
TYPE Original Research

PUBLISHED 11 April 2024

DOI 10.3389/fdata.2024.1366469

OPEN ACCESS

EDITED BY

Defu Lian,

University of Science and Technology of

China, China

REVIEWED BY

Xiangyu Zhao,

City University of Hong Kong,

Hong Kong SAR, China

Yongji Wu,

Duke University, United States

*CORRESPONDENCE

Jundong Li

jundong@virginia.edu

RECEIVED 06 January 2024

ACCEPTED 25 March 2024

PUBLISHED 11 April 2024

CITATION

Wang S, Tennant C, Moser D, Larrieu T and Li J

(2024) Graph learning for particle accelerator

operations. Front. Big Data 7:1366469.

doi: 10.3389/fdata.2024.1366469

COPYRIGHT

© 2024 Wang, Tennant, Moser, Larrieu and Li.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Graph learning for particle
accelerator operations

Song Wang1, Chris Tennant2, Daniel Moser2, Theo Larrieu2 and

Jundong Li1*

1Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA,

United States, 2Thomas Je�erson National Accelerator Facility, Newport News, VA, United States

Particle accelerators play a crucial role in scientific research, enabling the study

of fundamental physics and materials science, as well as having important

medical applications. This study proposes a novel graph learning approach to

classify operational beamline configurations as good or bad. By considering the

relationships among beamline elements, we transform data from components

into a heterogeneous graph. We propose to learn from historical, unlabeled

data via our self-supervised training strategy along with fine-tuning on a smaller,

labeled dataset. Additionally, we extract a low-dimensional representation from

each configuration that can be visualized in two dimensions. Leveraging our

ability for classification, we map out regions of the low-dimensional latent

space characterized by good and bad configurations, which in turn can provide

valuable feedback to operators. This research demonstrates a paradigm shift

in how complex, many-dimensional data from beamlines can be analyzed and

leveraged for accelerator operations.

KEYWORDS

Graph Neural Network, particle accelerator, self-supervised learning (SSL), supervised

training, graph learning algorithm

1 Introduction

A particle accelerator is a scientific device used to accelerate charged particles, such

as protons or electrons, to very high speeds and energies. These accelerators are used in

various fields of research, including particle physics, nuclear physics, materials science,

medicine, and for industrial applications. Particle accelerators play an instrumental role

in advancing our understanding of the fundamental properties of matter and the universe.

In addition to particle physics, accelerators also have applications in other fields. They are

used in nuclear physics to investigate the structure and forces in the nucleus, in materials

science to analyze the structure and properties of materials, in medicine for diagnostics and

treatment, radiation therapy, and medical imaging (Brüning and Myers, 2016).

Particle accelerators represent some of the most complex scientific instruments ever

designed, built, and operated. To guide operators, enormous efforts are expended to create

high-fidelity simulations of accelerator beamlines. While these simulations provide an

initial starting point for operators, there exists a gap between the ideal simulated entity and

the real-world implementation. Bridging that gap requires a time-consuming task known

as beam tuning. Beam tuning is an iterative process that is often slow to converge, either

because it requires interaction with a simulation or by looking at a limited number of

diagnostics. For many accelerator facilities, beam tuning represents one of the dominant

sources of machine downtime. Our work proposes a data-driven framework in which

beamline configurations are mapped to a low-dimensional space, regions of good and

bad configurations are identified, and subsequent beamline configurations are classified

accordingly. Such a tool would be a valuable addition in the control room for operators.

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2024.1366469
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2024.1366469&domain=pdf&date_stamp=2024-04-11
mailto:jundong@virginia.edu
https://doi.org/10.3389/fdata.2024.1366469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2024.1366469/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Wang et al. 10.3389/fdata.2024.1366469

The Continuous Electron Beam Accelerator Facility (CEBAF)

at the Thomas Jefferson National Accelerator Facility is a high

power, recirculating linac capable of delivering electron beams

to four different experimental nuclear physics end stations

simultaneously (Reece, 2016). Figure 1 shows a schematic of

CEBAF. For the purpose of this work, we focus on the CEBAF

injector beamline. The injector is well suited due to its manageable

size, diversity of beamline components, and abundance of tuning

data reflected in the operational archiver. More specifically, because

the formation and evolution of the beam at low energy are critical

to performance, the injector represents a region with a lot of

operational activity. This translates to a wealth of historical data

that can be used for training a model.

