin:

Ibin[x, y] =

{

1 if I[x, y] > Tbin

0 if I[x, y] ≤ Tbin

(8)

2.3.2.2 POI selection and patch creation around POIs
Points of interest (POIs) are selected as pixels with Ibin[x, y] =

1. Thereafter, a square patch P of predefined size z is drawn around

each POI (in Figure 6, z = 3).

2.3.2.3 Patch vector encoding
Each pixel in the patch is encoded as the binding of three

vectors: the HV representing its binary value P[x, y] (stored in IM,

one random vector for value 0 and another random vector for value

1), the HV corresponding to its x position in the patch and the

one for the y position in the patch. The x and y position HVs are

stored in two separate CIMs (CIMx,z and CIMy,z), both containing

z vectors that are mapped with orthogonal mapping. The resulting

patch vector for the POI with position (x,y) is then obtained by

bundling all pixel vectors and binarizing the obtained bundle with

majority rule (Equation 3):

vP@(x,y) = [

z
⊕

i=1

z
⊕

j=1

(vx=i ⊗ vy=j ⊗ vP[i,j])] (9)

for all (x, y) ∈ P . The encoding of patch vectors around POIs can

be seen as extracting local features of the image in analogy to Kussul

and Baidyk (2004), Kussul et al. (2006), and Curtidor et al. (2021),

but here only native HD arithmetic operations are used instead of

relying on an NN-based feature extractor.

2.3.2.4 Image vector encoding
After obtaining the patch vectors of all POIs with Equation 9,

each patch vector is bound with the HVs representing the

corresponding POI’s x and y position in the original image I (stored

in CIMx,w and CIMy,h) to capture the global positional information

of the extracted local features. The binarized bundling of all these

patch vectors bound with its POI’s position results in the image

vector:

vI = [
⊕

(x,y)∈P

(vP@(x,y) ⊗ vx=x ⊗ vy=y)] (10)

The CIMx,w and CIMy,h are mapped with our proposed local

linear mapping (Section 2.2.3) instead of original linear mapping to

capture small dependencies in position while ignoring large ones.

2.4 Experiments

The abovementioned proposed approach to encode binarized

images is tested on two known, publicly available data sets: (1)

MNIST data set (LeCun et al., 1998) which includes 70,000 28-

by-28 grayscale images of ten different handwritten digits; and (2)

Fashion-MNIST data set (Xiao et al., 2017) containing 7,000 28-by-

28 grayscale images of fashion products for each of ten categories,

i.e., 70,000 images in total. Both data sets are split into a training

set of 60,000 images (6,000 for each class) and a test set of 10,000

images (1,000 for each class). The pixel values range from 0 to 255.

2.4.1 Local linear mapping

At first, the concept of local linear mapping is tested using pixel-

wise encoding on the whole image, without using POI encoding.

The image is thus encoded as:

vI = [

w
⊕

x=1

h
⊕

y=1

(vx ⊗ vy ⊗ vIbin[x,y])] (11)

The number of splits S in the CIMs storing vx and vy is

treated as a hyperparameter and tested for the settings S =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 28} of which the second from last is the

maximal number of splits possible for a 28-by-28 image, since

otherwise only two vectors would be in a particular split and thus

will be orthogonal. Note again that using only one split corresponds

to the traditional linear mapping (Section 2.2.2) and will be treated
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FIGURE 6

Schematic overview of the proposed unified encoding framework for a training sample of the MNIST data set with size 28-by-28 using a patch size of
3-by-3 around the POIs (z = 3, h = 28 and w = 28).

as the baseline HDC framework, and using 28 splits corresponds

to orthogonal mapping (Section 2.2.1). The images are binarized

following Equation 8 with the binarization threshold equal to zero

(i.e., Tbin = 0).

2.4.2 Proposed unified framework
In the second part of the experiments, local linear mapping

is applied in combination with the POI encoding (Equation 11).

This encoding approach requires determining the settings of two

hyperparameters: the number of splits for local linear mapping S

and the patch size z around each POI. All possible combinations

of the following settings of the two hyperparameters are tested:

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 28} and z = {3, 5, 7}. The images are again

binarized following Equation 8 with the binarization threshold

equal to zero (i.e., Tbin = 0).

