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Toward explainable AI in
radiology: Ensemble-CAM for
e�ective thoracic disease
localization in chest X-ray images
using weak supervised learning

Muhammad Aasem* and Muhammad Javed Iqbal

Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan

Chest X-ray (CXR) imaging is widely employed by radiologists to diagnose

thoracic diseases. Recently, many deep learning techniques have been proposed

as computer-aided diagnostic (CAD) tools to assist radiologists in minimizing

the risk of incorrect diagnosis. From an application perspective, these models

have exhibited two major challenges: (1) They require large volumes of

annotated data at the training stage and (2) They lack explainable factors

to justify their outcomes at the prediction stage. In the present study, we

developed a class activation mapping (CAM)-based ensemble model, called

Ensemble-CAM, to address both of these challenges via weakly supervised

learning by employing explainable AI (XAI) functions. Ensemble-CAM utilizes

class labels to predict the location of disease in association with interpretable

features. The proposed work leverages ensemble and transfer learning with class

activation functions to achieve three objectives: (1) minimizing the dependency

on strongly annotated data when locating thoracic diseases, (2) enhancing

confidence in predicted outcomes by visualizing their interpretable features,

and (3) optimizing cumulative performance via fusion functions. Ensemble-CAM

was trained on three CXR image datasets and evaluated through qualitative and

quantitative measures via heatmaps and Jaccard indices. The results reflect the

enhanced performance and reliability in comparison to existing standalone and

ensembled models.

KEYWORDS

explainable artificial intelligence, class activation maps, weak supervised learning,

computer aided diagnosis, ensemble learning, transfer learning

1 Introduction

The healthcare industry plays a pivotal role in ensuring the wellbeing of individuals

and communities. Despite the rapid advancements in technology, most of the industry still

relies heavily onmanual procedures including, but not limited, to diagnosis and treatments.

These manual procedures can be time-consuming and prone to errors in the result of

workload and lack of facilities. Such factors may further lead to serious consequences such

as misdiagnosis, incorrect treatment, and adverse patient outcomes (Silva et al., 2022). To

overcome these challenges, various approaches have been explored to assist caregivers in

decision-making by Computer Aided Diagnosis (CAD) (Doi, 2007). Among Fuzzy logic

(Kovalerchuk et al., 1997), rule-based (Ion et al., 2009), and other predictivemodels (Yanase

and Triantaphyllou, 2019), machine learning (ML) established outstanding potentials for
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CAD systems (Reyes et al., 2020). The most highlighted approach

in machine learning is known as deep learning (DL) for its

ability to learn complex and meaningful patterns from large

volume of data (LeCun et al., 2015; Voulodimos et al., 2018;

Shrestha and Mahmood, 2019; Georgiou et al., 2020; Mahony

et al., 2020). In spite of its success in disease classification and

localization, there are many internal and external challenges in

deep learning (Aasem et al., 2022). Internal challenges include

appropriate selection of hyperparameters and interpretability.

Similarly, external challenges necessitate addressing the demands

for high computational resources and large volume of training data.

Advancements in hardware technology, such as graphics

processing unit (GPU), tensor processing unit (TPU), and

application-specific integrated circuit (ASIC), have sufficiently

addressed the demand of high computational need for deep

learning (Mittal and Vaishay, 2019; Hu et al., 2022; Nikolić

et al., 2022). However, acquisition of large volume data with task-

specific annotation is still a challenge (Aasem et al., 2022). This

becomes even more harder when annotation requires specialized

skills and experience of radiologists. This study exploits weak

supervised learning for dealing with the annotations issue for

disease localization in chest X-ray images using deep learning. In

general, X-ray images are examined by radiologists who specialize

in the interpretation of similar reports related to diagnoses of

chest, lungs, heart, and related disorders. In routine tasks, they can

identify the patterns of related disorder just by visual examination.

In some cases, multiple radiologists are engaged to discuss a given

report for its complexity and criticality (Siegel, 2019). Such cases

may not be concluded easily and may float with misperceptions.

To resolve such cases, majority of votes, senior opinion weightage,

or further testing are considered. Moreover, conclusive inferences

are still made in conjunction with additional information such as

patient history and current condition (Prevedello et al., 2019). This

complexity makes the annotation process harder to accomplish for

a large volume of images. This study discusses an indirect approach

for localization, thereby aiming to overcome such dependency

issues in weak supervised learning.