In this work, we propose GLOPA (Graph Learning for

Operations of Particle Accelerators), a novel data-driven approach

for classifying a beamline configuration by leveraging deep learning

over structured data, i.e., graphs. Specifically, we propose to

represent a beamline configuration at any arbitrary date and time as

a heterogeneous graph and design a novel Graph Neural Network

(GNN) (Kipf and Welling, 2017; Veličković et al., 2018; Ying

et al., 2018; Wu et al., 2019; Xu et al., 2019; Han et al., 2022)

framework to extract low-dimensional representations that can be

visualized in two-dimensions (Ultsch, 2003; Van der Maaten and

Hinton, 2008; Barshan et al., 2011). Furthermore, by embedding

months of historical operational data, and using self-supervised

learning (Hassani and Khasahmadi, 2020; Gao et al., 2021; Suresh

et al., 2021; Wan et al., 2021) together with supervised learning (Li

et al., 2018; Khosla et al., 2020; Jin et al., 2021; Akkas and

Azad, 2022), regions of parameter space characterized by good

and bad configurations can be mapped out. In the future, such

a visualization could be used in real-time to aid beam tuning

by providing human operators with immediate visual feedback

about whether changes they make are moving the system in

the right direction, that is, toward or away from a good region

of parameter space. The main contributions of this paper are

as follows: (1) Formulation. Our work is the first to represent

accelerator beamlines as heterogeneous and directed graphs for

deep learning. (2) Algorithm. We propose a novel framework

with self-supervised and supervised strategies to learn the latent

beamline embeddings from both labeled and unlabeled data. (3)

Evaluation. The proposed framework is evaluated on several

real-world beamline datasets. Promising performance verifies the

effectiveness of our framework for beamline classification and

for identifying good and bad regions of a low-dimensional,

latent space.

2 Preliminaries

2.1 Data preparation

To illustrate the concept of representing a beamline as a

graph, consider the following example in Figure 2. The beamline

consists of different types of elements: beam current monitors

(BCMs), beam position monitors (BPMs), quadrupoles, solenoids,

and correctors, which are all represented as nodes. Specifically,

each node type consists of several unique features. For example,

quadrupoles, correctors, and solenoids carry a single value that

FIGURE 1

Schematic of the CEBAF accelerator. Electrons are generated in the

injector. Multiple passes through the north and south linacs

accelerate beam to multi-GeV energies. Beam is then sent to the

four nuclear physics experimental halls (A, B, C, and D).

indicates their field strength, a BCM reports its beam current

value, and a BPM contains two features for horizontal and vertical

beam positions, respectively. In this manner, the resulting graph

is a heterogeneous, directed graph, where heterogeneity originates

from nodes of different types and directionality arises from the

edges. The edges between nodes are determined by a user-defined

“window” concept. In this case, a user-defined window size of

2 is used, which means each setting node is connected to the

two immediate downstream setting nodes, including any reading

nodes in between. Setting nodes correspond to those elements

that human operators can modify during routine beam tuning

tasks (e.g., quadrupole, solenoid, and corrector), while reading

nodes represent diagnostics that passively read back data (e.g.,

BPM and BCM). Additionally, the directed edges reflect the non-

recirculating nature of our beamline topology, where an element

(i.e., node) cannot influence anything upstream. It should be noted

that the window size is controllable, which means different graph

representations may benefit from varying window sizes, depending

on the specific downstream tasks and beamline characteristics.

Moreover, utilizing a graph framework naturally enables the

inclusion of global beamline parameters. Specifically, in our

case, a master node is connected to all other nodes and thus

can incorporate readings from global values, such as beam

current, temperature readings in the beamline enclosure, outdoor

temperature and humidity, date and time information, or even

electronic log entries.

For this work, a single beamline graph is comprised of 12

distinct node types, 207 total nodes, 393 total node features, and

528 edges (for a window size of 2), where a master node connects

to all other nodes. Note that each node type contains specific node

features, which can be significantly different in magnitude, due to

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Wang et al. 10.3389/fdata.2024.1366469

FIGURE 2

Illustrations that showcase an arbitrary accelerator beamline (top) and our approach for constructing a corresponding graph (bottom). Here, each

node represents an individual element, while the node features correspond to the relevant parameters of the respective element. The edges between

nodes are determined by a user-defined window size of 2. These edges are directed to reflect the fact that an element cannot impact upstream

elements in the beamline.

TABLE 1 Statistics of four beamline datasets.

Dataset Time
interval

#
Graphs

#
Edges

#
Nodes

#
Types

TRAIN 20 min 5,827

528 207 12
GOOD Inconsistent 354

BAD Inconsistent 254

JAN-2022 1 h 353

Note that GOOD and BAD datasets are labeled, while the others are unlabeled.

the different physical features they quantify. Therefore, we propose

to perform element-wise normalization for each node. Specifically,

within each dataset, we obtain the mean and standard deviation of

each individual node and then standardize the features of each.

For this work, we collect four datasets which are summarized

in Table 1. For the TRAIN dataset, we collect data between October

1, 2021 and February 8, 2022 and construct graphs at 20-min

intervals. This dataset will be used for self-supervised training. We

obtain the GOOD and BAD datasets from expert-annotated data,

using a fraction of them for supervised training and the remainder

as test data (see Appendix A). For the JAN-2022 dataset, we collect

data from beam operations in January 2022 at one-hour intervals,

which will be used to evaluate our framework.

2.2 Problem formulation

In this subsection, we formally define the problem of beamline

analysis. A given dataset D consists of a specific number of graphs,

i.e., D = {G1,G2, . . . ,G|D|}. Here each graph G is represented by

G = (V, E,X) with its label y ∈ Y, where Y is the total class set in

this dataset. Specifically, V and E represent the node set and edge

set, respectively. Each graph G can also be denoted by an adjacency

matrix A ∈ R
n×n, where n is the number of nodes in G. Here

Ai,j is the intersection of the i-th row and the j-th column of A.