2.4.3 Hyperparameter selection
The different combinations of settings are tested using 10-fold

cross-validation (CV) on the training set. This means that the

60,000 training images are split into ten parts. The algorithm is

trained on 54,000 images and validated on the remaining 6,000

images which is repeated ten times each time taking a different set

of 6,000 validation images. The training procedure is performed

iteratively for a maximum of 1,000 iterations while saving the

classifier with the best accuracy. After every 100 iterations, we

evaluate whether this best training accuracy exceeds 99% accuracy.

If this is the case, the training procedure is terminated and the

classifier with the best accuracy is used on the validation set.

The performance of the HDC classifier for each combination

of hyperparameter settings is reported as the average validation

accuracy over the ten folds of the 10-fold CV.

2.4.4 Evaluation on the test set
The combination of hyperparameter settings yielding the

largest average validation accuracy is selected for both the MNIST

and Fashion-MNIST data sets. These settings are used to train

the classifier using the entire training set (i.e., all 60,000 images).

Contrary to the CV experiments (Section 2.4.3), the training

procedure for MNIST is only terminated when the best training

accuracy exceeds 99.9% accuracy, and the maximal amount

of iterations in the training procedure for Fashion-MNIST is

increased to 2,000 iterations. Afterward, the trained classifier is

tested on the 10,000 test images. This process is repeated for

ten independent runs across which the average test accuracy

is calculated.

2.4.5 Robustness analysis
To test the robustness to noise and blur of the proposed

encoding approach, the MNIST-C data set which is proposed as

a robustness benchmark for computer vision by Mu and Gilmer

(2019) is used. This data set includes the 60,000 training and 10,000

test images of the original MNIST data set (LeCun et al., 1998)

to which several different corruptions are applied, including shot

noise, impulse noise, glass blur, motion blur, and spatter which are

of particular interest in the current article to test noise and blur

robustness. The HDCmodel with the proposed encoding is trained

on the original 60,000 training images (i.e., without corruptions)

with the baseline setting of hyperparameters (S = 1 and no POI

selection, Equation 10) and the setting yielding the best validation

accuracy after 10-fold CV (Section 2.4.3, Equation 11). Both trained

HDC classifiers are then tested on the five selected corrupted test

sets of 10,000 images for which a test accuracy averaged over ten

independent runs is calculated.

3 Results

3.1 Local linear mapping

The results of the experiments testing the effect of the

number of splits in local linear mapping using pixel-wise encoding

(Equation 10) are presented in light blue in Figure 7 (see also

Supplementary Table S2). The figure shows the accuracy on the

validation set averaged over the ten folds of the 10-fold CV for
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FIGURE 7

Accuracy (%) on the validation set averaged over the ten folds of 10-fold cross-validation for the (A) MNIST and (B) Fashion-MNIST data sets, for the
di�erent settings of the number of splits S used in local linear mapping, and for pixel-wise (Equation 10) and POI (Equation 11) encoding with
di�erent patch sizes z.

both the MNIST and Fashion-MNIST data sets. As mentioned

previously, the number of splits equal to 1 (S = 1) is treated

as our baseline since this does not use local linear mapping nor

POI encoding. As such, the baseline average validation accuracy is

60.78% for MNIST and 62.65% for Fashion-MNIST.

An increase in performance is seen when increasing the

number of splits used in local linear mapping from 1 to 9.

The largest validation accuracy is 93.21% for MNIST for S =

9 and 80.98% for Fashion-MNIST for S = 28, which is

an increase of 32.43 and 18.33%, respectively. In the case of

MNIST, the classifier with orthogonal mapping (S = 28) reaches

an accuracy that is slightly lower than the largest obtained

accuracy, while this setting yields the highest accuracy for

Fashion-MNIST.

3.2 Proposed unified framework

Figure 7 also shows the results illustrating the effect of

the two hyperparameters (i.e., the number of splits S in

local linear mapping and the patch size z in POI encoding)

for our proposed encoding approach (Equation 11, see also

Supplementary Table S3). The figure again includes the accuracy

on the validation set averaged over the ten folds of the

10-fold CV for both the MNIST and Fashion-MNIST data

sets.

Similar to the previous section, there is a clear trend of

increasing validation accuracy with an increasing number of splits

S used in local linear mapping up until S = 9, followed by a small

drop for S = 28. An increase in performance is also seen with

increasing patch size z. Interestingly, the influence of the number

of splits S on the performance seems to decrease for a larger patch

size z.