Furthermore, deep learning models have been deemed

untrustworthy due to their non-justified inferences (Adabi and

Berrada, 2018; Sheu and Pardeshi, 2022). Such behavior is critical

for the CAD system that creates a major bottleneck for their

practical application in the healthcare industry (Reyes et al., 2020;

Elhalawani andMak, 2021; Yu et al., 2022; Park et al., 2023). Despite

overlooking the need for the model’s self-justification concern, they

are evaluated based on their performancemetrics for given datasets.

As highlighted by Wagstaff (2012), models must be measured

beyond benchmarked datasets and quantitative metrics. Predicting

a medical image as positive or negative disorder does not answer

completely from the radiologist’s perspective. “How the prediction

inferred?" is also a matter interest of transparency and reliability

view points (Adabi and Berrada, 2018). To address the transparency

concern, the proposed work aims to employee CAM as function.

The existing literature have discussed CAM and its variants for

single model interpretability within the limited scope, i.e., visual

evaluation. The proposed framework is referred to as Ensemble-

CAM because it extends the current scope in two directions: First,

it allows multiple models in the ensemble learning paradigm to

generate a single set of interpretable features. Second, it evaluates

the intermediate and final outcomes using quantitative metrics,

i.e., Jaccard index or Intersection over Union (IoU). An intuitive

illustration of the proposed framework has been illustrated in

Figure 1. This depicts a weakly supervised pipeline, where the

image classifier is trained on X-ray images in the first phase. Until

this phase, the model is a black box, capable only of predicting

a class value. The next block consists of a CAM function that

generates a heatmap and reveals activated features. The heatmap

further constitutes spatial information in the form of bounding

box coordinates.

The rest of the study is organized into four main sections. In

Section 2, a brief overview of related literature is provided, serving

as a foundation for the proposed methodology outlined in Section

3. This methodology includes details on the dataset utilized, the

proposed technique, and the experimental methodology employed.

The results and discussions are presented in Section 4, providing

insights into the outcomes of the study. Finally, in Section 5, the

study concludes with a comprehensive summary of the findings and

directions for future research, offering a glimpse into the potential

avenues for growth and advancement in this field.

2 Literature review

Deep learning has revolutionized computer-aided diagnosis

(CAD) in medical imaging, marking significant progress since

the last decade (Ma et al., 2021). Its successful integration into

various medical fields, particularly in radiology (Reyes et al.,

2020; Chandola et al., 2021), dermatology (Esteva et al., 2017;

Rezvantalab et al., 2018; Jeong et al., 2022), and cardiology,

demonstrates its versatility and effectiveness. In radiology, deep

learning models such as DenseNet (ea Shortliffe, 1975) and ResNet

have been instrumental in enhancing the detection and diagnosis

of abnormalities in chest X-ray images, evolving from traditional

rule-based methods to more advanced, reliable solutions (Doi,

2007). These models have not only improved diagnostic accuracy

but also introduced flexibility, making them adaptable across

different imaging modalities. Despite their success, these deep

learning approaches face challenges such as data dependency and

interpretability, necessitating a balanced evaluation of their impact

on medical imaging and patient care.

Explainable AI (XAI) techniques in medical imaging have

gained traction for enhancing the transparency and trustworthiness

of deep learning models (Giuste et al., 2023). Tools, such as

Grad-CAM, Yan et al. (2018) and Guan et al. (2020) provide

visual explanations of model decisions, particularly in chest

X-ray analysis, by highlighting relevant areas influencing the

diagnostic outcome. This advancement is crucial in radiology,

where understanding the rationale behind AI predictions is

as important as the predictions themselves. Shi et al. (2021)

further emphasizes the role of XAI in combating pandemics,

showcasing how these methods can bridge the trust gap in clinical

decision-making during critical health crises. Although XAI has

empowered radiologists with better interpretative insights, it still

faces challenges, such as the potential for misinterpretation and the

need for improved methods to accurately reflect the underlying

model logic. The integration of XAI in medical imaging thus

represents a pivotal step toward more reliable and interpretable
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FIGURE 1

Extracting localization details via classification skills.

diagnostic systems, fostering greater acceptance and confidence

among medical professionals (Szegedy et al., 2013; Rao et al.,

2020). Rani et al. (2022a) proposed model Covid-Scanner detects

COVID-19 in chest radiographs through a multi-modal system. By

combining bone suppression, lung segmentation, and classification

they further utilize GradCAM++ for feature visualization.

Similarly, Caroprese et al. (2022) explores argumentation

approaches in XAI, offering structured justifications for medical

decisions, thereby improving explainability and transparency.