Moreover, Ai,j = 1 if the i-th node connects to the j-th node, and

Ai,j = 0, otherwise. Since beamline graphs are heterogeneous, we

further introduce a node type mapping function τ :V → T. Here

T denotes the node type set. In this manner, we can represent the

node type of the i-th node vi as τ (i). Then the node feature set can

be represented as X = {x1, x2, . . . , xn}, where xi ∈ R
dτ (i) denotes

the node attributes of vi, and dτ (i) is the corresponding dimension

size of type τ (i).

Our objective is to determine whether a beamline at a specific

date and time (represented as a graph) represents a good or bad

configuration. This task can be formulated as a binary classification

problem, where the class set is defined as Y = {0, 1}. In general,

we aim at learning from labeled beamline graphs and predicting

the label for a given beamline graph from the class set Y. However,

it is important to note that beamline graphs display heterogeneity

due to the presence of different node types. Consequently, directly

applying existing Graph Neural Networks (GNNs) is infeasible. In

order to handle the heterogeneity, we must consider the specific

properties associated with different node types.

3 Methodology

3.1 Latent embedding

In this section, we introduce our approach for learning

graph embeddings of CEBAF injector beamline graphs based on

self-supervised and supervised learning, while considering the

heterogeneity of different node types. The framework is illustrated

in Figure 3.

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Wang et al. 10.3389/fdata.2024.1366469

FIGURE 3

The overall workflow of our framework. We first conduct

self-supervised training (SST) on unlabeled data via contrastive

learning (top) and then perform supervised fine-tuning (SFT) on a

smaller set of labeled data (bottom).

3.1.1 Heterogeneous graph convolution
Inspired by HGAT (Hu et al., 2019), we propose encoding

beamline graphs based on a heterogeneous graph convolution,

which handles variations in features from different node types by

projecting them into an implicit common space via linear layers.

Formally, consider a beamline graph G = (V, E), where V and E

represent the set of nodes and edges, respectively. For graph G, we

introduce its self-connected adjacency matrix as A′ = A+ I, where

I is the identity matrix of size n, and n = |V|. We further denoteM

as the degree matrix, i.e.,Mii =
∑n

j=1 Ai,j.

We first start with the convolution process operation in

GCN (Kipf and Welling, 2017) on homogeneous graphs. The

layer-wise propagation rule can be represented as follows:

H(l+1) = ReLU
(

Ã ·
(

H(l) ·W(l) + b(l)
))

, (1)

where Ã = A′M−1 represents the normalized adjacency matrix.

W(l) ∈ R
d(l)×d(l+1)

and b(l) ∈ R
d(l+1)

denote the layer-specific weight

parameters of a linear layer.H(l) denotes hidden representations of

nodes in the l-th layer of the GCN, with a dimension size of d(l).

ReLU(·) is an activation function, which sets negative entries in the

input as zero. Moreover, in Equation (1), the node features are used

as the input for the first layer of GCN, i.e.,H(0) = X, where X is the

node feature matrix.

However, applying the traditional GCN operation directly to

beamline graphs is not feasible due to the heterogeneity of node

types and varying node feature sizes. To overcome this challenge,

we propose to utilize heterogeneous graph convolution (Chang

et al., 2015; Hu et al., 2019, 2020; Liu et al., 2020), which enables

the incorporation of information from different node types. This is

achieved by projecting the node attributes of different types to an

implicit common space:

X̃τ = Xτ ·Wτ + bτ , τ ∈ T, (2)

where Wτ ∈ R
dτ×d(0) and bτ ∈ R

d(0) are the weight parameters

of projection for node type τ . dτ is the dimension size of node

attributes for node type τ . T = {τ1, τ2, . . . , τt} is the set of node

types in beamline graphs, and t = |T| is the number of node types.

In this manner, we can perform heterogeneous graph convolution

as follows, based on Equation (2):

H(l+1) = ReLU

∑

τ∈T

Ãτ ·
(

H(l)
τ ·W(l)

τ + b(l)τ

)

 , (3)

where W
(l)
τ ∈ R

d(l)×d(l+1)
and b(l)τ ∈ R

d(l) are the layer-specific

weight parameters of a linear layer for node type τ . Note that we

employ different weight parameters for various node types to tackle

the heterogeneity problem by projecting them into an implicit

common space Rd(l+1)
. Moreover, Ãτ ∈ R

n×nτ is a submatrix of Ã,

where the rows represent all the nodes inGwhile columns represent

their corresponding neighboring nodes with node type τ . Here

n = |V| and nτ = |Vτ |, where Vτ denotes the set of nodes inGwith

node type τ . In thismanner, the (l+1)-th layer node representations

H(l+1) are obtained by aggregating information from the previous

layer node representations of their neighboring nodes, i.e., H
(l)
τ ,

with different node types τ ∈ T.

3.1.2 Heterogeneous attention mechanism
Due to the inherent heterogeneity in the beamline graphs, edges

connecting different nodes can possess varying importance for each

node. For instance, a setting node may have multiple neighboring

nodes, but will exert a greater influence on those nodes that

correspond to being in closer proximity on the physical beamline.