The best achieved validation accuracy is 97.56% for MNIST

with S = 4 and z = 7 and 85.28% for Fashion-MNIST with

S = 8 and z = 7. This corresponds to an increase in performance

of 36.78% for MNIST and 22.63% for Fashion-MNIST compared

to their baseline accuracy (S = 1 and pixel-wise encoding in

Figure 7). These settings for the two hyperparameters yielding the

best validation accuracy are used to test the HDC classifier on the

test set in the next section.

3.3 Evaluation on the test set

Table 2 shows the results obtained when setting the

hyperparameters to the values yielding the best validation

accuracy obtained in the previous section (Section 3.2). The table

presents the accuracy on the entire training set, the accuracy on

the unseen test set and the number of iterations needed to obtain

the best training accuracy, averaged over ten independent runs. An

average accuracy of 97.92% is reached on the test set of MNIST. For

the Fashion-MNIST data set, an average test accuracy of 84.62%

is obtained.

3.4 Robustness analysis

Figure 8 sets out the results obtained during the analysis of

robustness to noise and blur. The figure shows the accuracy on

the original (i.e., identity corruption and red line in the figure)

and five selected corrupted test sets, averaged over ten independent

runs for the MNIST-C data set with the hyperparameters set to the

baseline setting (S = 1 and no POI selection, Equation 10) and the

setting yielding the best validation accuracy with 10-fold CV (S = 4

and z = 7, Equation 11 and Section 3.2). More detailed results

can be found in the Supplementary Table S4. To conclude, it can

be seen that the best hyperparameters setting achieves an average

test accuracy of 73.20% for the five corrupted test sets, which is an

increase of 39.77% compared to the baseline setting which achieves

33.44% average test accuracy.

4 Discussion

4.1 Analysis of results

The results in Figure 7 for pixel-wise encoding show that the

proposed local linear mapping for position encoding outperforms

linear mapping. More specifically, there is an increase in

performance with an increasing number of splits used in local

linear mapping. This interesting finding indicates the importance

of discriminating better between smaller differences in position in

the image instead of larger differences. This is a result of the splits

in local linear mapping that represent two positions that are far
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TABLE 2 Accuracy (%) on the full training and unseen test set and the number of iterations needed to reach the best training accuracy, averaged over ten

independent runs for the MNIST (S = 4 and z = 7) and Fashion-MNIST (S = 8 and z = 7) data sets.

MNIST Fashion-MNIST

Training
accuracy

Test accuracy Iteration Training
accuracy

Test accuracy Iteration

99.92 (± 0.02) 97.92 (± 0.07) 509 (± 90) 87.60 (± 0.01) 84.62 (± 0.01) 1606 (± 266)

Data are mean (±standard deviation).

FIGURE 8

Accuracy (%) on the identity test set and five selected corrupted test
sets of MNIST-C, averaged over ten independent runs with the
hyperparameters set to the baseline setting (S = 1 and no POI
selection) and the setting yielding the best validation accuracy with
10-fold CV (S = 4 and z = 7). In red is the accuracy on the identity
test set with the optimal hyperparameters.

apart with orthogonal HVs, and only HVs of close positions are

similar. By contrast, in linear mapping, the HVs of both close and

far positions have a certain degree of similarity.

Another finding that stands out from the results is a remarkable

increase in performance when encoding patches around POIs

compared to pixel-wise encoding which becomes even more

prominent with an increasing patch size (Figure 7). Several factors

could explain this observation. Firstly, background pixels are

ignored with POI encoding, limiting unnecessary information.

Secondly, local features are extracted around each POI such that

the local neighborhood of each POI is taken into account.

In addition, employing local linear mapping to encode the

global position of POIs in the image improves the performance

compared to using linear mapping (Figure 7). This finding is in

line with the results obtained with pixel-wise encoding and can be

explained similarly.

Finally, the results of the robustness analysis indicate that

the proposed encoding approach after hyperparameter selection

shows higher robustness to noise and blur than the baseline HDC

encoding approach (Section 4.3 and Supplementary Table S4).

4.2 Comparison to the state-of-the-art

4.2.1 MNIST data set
Figure 9A compares our obtained result for MNIST (i.e.,

97.92%) to the results of other studies found in the literature (see

also Supplementary Table S5).

The proposed approach of POI encoding with local linear

mapping outperforms all methods categorized in Native HDC.

This includes the methods applying the permutation operation

to encode the position of pixels in the flattened image [Section

2.3.1.1.1(a)], i.e., Manabat et al. (2019) and Hassan et al.