Although XAI has empowered radiologists with better

interpretative insights, it still faces challenges, such as the

potential for misinterpretation and the need for improved methods

to accurately reflect the underlying model logic. The integration

of XAI in medical imaging, including argumentation theory, thus

represents a pivotal step toward more reliable and interpretable

diagnostic systems, fostering greater acceptance and confidence

among medical professionals (Szegedy et al., 2013; Rao et al., 2020).

The CovidScanner model (Rani et al., 2022a), for instance, detects

COVID-19 in chest radiographs through a multi-modal system,

utilizing GradCAM++ for feature visualization and exemplifying

the practical application of XAI in pandemic response.

Weakly supervised learning has emerged as a promising

approach in chest X-ray image analysis, addressing the scarcity

of finely annotated medical images (Islam et al., 2017; Ouyang

et al., 2020). Unlike strongly supervised methods that require

detailed annotations, weak supervision leverages image-level labels

to localize and identify pathological features, thereby mitigating

the extensive effort and expertise needed for detailed labeling.

Despite its cost-effectiveness and reduced annotation requirements,

weakly supervised models often face challenges in achieving the

high precision and specificity seen in fully supervised systems. The

balance between model performance and the availability of limited

annotated data is critical, making weakly supervised learning a

key area of research for improving accessibility and efficiency in

medical diagnostics (Rozenberg et al., 2020; Wehbe et al., 2021).

This approach not only broadens the applicability of deep learning

in resource-constrained settings but also encourages advancements

in algorithmic efficiency and interpretability.

Table 1 presents an overview of abnormalities detection

approaches for X-ray images. The comparative analysis of deep

learning methods in medical imaging, especially in chest X-ray

analysis, reveals a diverse landscape of methodologies ranging from

traditional machine learning to advanced deep learning and weakly

supervised models (Rajpurkar et al., 2017; An et al., 2022). Each

method presents its own set of advantages and limitations. For

instance, while deep learning models such as DenseNet and ResNet

have shown remarkable success in accuracy and reliability, they

require substantial data and computational resources (ea Shortliffe,

1975). The SFRM-GAN (Rani et al., 2022b) enhances bone

suppression while preserving image quality and spatial resolution.

On the other hand, weakly supervised approaches offer a solution

to limited data scenarios but may compromise on localization

precision (Ouyang et al., 2020). The critique of these methods

underscores the need for a balanced approach that considers both

the technical and practical aspects of medical image analysis. It

emphasizes the importance of interpretability, resource efficiency,

and adaptability to varying clinical needs, guiding future research

Toward more holistic and context-aware diagnostic solutions (Yan

et al., 2018; Ponomaryov et al., 2021).

Current trends in medical imaging, particularly in chest X-ray

analysis, indicate a growing emphasis on addressing the challenges

of labeled data acquisition, transparency, and reliability (Irvin et al.,

2019; Wu et al., 2020). The acquisition of labeled data remains a

significant bottleneck, with efforts such as CheXpert (Irvin et al.,

2019) aiming to expand the availability of annotated datasets for

training more robust models. Transparency in AI decisions is

another critical aspect, where models such as U-Net and RetinaNet

are being adapted to provide clearer insights into diagnostic

decisions (Wu et al., 2020). However, the reliability of these AI

systems, especially in the face of noisy or limited data, continues

to be a concern (Rao et al., 2020; Szegedy et al., 2013). The end-goal

is to develop AI systems that not only perform well under various

constraints but also earn the trust of medical professionals through

transparent and interpretable outputs. Addressing these challenges

requires ongoing innovation in machine learning techniques and

a deeper understanding of the clinical context, to ensure that the
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TABLE 1 Summary of relevant approaches for detection of abnormalities in X-ray images.

Refereces Methodology Ensembled Interpretability Localization Evaluation

Rajpurkar et al.

(2017)

DenseNet-121 No Grad-CAM Heatmap Visual

Islam et al. (2017) ResNet-50, ResNet-101, ResNet-152 Yes Convnet up-sample Heatmap Occlusion

sensitivity

Rozenberg et al.