To effectively leverage such information, we propose a

novel heterogeneous attention mechanism that captures the

diverse importance at both the node-level and type-level. This

mechanism enables us to consider the varying degrees of

impact that different nodes and node types exhibit in the

beamline analysis:

bij = δik · σ (vτ (i) ◦ hi) · σ (vτ (j) ◦ hj), (4)

where vτ (i) is the attention vector for the node type of vi, i.e.,

τ (i). δij = 1 if node vi connects to node vj, and δij = 0,

otherwise. ◦ denotes the element-wise multiplication operation.

σ (·) is the Sigmoid function with σ (x) = 1/(1 + exp(−x)).

After normalization with b̃ij = bij/
∑n

k=1 bik, we can replace

the adjacency matrix in Equation (3) with the obtained attention

value b̃ij from Equation (4).

3.2 Self-supervised training

To effectively leverage unlabeled historical beamline data,

we devise an innovative Self-Supervised Training (SST) process.

Specifically, we propose to leverage the concept of graph contrastive

learning (Hassani and Khasahmadi, 2020; Jin et al., 2021; Zhu

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Wang et al. 10.3389/fdata.2024.1366469

et al., 2021) due to its effectiveness in learning expressive node

and graph representations. In particular, graph contrastive learning

aims tomaximize consistency between differently augmented views

of the original graph, while distinguishing the original graph and

another graph (Oord et al., 2018; Qiu et al., 2020; You et al., 2020).

However, in beamline analysis, our ultimate goal is to identify the

class of graphs, instead of classifying different nodes. Therefore, we

propose a graph contrastive learning strategy, which considers the

consistency between graph and node representations. Specifically,

we propose to maximize the similarity between the learned graph

representation and any node representations, while minimizing the

similarity between the graph representation and other corrupted

node representations (Velickovic et al., 2019). We can formally

express the self-supervised training loss based on graph contrastive

learning as follows:

LSST = −
1

n

n
∑

i=1

log s(hi, h
∗)−

1

n

n
∑

i=1

log
(

1− s(h̃i, h
∗)

)

, (5)

where hi = h
(L)
i ∈ R

d(L) is the learned representation of the i-th

node vi in G after processed by an L-layer GNN in our framework.

Correspondingly, h̃i is the representation of ṽi in G̃, which is a

corrupted view of G and will be introduced later. s(hi, h
∗) = σ (hi ·

h∗) measures the similarity between hi and h∗. Moreover, h∗ is the

learned graph representation of G via the following process:

h∗ = σ

1

n

n
∑

i=1

(hi · hm)hi/(

n
∑

j=1

hj · hm)

 . (6)

Note that here we employ an attention mechanism that

considers the varying importance of different nodes to obtain h∗.

Since the master node connects to all nodes in G and maintains

global information, we consider its impact on all nodes as the

importance. Specifically, we learn the weight of hi via the similarity

between hi and hm (i.e., the representation of themaster node inG).

To obtain the corrupted view G̃ of G, we propose

three strategies while considering the heterogeneity in

beamline graphs.

• Edge removing (ER). In this strategy, we randomly remove

edges in the graph according to a pre-defined removal rate.

• Feature removing (FR). In this strategy, we randomly set

node feature values to zero for nodes in the graph, based on

a pre-defined removal rate.

• Feature shuffling (FS). In this strategy, for each node type, we

randomly select a specific ratio of nodes and then randomly

swap their attributes. Note that the shuffling is performed

within each node type, as the number of featuresmay vary with

the type.

By applying these strategies, we can achieve corrupted graphs G̃

for our self-supervised training, based on Equation (5).

3.3 Supervised fine-tuning

In this subsection, we provide details of the Supervised Fine-

Tuning (SFT) process in our framework. Although we have

managed to learn from the complex structural information in

beamline graphs through our Self-Supervised Training (SST), it

still remains challenging to effectively utilize the limited number

of labeled examples for training. Therefore, it is crucial to develop a

supervised fine-tuning strategy that can improve performance with

a small labeled dataset.

In particular, our objective in this process is to leverage the

supervision information from annotated beamline graphs. Since

beamline analysis aims to distinguish good and bad beamline

configurations, we leverage the binary cross-entropy loss to train

our framework. Specifically, the supervised fine-tuning loss can be

formulated as:

LSFT = −
1

|D|

|D|
∑

i=1

yi · log pi −
1

|D|

|D|
∑

i=1

(1− yi) · log(1− pi), (7)

whereD is the given dataset withD = {G1,G2, . . . ,G|D|}. yi ∈ {0, 1}

is the label ofGi, and pi ∈ R is the output probability ofGi, obtained

by pi = σ (h∗i · w∗ + b∗). Here h∗i ∈ R
d(L) is the learned graph

representation of Gi, based on Equation (6). w∗ ∈ R
d(L) and b∗ ∈ R

are learnable weight parameters of a linear layer. In this way, we

can obtain the output probability pi for beamline analysis on Gi via

Equation (7).