(2022) report an accuracy of 79.87 and 86%, respectively. Our

obtained result for MNIST is also better compared to several

studies using the binding operation for position encoding in

the flattened image [Section 2.3.1.1.1(b)]. Namely, Chuang et al.

(2020), Chang et al. (2021), Hernández-Cano et al. (2021),

Hsieh et al. (2021), Kazemi et al. (2021), Zou et al. (2021b),

Bosch et al. (2022), Duan et al. (2022a,b), and Ma and Jiao

(2022) report baseline accuracies ranging from 85 to 92%. In

addition, the n-gram-based encoding method to extract local

features by Khaleghi et al. (2022) reaches an accuracy of

94.0% which we outperform by using local linear mapping

instead of orthogonal mapping to encode global positional

information.

Hernández-Cano et al. (2021) propose OnlineHD that can

increase their baseline performance of 91 to 97%, which is lower

than our obtained accuracy. In OnlineHD, the baseline HDC

training procedure is extended by updating the HDC model

depending on how similar a sample is to the existing model.

As such, the training procedure becomes more complex due

to floating-point multiplications. OnlineHD is categorized as

Adaptive HDC.

Other studies use the HDC framework in combination with

additional non-HD methods (Hybrid HDC, Section 2.3.1.2), such

as elementary CA which is used to derive the high-dimensional

vector by Karvonen et al. (2019) resulting in an accuracy of

74.06%. Zou et al. (2021a) extracts low-level features with an

SNN before using HDC reaching an accuracy of 90.5%. Duan

et al. (2022a) and Yan et al. (2023) employ binary neural

networks (BNN) in combination with HDC reaching an accuracy

of 94.74 and 97.25%, respectively. Random Fourier Features

(RFF) are used by Yu et al. (2022) for the encoding of the

images resulting in 95.4% accuracy. Traditional NNs have also

been combined with HDC resulting in accuracies of 92.72%

(Duan et al., 2022b), 94.8% (Liang et al., 2022), and 96.71%

(Ma and Jiao, 2022). Zou et al. (2021b) report an accuracy of

97.5% by extending the HDC encoding framework with manifold

learning. Our proposed encoding approach using only native

HD vector operations outperforms these hybrid HDC methods.

Nevertheless, other hybrid HDC methods obtain better results.

Poduval et al. (2021) extract features from the original images

and apply record-based encoding obtaining a performance of

99%. Kussul and Baidyk (2004) and Kussul et al. (2006) reach

a higher accuracy of 99.2 and 99.5% with the NN-based local

feature extraction. Rachkovskij (2022) extracts local binary pattern
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FIGURE 9

Comparison of our proposed framework to the results of studies found in the literature. (A) MNIST. (B) Fashion-MNIST. Our obtained accuracy of
97.92% for MNIST and 84.62% for Fashion-MNIST are highlighted with the red dot and red line. The results are categorized into the categories: (1)
Native HDC, (2) Our proposed framework, (3) Adaptive HDC, (4) Hybrid HDC, (5) Multi-bit HDC, (6) Traditional Machine Learning, (7) Binary Neural
Networks, and (8) Binary Spiking Neural Networks.

(LBP) features, proposes a shift-equivariant similarity-preserving

scheme for position encoding, and uses a large margin perceptron

for classification reaching an accuracy of 98.5% with a vector

dimension of 10,000.

Several works increase the complexity of HDC by using multi-

bit representations (i.e., Multi-bit HDC) instead of single-bit (i.e.,

binary). Imani et al. (2019), Chuang et al. (2020), Kazemi et al.

(2021), Kim et al. (2021), and Yu et al. (2022) use vectors with

more complex elements achieving 95.5, 96.6, 98, 98.09, and 98.2%,

respectively. With only the latter three achieving slightly higher

accuracy than ours, we can conclude that our proposed binary,

native HDC method using local linear mapping and POI encoding

achieves comparable results with these more complex multi-bit

HDC methods.

Even though this article aims to improve native HDC encoding

of binarized images, we compare the proposed encoding method

to lightweight Non-HDC methods. Results for a wide range of

traditional machine learning (ML) methods including decision

tree, multi-layer perceptron, and support vector classification are

reported by Xiao et al. (2017). The proposed HDC framework

outperforms all these ML methods with accuracies ranging from

52.4 to 97.8%, including the AdaBoost classifier of Kim et al. (2017).