(2020)

Specialized loss function, anti-aliasing filters,

and conditional random field layers

No No No IoU

An et al. (2022) ResNet + channel attention No No Channel attention No

Yan et al. (2018) DenseNet, squeeze-and-excitation block,

multi-map transfer layer, max-min pooling

operator

No Grad-CAM++ Heatmap Visual

Guan et al. (2020) AG-CNN (Global block, Local block, Fusion) No Grad-CAM Heatmap Visual

Wehbe et al. (2021) DeepCOVID-XR (DenseNet-121, ResNet-50,

InceptionV3, Inception-ResNetV2, Xception,

EfficientNet-B2)

Yes Grad-CAM Heatmap Visual

Ouyang et al. (2020) Foreground, positive, and abnormality

attentions

No Grad-CAM BBox IoU

Wu et al. (2020) 6-region-slice, U-Net No No BBox IoU

Ponomaryov et al.

(2021)

X-Ray CAD (DenseNet-201, ResNet-50,

EfficientNet)

Yes Grad-CAM Heatmap Visual

Rani et al. (2022a) Multi-modal bone suppression, lung

segmentation

No Grad-CAM++ Heatmap Visual

The comparison of different methodologies in the literature.

FIGURE 2

Block diagram of Ensemble-CAM for localizing abnormalities in the X-ray image with interpretable outcomes.

development of AI in medical imaging aligns with the real-world

needs of healthcare providers and patients.

3 Materials and methods

The proposed model consists of three main components,

namely classification, class activated mapping, and aggregation.

It also employs two supporting components that shall be

referred as classfinalizer and heatmap-generator. The architecture

of the proposed model follows ensemble learning at the

classification and localization stages and is named as Ensemble-

CAM. As illustrated in Figure 2, it requires no localization

annotations at the training phase, yet capable to produce the

bounding box and segmentation details in the explainable format.

The output of Ensemble-CAM consists of aggregated class

value, bounding boxes, mask, and heatmaps that interpret the

result formation.

This section briefly explains the methodology of proposed

work in detail. First, the sub-section describes the properties of

datasets for the experiments while subsequently listing the deep

learning classifiers. Next, conceptual definitions are established

in general for class activation mapping and heatmap generation.

Finally, Ensemble-CAM is defined and demonstrated via some

test data.

3.1 Dataset

Three datasets have been considered to validate the

performance of the proposed approach. To classify and localize
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TABLE 2 Datasets for demonstration of Ensemble-CAM performance.

DATASET TARGET TRAIN VALID TOTAL

RSNA Pneumonia 11,891 2,972 14,864

Chest X-Ray14 Cardiomegaly 5,477 1,369 6,846

COVID-19 COVID-19 7,703 1,925 9,628

pneumonia, the RSNA pneumonia detection dataset (Anouk Stein,

2018) has been used with 14,864 images to train the classifiers.

In this dataset, 6,012 images have been marked positive for

pneumonia, while 8,851 show no relative symptoms. For all

pneumonia confirming images, the dataset also offers bounding

box ground truth which was not used during the training phase.

Similarly, the Chest-Xray-14 dataset (Wang and Peng, 2017)

has been considered to detect cardiomegaly. The classifiers

have been trained only for 9,628 images in which 4,000 images

show enlarged hearth visuals. The dataset contains a small

subset of images that have bounding box annotations which

were ignored during training the classifier but considered in

testing. The third dataset contains radiographs that have been

tagged as COVID-19 confirming cases (Chowdhury et al., 2020;

Rahman et al., 2021). Unlike the previous two datasets, there

exist no bounding box annotations in this dataset. Therefore,

a quantitative metric for localization has not been applied

to demonstrate the model’s performance. Table 2 shows the

distribution of given datasets for training and validation during the

training phase.

3.2 Methods for evaluation

The performance evaluation metrics in this study has been

split into two groups task-wise. For the classification task, accuracy

(Equation 1), recall (Equation 2), and precision (Equation 3) have

been computed. Similarly, Intersection over Union (Equations 4, 5)

(also known as the Jaccard index) has been used to measure the

quality of the localization task. The base components for all these

metrics are as follows:

• True positive: output that correctly indicates the presence of

a condition.

• True negative: output that correctly indicates the absence of

a condition.

• False positive: output that wrongly indicates the presence of

a condition.

• False negative: output that wrongly indicates the absence of

a condition.

Accuracy: accuracy is a primary metric that refers to the ratio of

number of correct predictions to the total number of input samples.

Accuracy =
number of correct predictions

total number of predictions made
(1)

Recall: recall is the proportion of actual positive cases that are

correctly identified.

Recall =
true positive

true positive+ false negative
(2)

Precision: precision also known as positive predictive value

(PPV), refers to the proportion of positive cases that were

correctly identified.