4 Experiments

To achieve an empirical evaluation of our proposed framework

GLOPA, we conduct experiments on real beamline datasets

collected from the CEBAF injector.

4.1 Experimental setup

Our overall framework is implemented based on

PyTorch (Paszke et al., 2017), scikit-learn (Pedregosa et al.,

2011), and PyTorch Geometric (Fey and Lenssen, 2019). We run

the model on a single 48GB NVIDIA A6000 GPU with a batch

size of 16 for self-supervised training (SST) and 32 for supervised

fine-tuning (SFT). The model is trained for a total of 200 epochs

with a learning rate of 0.001. The hidden size of GNN models in

our framework is set to 16, and the number of layers is set to 3.

We optimize the model based on Adam (Kingma and Ba, 2015).

The ratio used in ER/FR/FS is set to 0.3. For all the baselines

and the proposed framework, we repeat each run ten times to

obtain the averaged scores. For SST in our framework, we utilize

unlabeled data in the TRAIN dataset for model training. In each

run, we randomly leverage 80% of data in GOOD and BAD

datasets for SFT and 10% for validation, with the other 10% left for

model evaluation.

4.2 Baselines and evaluation metrics

In our experiments, we compare our framework GLOPA to the

following baselines for performance evaluation:

• MLP (multi-layer perceptron): In this baseline, we ignore

the structural information in beamline configurations and

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Wang et al. 10.3389/fdata.2024.1366469

TABLE 2 The beamline analysis results of our framework and other

baselines.

Method ACC AUC F1

MLP 85.05± 3.75 84.81± 3.90 82.83± 3.47

1D-CNN 86.35± 3.91 85.41± 3.78 84.10± 1.50

GCN 86.96± 3.37 90.07± 1.26 87.08± 1.07

GLOPA\SST 88.32± 1.23 90.05± 1.35 89.34± 1.01

GLOPA-ER 93.17± 1.67 96.02± 1.21 93.43± 1.79

GLOPA-FR 95.97± 1.61 96.57± 1.68 96.31± 1.98

GLOPA-FS 96.76± 1.52 98.17± 1.79 96.29± 1.60

The best results are shown in bold.

TABLE 3 The beamline analysis results of our framework while keeping

nodes of specified types.

Variant ACC AUC F1

All nodes 96.76± 1.52 98.17± 1.79 96.29± 1.60

Setting-only 95.72± 1.35 97.01± 1.88 96.19± 2.03

Reading-only 86.84± 3.25 91.57± 2.32 87.73± 1.67

Quadrupole + reading 96.71± 1.24 96.32± 2.31 96.09± 1.65

Corrector + reading 89.47± 2.13 93.93± 1.07 90.18± 1.56

Setting + BPM 96.05± 1.09 97.23± 0.63 95.57± 1.87

The best results are shown in bold.

represent each of them as a concatenated feature vector. The

feature is input into a fully-connected layer for classification.

• 1D-CNN (1D-convolutional neural network) (Kiranyaz

et al., 2021): In this baseline, we use a one-dimensional CNN

model to encode the concatenated feature vector, which can

capture the correlations across different dimensions.

• GCN (Kipf and Welling, 2017): In this baseline, we employ

the vanilla GCN to learn latent embeddings for beamline

graphs. To adapt GCN to heterogeneous graphs, we construct

a new feature space by concatenating the feature spaces of

different node types.

• GLOPA\SST: In this variant, we remove the SST component

such that only SFT is performed, which means we do not

utilize the unlabeled data and only rely on labeled data.

It is worth noting that in our scenario, we aim to identify

beamline configurations as good or bad. Thus, we formulate the

task of beamline analysis as binary graph classification.

4.3 Comparative results

In this subsection, we compare the performance of our

GLOPA framework with other baselines for the task of beamline

classification. We provide the results in Table 2. From the results,

we can make the following observations:

• GLOPA consistently outperforms other baselines in terms

of Accuracy (ACC), Area Under Curve (AUC), and F1-Score

TABLE 4 The beamline analysis results of our framework with di�erent

values ofw (window size).

Variant ACC AUC F1

w = 1 95.39± 1.36 98.13± 1.35 95.89± 2.03

w = 2 96.76± 1.52 98.17± 1.79 96.29± 1.60

w = 3 94.74± 1.71 98.87± 1.13 95.27± 1.89

w = 5 94.07± 2.25 97.57± 1.53 94.64± 1.79

The best results are shown in bold.

(F1). The results strongly indicate the superiority of our

framework for beamline analysis.

• Conventional methods struggle to achieve competitive

performance. This can be attributed to their limited ability

to effectively capture the structural and heterogeneous

information present in beamline graphs.

• Different corruption strategies employed in our SST process

exhibit varying performances. Specifically, the strategy of

feature shuffling (FS) achieves the best results. This is because

such a strategy can benefit from the heterogeneity of beamline

graphs by considering the diverse meanings of features across

different node types. On the other hand, the edge removing

(ER) strategy demonstrates less competitive performance

compared to the other two, especially in terms of ACC and

F1. This could be due to the fact that the number of edges

remains constant in beamline graphs. Therefore, relying solely

on edge-related structural information could be less effective.