Several studies employ BNNs to solve the MNIST classification

task obtaining accuracies in the range of 95.7 and 99.04% (Cheng

et al., 2015; Courbariaux et al., 2015, 2016; Kim and Smaragdis,

2015; McDanel et al., 2017; Umuroglu et al., 2017; Yang et al., 2017;

Chi and Jiang, 2018; Ghasemzadeh et al., 2018; Jokic et al., 2018;

Narodytska et al., 2018; Sun et al., 2018; Valavi et al., 2018; Simons

and Lee, 2019; Yan et al., 2023). Finally, binary spiking neural

networks (SNN) reach accuracies of 97.0–98.6% (Kheradpisheh

et al., 2021; Mirsadeghi et al., 2023). To conclude, our obtained

result of 97.92% for the MNIST data set outperforms native

HDC methods and is on par with more complex hybrid HDC or

lightweight non-HDC methods.

4.2.2 Fashion-MNIST data set
Figure 9B compares our obtained result for Fashion-MNIST

(i.e., 84.62%) to the results of other studies found in the literature

(see also Supplementary Table S5).

There are not as many studies available for the Fashion-MNIST

data set as for MNIST. Duan et al. (2022a,b) report an accuracy of

79.24 and 80.26% forNative HDC. UsingHybrid HDCmethods, Yu

et al. (2022) report an accuracy of 84.0% using RFF and reach 87.4%

with more complex elements in the HVs. Duan et al. (2022a,b)

reach a slightly higher accuracy of 85.47 and 87.11% by mapping

the HDC model to an equivalent (B)NN. We can conclude that

our proposed HDC method outperforms the native HDC methods

but achieves a slightly lower accuracy than the hybrid and multi-bit

HDC methods.

In the same way as for the MNIST data set, we compare our

obtained result for the Fashion-MNIST data set to lightweightNon-

HDC methods. Xiao et al. (2017) report accuracies in the range of

51.1–89.7% for several traditional ML methods. The performance

of binary SNN ranges from 87.3 to 92.0% (Kheradpisheh et al.,

2021; Mirsadeghi et al., 2023). While we are not able to outperform

the binary SNNs, our obtained result of 84.62% for Fashion-MNIST

is seen to be on par with traditional ML methods.

4.3 Robustness analysis

After selecting the hyperparameters yielding the best validation

accuracy with a 10-fold CV, the proposed encoding approach is

more robust to images corrupted with noise and blur compared

to the baseline encoding approach (Supplementary Table S4).

Especially for the shot noise and impulse noise corruption, the

average test accuracy is fairly equivalent to the average test accuracy

achieved on non-corrupted images. For spatter, the average test

accuracy is slightly lower but the proposed approach is still able

to identify around 81.22% of the test images accurately. The

average test accuracy drops the most for the glass blur and

motion blur corruption where the proposed approach can classify

respectively 57.63 and 39.81% of the images correctly. Still, this is an

improvement of 38.42% for glass blur and 28.32% for motion blur

compared to the baseline HDC encoding approach. Therefore, we

can conclude that the HDC classifier with our proposed encoding

approach after hyperparameter selection shows high robustness

to noise and blur with an average accuracy of 73.20% across five

different corrupted test sets.
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4.4 Future research

As future work, we envisage evaluating and extending the

proposed encoding approach for application to grayscale and color

images, investigating the use of hierarchical (multi-layer) patches

with HDC encoding and further extensions of the local linear

mapping concept for position encoding.

Also, it may be analyzed how the HDC framework can be made

even more robust to noise and corruption such as glass blur and

motion blur.

5 Conclusion

We introduce a novel lightweight approach to encode binarized

images that preserves the similarity of patterns at nearby locations

while relying only on native HD arithmetic vector operations, and

not making use of external methods for feature extraction. The

approach uses point of interest selection to derive local features

of the image and local linear mapping to encode the location of

these local features in the image. After selecting the best settings for

the two introduced hyperparameters with 10-fold cross-validation,

an accuracy of 97.92% is reached on the test set for the MNIST

data set and 84.62% for the Fashion-MNIST data set. These results

outperform other studies using nativeHDCwith different encoding

approaches and are on par with more complex hybrid HDCmodels

and lightweight binarized neural networks. The proposed encoding

approach also demonstrates higher robustness to noise and blur

compared to the baseline encoding.
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