Precision =
true positive

true positive+ false positive
(3)

Intersection-over-Union: the metric is well known for object

detection task in strong supervised learning. It quantifies the degree

of overlap between predicted and ground-truth boxes. Its values

range from 0 to 1 where 0 refers to no overlap and 1 declares

perfect overlap.

IoU =
area of overlap

area of union
(4)

In confusion matrices, it can be expressed as follows:

IoU =
TP

TP+ FP+ FN
(5)

The keynote for IoU in weak surprised learning is the

unavailability of ground truth values. This makes it challenging

to validate the performance of the given model. To quantify the

proposed model performance with IoU, this study includes two

datasets with bounding box annotated ground-truth. They have not

been exposed during training but used at test instances only.

3.3 Ablation study for classification task

The ablation study conducted as part of this research aimed to

evaluate a comprehensive range of deep learning image classifiers

for the task of disease localization in chest X-ray images. Included

in this assessment were AlexNet (Krizhevsky et al., 2017), VGG-16

& VGG-19 (Simonyan and Zisserman, 2014), ResNet-50 (He et al.,

2016), EfficientNetB1 (Tan and Le, 2019), NasNetMobile (Zoph

et al., 2018), MobileNetV2 (Sandler et al., 2018), DenseNet169

(Huang et al., 2017), and DenseNet121 (Huang et al., 2017).

The common hyperparameters employed in training these

models are detailed in Table 3. The experiments were executed on a

64bit Ubuntu 20.04.5 LTS platform, powered by an Intel R©Core i5-

3470 CPU@3.20GHz x 4 and anNVIDIAGeForce GTX 1080GPU,

utilizing Python 3.9.12 with tensorflow 2.4.1 and keras-gpu 2.4.3.

The initial phase of this study revealed that the models

with fewer layers, such as AlexNet, VGG-16, VGG-19, and

NasNetMobile, did not perform optimally on the chest X-ray

datasets, which characteristically exhibit less feature variation than

other types of image datasets. Thus, these models were excluded

from the subsequent training rounds. Deeper and more complex

architectures were then subjected to a rigorous second round

of training.

The subsequent evaluations led to the selection of DenseNet

models and Xception for their exemplary performance metrics,

while ResNet-50, InceptionV3, and MobileNetV2 were phased
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TABLE 3 Configurations for training the image classifiers.

Dataset Key Value

Dataset Split Ratio: 70/30

Color mode RGB

Callback Model checkpoint Monitor: validation

accuracy. Mode: Max

Early stopping Monitor: validation

loss. Min_delta: 0.01.

Patience: 6. Mode:

auto. Baseline: None

Reduce LR on plateau Monitor: validation

loss. Factor: 0.01.

Patience: 4. Mode:

auto. Min_delta:0.001

others TerminateOnNaN

Hyper-parameter Max. Epoch 50

Optimizer Adam

Loss Categorical

Crossentropy

Initial weights Imagenet

Output layer Softmax

out due to denser and complex architectures. This selection

process was instrumental in constructing an Ensemble-CAM

framework composed of classifiers that not only excel in image-

level classification but also in generating precise heatmaps for

disease localization.

The experimental iterations for given datasets with specified

hyperparameters concluded on DenseNet169, DenseNet121,

InceptionResnetV2, and Xception as detailed in Table 4. These

models, particularly the DenseNet architectures, excelled in

localizing cardiomegaly within the Chest-Xray14 dataset and

pneumonia in the RSNA dataset, while InceptionResnetV2

demonstrated exceptional precision across multiple conditions.

Notably, for COVID-19 detection, DenseNet121 and

InceptionResnetV2 demonstrated high accuracy and precision,

highlighting their capacity for reliable pattern identification.

The classifiers ultimately incorporated into Ensemble-CAM

were deliberately chosen to strike an optimal balance between

localization performance and computational demand. While the

selected models–DenseNet169, DenseNet121, InceptionResnetV2,

and Xception–require considerable computational resources due

to their complexity, they also significantly enhance localization

accuracy. This is essential for clinical applications where diagnostic

precision is paramount. The selection process prioritized models

that brought substantial improvements in localization accuracy

without disproportionately increasing computational costs. This

ensures that Ensemble-CAM delivers a high diagnostic value while

remaining practical for use in diverse clinical environments, even

where computational resources may be limited.

Finally, the chosen classifiers for Ensemble-CAMwere carefully

picked to ensure a good balance between accurate disease

localization and the amount of computational power needed.

These models do require more computational resources, but they

provide better accuracy in pinpointing diseases on chest X-ray

TABLE 4 Performance of classifiers on given datasets.