• The performance of GLOPAwithout SST remains suboptimal,

indicating that SST conducted on a larger number of unlabeled

graphs is crucial for beamline analysis.

4.4 E�ects of di�erent types of nodes

As introduced in Section 2.1, our graphs contain nodes of

different types. The node types can be broadly categorized as

setting and reading nodes. Setting nodes represent beamline

components whose attributes can be directly modified by human

operators during routine beam tuning tasks, whereas reading nodes

passively read signals from diagnostics regarding the state of the

beamline or the beam itself. Therefore, the information residing

in each type of node is inherently different. In this subsection,

we explore the effects of different node types and features on

the model performance. In particular, we consider the following

variants of data for experiments: (1) setting-only (reading-only),

which only considers setting (reading) nodes. (2) quadrupole-only,

which considers all reading nodes and only setting nodes of type

quadrupole. (3) BPM-only, which considers all setting nodes and

only reading nodes of type BPM, as BPM nodes are the majority

of reading nodes. We use the Feature Shuffling (FS) of GLOPA,

as it achieves the best performance. From the results presented in

Table 3, we first observe that removing any type of nodes results in a

deterioration of the performance, demonstrating that information

in all types of nodes is useful. Second, removing setting nodes

leads to a larger performance drop, compared to removing reading

nodes. This result indicates that the setting nodes contain more

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Wang et al. 10.3389/fdata.2024.1366469

important information for predictions, which aligns with physical

intuition, as setting nodes have a direct impact on all downstream

nodes including reading nodes. Third, preserving more important

node types can provide a smaller performance drop, such as specific

types of nodes that are the majority of setting or reading nodes.

For example, preserving nodes of type quadrupole provides better

results than preserving nodes of type corrector, as quadrupole

generally have a larger impact on the beam.

4.5 E�ects of window size

To generate graphs, the edges between nodes are created based

on a user-defined window size w, which is set as w = 2 in our

experiments. In particular, for each setting node v, we connect

it to the w immediate downstream setting nodes, including all

reading nodes in between. We define such a rule to ensure that

the influence of each node on the downstream nodes is captured

within the created edges. As the influence of nodesmay diminish on

downstream nodes further away, we set a window size w to restrict

the number of edges created. In practice, the window size is a

hyperparameter, which requires exhaustive searching to obtain the

optimal value. Here we provide experimental results with different

window sizes in Table 4, using the Feature Shuffling (FS) variant

of GLOPA. From the results, we observe that the best prediction

results are for w = 2 (better accuracy) or w = 3 (slightly higher

AUC). Compared to the results of w = 1, we can infer that each

setting node is able to influence multiple downstream setting and

reading nodes and therefore, it is necessary to set a window size

larger than w = 1. On the other hand, the results of w = 5

are less competitive, compared with other variants. These results

demonstrate that while each setting node affects a range of other

downstream nodes, the range is typically not large. As a result, with

a larger window size, the created edges are denser and potentially

involve noisy information that is harmful to predictions.

4.6 Semi-supervised setting

To simulate real-world scenarios, where it can be challenging

to manually annotate a sufficiently large number of beamline

configurations, we conduct experiments with limited labeled

data (see Table 1). Specifically, we present the results of using

a varying number of labeled beamline graphs per class during

SFT, as shown in Figure 4. The following observations can be

made from the results: (1) Increasing the amount of labeled data

used in the training process leads to a significant improvement

in model performance. This improvement is more pronounced

for our framework GLOPA without SST, although the absolute

performance is still suboptimal due to the absence of SST. (2)When

the number of labeled graphs becomes scarce, the performance of

all models drops greatly. Nevertheless, the feature removing (FR)

strategy becomes more effective in this case. This is due to the fact

that by learning from limited node features, the model can better

generalize to scenarios with limited labeled beamline graphs for

supervised fine-tuning.

FIGURE 4

Results under the semi-supervised setting.

4.7 Model embedding test

Following the results of Table 2, we use the GLOPA framework

trained with the FS strategy to embed unlabeled graphs in the

JAN-2022 dataset, which consists of 353 beamline configurations

collected from injector operation during January 2022. To visualize

the results, UMAP (McInnes et al., 2018) is used to reduce

the dimensionality of the model-generated embeddings, with the

results shown in Figure 5. The embeddings from the labeled GOOD

and BAD datasets are depicted by the green and red contours,

respectively, while the black markers represent the embeddings

of the unlabeled data from January 2022. There are several key

observations to note from these results: First, the model is able to

cleanly separate good and bad regions of parameter space. Second,

the majority of the beamline configurations from January 2022

(75%) are clustered in the good region in parameter space, which

aligns with our expectation since CEBAF was reliably delivering

beam to user end stations during that period. Additionally, because

each marker corresponds to a unique timestamp, an expert CEBAF

operator is able to look more closely at the beamline configurations

in the bad region. Upon investigation, it was confirmed that these

configurations were indeed sub-optimal, that is, are appropriately

labeled as bad.

5 Future work

In this subsection, we provide a comprehensive overview of the

future work inspired by our work. The results of Figure 5 motivate

further development of this visualization framework to address

operational challenges. One application is the ability to track the

evolution of a beamline configuration in real time in response to

tuning. As noted previously, beam tuning is a time-consuming

task that is often driven by trial and error. However, by encoding

beamline data into information-rich latent embeddings, operators

receive immediate visual feedback about whether their changes are

moving the system in the right direction, i.e., toward or away from

a region characterized by good configurations. The visualization

framework is also uniquely suited to address system stability. The

conventional method of monitoring stability requires tracking a

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Wang et al. 10.3389/fdata.2024.1366469

FIGURE 5

The visualization of 353 unlabeled beamline graphs, representing operations in January 2022 (black markers), using their learned latent embeddings.

Green and red contours denote regions of good and bad configurations, respectively.

set of PVs over time. However, by leveraging low-dimensional

embeddings, one can track a many-dimensional space over time.

This avoids the need to identify a priori the important PVs and

removes the mental burden to operators of monitoring a myriad

of signals by eye. Another important avenue of research is to

incorporate explainability into the visualization framework. Here

the goal is to return to the user a list of the most important nodes

that account for, or explain, the difference between two different

points in latent space.

6 Conclusion

Particle accelerators play a vital role in scientific research.

In this work, we have described a new approach to analyze

an accelerator beamline by leveraging graph learning to classify

good and bad setups. Specifically, our framework represents

beamline configurations as heterogeneous graphs and encodes

relationships among beamline elements. We then utilize data

from both unlabeled and labeled configurations to train a model

via our methods of self-supervised training and supervised fine-

tuning. Additionally, we demonstrate the ability to leverage a

GNN to distill high-dimensional beamline configurations into low-

dimensional embeddings and use them to create an intuitive, easy-

to-understand visualization for operators. By mapping out regions

of latent space characterized by good and bad setups, we describe

how this could provide operators with more informative, real-time

feedback during beam tuning compared to the standard practice of

interpreting a set of sparse, distributed diagnostic readings.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

SW: Formal Analysis, Methodology, Software, Writing –

original draft, Writing – review & editing. CT: Conceptualization,

Funding acquisition, Supervision, Visualization, Writing – original

draft, Writing – review & editing. DM: Investigation, Writing –

review & editing. TL: Data curation, Software, Writing – review &

editing. JL: Methodology, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received

for the research, authorship, and/or publication of this article.

Authored by Jefferson Science Associates, LLC under U.S. DOE

Contract No. DE-AC05-06OR23177. Supported by Jefferson

Laboratory Directed Research and Development Program

(2022—LDRD-1).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Wang et al. 10.3389/fdata.2024.1366469

References

Akkas, S., and Azad, A. (2022). “Jgcl: joint self-supervised and supervised graph
contrastive learning,” in WWW ’22: Companion Proceedings of the Web Conference
2022.

Barshan, E., Ghodsi, A., Azimifar, Z., and Jahromi, M. Z. (2011). Supervised
principal component analysis: visualization, classification and regression on subspaces
and submanifolds. Patt. Recognit. 44, 1357–1371. doi: 10.1016/j.patcog.2010.
12.015

Brüning, O., and Myers, S. (2016). Challenges and Goals for Accelerators in the XXI
Century. World Scientific.

Chang, S., Han, W., Tang, J., Qi, G.-J., Aggarwal, C. C., and Huang, T. S. (2015).
“Heterogeneous network embedding via deep architectures,” in SIGKDD.

Fey, M., and Lenssen, J. E. (2019). “Fast graph representation learning with PyTorch
Geometric,” in ICLR Workshop on Representation Learning on Graphs and Manifolds.

Gao, Y., Fei, N., Liu, G., Lu, Z., and Xiang, T. (2021). “Contrastive prototype
learning with augmented embeddings for few-shot learning,” in UAI.

Han, X., Jiang, Z., Liu, N., and Hu, X. (2022). G-mixup: graph data augmentation
for graph classification. arXiv [preprint]. doi: 10.48550/arXiv.2202.07179

Hassani, K., and Khasahmadi, A. H. (2020). “Contrastive multi-view representation
learning on graphs,” in ICML.

Hu, L., Yang, T., Shi, C., Ji, H., and Li, X. (2019). “Heterogeneous graph attention
networks for semi-supervised short text classification,” in EMNLP-IJCNLP.

Hu, Z., Dong, Y.,Wang, K., and Sun, Y. (2020). “Heterogeneous graph transformer,”
in TheWebConf.

Jin, M., Zheng, Y., Li, Y.-F., Gong, C., Zhou, C., and Pan, S. (2021). “Multi-scale
contrastive siamese networks for self-supervised graph representation learning,” in
IJCAI.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., et al. (2020).
“Supervised contrastive learning,” in NeurIPS.

Kingma, D. P., and Ba, J. (2015). “Adam: A method for stochastic optimization,” in
ICLR.

Kipf, T. N., and Welling, M. (2017). “Semi-supervised classification with graph
convolutional networks,” in ICLR.

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., and
Inman, D. J. (2021). 1D convolutional neural networks and applications:
a survey. Mech. Syst. Signal Process. 151:107398. doi: 10.1016/j.ymssp.2020.
107398

Li, Q., Han, Z., and Wu, X.-M. (2018). “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 32.

Liu, Z., Li, X., Peng, H., He, L., and Philip, S. Y. (2020). “Heterogeneous similarity
graph neural network on electronic health records,” in IEEE Big Data.

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv [preprint].
doi: 10.21105/joss.00861

Oord, A., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive
predictive coding. arXiv. doi: 10.48550/arXiv.1807.03748

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).
“Automatic differentiation in pytorch,” in NeurIPS.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). “Scikit-learn: machine learning in python,” in JMLR.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., et al. (2020). “Gcc: Graph
contrastive coding for graph neural network pre-training,” in SIGKDD.

Reece, C. E. (2016). Continuous wave superconducting radio frequency
electron linac for nuclear physics research. Phys. Rev. Accel. Beams 19:124801.
doi: 10.1103/PhysRevAccelBeams.19.124801

Suresh, S., Li, P., Hao, C., and Neville, J. (2021). Adversarial graph augmentation
to improve graph contrastive learning. Adv. Neural Inf. Process. Syst. 34, 15920–15933.
doi: 10.48550/arXiv.2106.05819

Ultsch, A. (2003). “Maps for the visualization of high-dimensional data spaces,” in
Proc. Workshop on Self Organizing Maps, 225–230.

Van der Maaten, L., and Hinton, G. (2008). “Visualizing data using t-sne,” in JMLR.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.
(2018). Graph Attention Networks. ICLR.

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., and Hjelm, R. D.
(2019). “Deep graph infomax,” in ICLR.

Wan, S., Zhan, Y., Liu, L., Yu, B., Pan, S., and Gong, C. (2021). “Contrastive graph
poisson networks: semi-supervised learning with extremely limited labels,” in NeurIPS.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019).
“Simplifying graph convolutional networks,” in ICML.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). “How powerful are graph neural
networks?,” in ICLR.

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and Leskovec, J. (2018).
“Hierarchical graph representation learning with differentiable pooling,” in NeurIPS.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2020). “Graph
contrastive learning with augmentations,” in NeurIPS.

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., and Wang, L. (2021). “Graph contrastive
learning with adaptive augmentation,” in TheWebConf.

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366469
https://doi.org/10.1016/j.patcog.2010.12.015
https://doi.org/10.48550/arXiv.2202.07179
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.21105/joss.00861
https://doi.org/10.48550/arXiv.1807.03748
https://doi.org/10.1103/PhysRevAccelBeams.19.124801
https://doi.org/10.48550/arXiv.2106.05819
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Wang et al. 10.3389/fdata.2024.1366469

Appendix A

Discussion of labeled datasets

In this section, we provide additional details

on the definition and collection methods for the

GOOD and BAD labeled datasets, as introduced

in Section 2.1.

Appendix A.1

GOOD

A trained CEBAF operator created a set of filters to select

periods of stable running representative of what we mean

by GOOD. Specifically, these are injector configurations where

there had not been a machine trip for 30 minutes, the drive

laser modes were set to continuous wave (CW) operation, and

the beam current at a diagnostic in the injector exceeded 5

microAmperes. The choice of these filters effectively constrains

configurations to those in which the machine was running

stably (no machine trips within 30 minutes) and tuned well

(able to run moderately high current, CW beam). While the

search and filtering can be automated, each event is examined

by an experienced operator to confirm that it is indeed

“good”.

Appendix A.2

BAD

Calling these BAD setups can be somewhat misleading. It

would be more correct to think of them as “non-ideal”. Identifying

these kinds of setups is very difficult. A configuration in which

a beam cannot be cleanly transported through the injector is

clearly bad. Yet in those instances, the accelerator’s built-inmachine

protection system (MPS) will shut the machine down to avoid any

potential damage. The aim of this work is to identify GOOD setups

and be able to distinguish them from non-ideal configurations.

To create a set of these latter configurations, we leveraged data

from a dedicated beam study. In the study, a variety of beamline

components were varied, one at a time, from their nominal values

and the downstream response of the system recorded. The changes

to each element were sufficient to cause a measurable downstream

response, but small enough for the beam to be transported cleanly.

These configurations, therefore, reside in that middle ground

between GOOD operation and tripping the machine off, which is

what we mean by the BAD label in the context of our work.

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366469
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Graph learning for particle accelerator operations
	1 Introduction
	2 Preliminaries
	2.1 Data preparation
	2.2 Problem formulation

	3 Methodology
	3.1 Latent embedding
	3.1.1 Heterogeneous graph convolution
	3.1.2 Heterogeneous attention mechanism

	3.2 Self-supervised training
	3.3 Supervised fine-tuning

	4 Experiments
	4.1 Experimental setup
	4.2 Baselines and evaluation metrics
	4.3 Comparative results
	4.4 Effects of different types of nodes
	4.5 Effects of window size
	4.6 Semi-supervised setting
	4.7 Model embedding test

	5 Future work
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References
	Appendix A
	Discussion of labeled datasets
	Appendix A.1
	GOOD
	Appendix A.2
	BAD