Target
class

Classifier Acc Recall Precision

Cardiomegaly

(Chest-Xray14)

DenseNet169 0.95 0.92 0.90

DenseNet121 0.94 0.91 0.89

InceptionResnetV2 0.96 0.95 0.94

Pneumonia

(RSNA)

DenseNet169 0.97 0.93 0.88

Xception 0.93 0.93 0.90

InceptionResnetV2 0.93 0.90 0.87

COVID-19

(COVID-19)

DenseNet121 0.97 0.95 0.95

InceptionResnetV2 0.98 0.96 0.97

Xception 0.97 0.92 0.94

images. The decision to use these models was based on their

ability to give clearer results for diagnosis without needing an

unreasonable amount of computing power, making Ensemble-

CAM a practical option for medical settings with varying levels of

available technology.

3.4 Application of CAM

Ensemble-CAM utilizes class activation mapping techniques

for achieving two objectives: (1) to generate heatmaps that make the

outcome interpretable and (2) to extract spatial information for the

localization task. While employing the CAM technique, the design

goal was to avoid model alteration, re-training, and better visibility

of detected objects. Three variants of CAM have been considered in

the ablation study, namely Vanilla CAM (Definition 1), Grad-CAM

(Definition 2), and Grad-CAM++ (Definition 3). Two limitations

were identified in Vanilla CAM for the proposed framework, i.e.,

coarse visuals on heatmap image and model alteration with a

global average pooling layer. To address these challenges, Grad-

CAM (Selvaraju and Batra, 2020) was evaluated next as it offers

better interpretability without trading-off the model structure and

performance. Grad-CAM extracts a raw feature map during the

forward propagation. This tensor is backpropagated to the desired

rectified convolutional feature maps. This collectively computes the

coarse Grad-CAM localization which explains where the model

must look to make the specific decision. During experiments on X-

ray images, Grad-CAM’s ability to properly localize areas of interest

was observed decreasing for multiple occurrences of the same

class. The main reason for this decrease is emphasizing the global

information that local differences are vanished in it. This impact

has been minimized in Grad-CAM++ (Chattopadhay et al., 2018)

which enhances the output map for the multiple occurrences of the

same object in a single image. Specifically, it emphasizes the positive

influences of neurons by considering higher-order derivatives.

Notation. Let us declare a convolutional neural network as

Y = f (X), such that input X ∈ R
d and output Y as a probability

distribution. We define Yc as the probability of being classified as

class c. For a specified layer l, let Al refer to the activation of layer
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l. Specifically, if l has been selected as a convolution layer, then Ak
l

denotes the activation for the k-th channel. This also denotes the

weight of the k-th neuron at layer l which connects two layers l and

l+ 1 asWi+l+1.

Definition 1 (Class Activation Map). Using the defined

notation, consider a model f consists of a global pooling layer l that

takes the output from the last convolutional layer l−1 and feeds the

pooled activation to a fully connected layer l + 1 for classification.

For a class of interest c, LcCAM can be defined in Equation 6 as:

LcCAM = ReLU

(

∑

k

ackA
k
l−1

)

(6)

where: ack =Wc
l,l+1[k]

Wc
l,l+1[k] is the weight for the k-th neuron after global

pooling at layer l.

Definition 2 (Grad-CAM). Using the stated notation, suppose

amodel f and class of interest c, Grad-CAM is defined in Equation 7

as:

LcCAM = ReLU

(

∑

k

ackA
k
l−1

)

(7)

where:

ack = GP

(

∂Yc

∂Ak
l

)

GP() denoted the global pooling operation.

Definition 3 (Grad-CAM++). Using the stated notation,

suppose a model f and class of interest c, Grad-CAM++ is defined

in Equation 8 as:

LcgradCAM++ = ReLU

(

∑

k

ackA
k
l−1

)

(8)

where:

ack =
1

Z

∑

i

∑

m

(

∂Yc

∂Ak
l

)

Z is a constant that refers to the number of pixels in the

activation map.

3.5 Ensemble-CAM using interpretable
features

The input image consists of three types of features such as

(1) noise, (2) relevant, and (3) salient features. Noise induces

distraction in the classification task and subject to be removed by

techniques such as Gaussian blur, median filtering, and various

filters. The relevant features are referred to the domain of interest

which is to identify the legitimate chest X-ray (CXR) image with

the frontal view. The salient features are class-specific sub-part of

the relevant features.

In this study, CNN models have been targeted during the

classification task for extracting salient features using the class

activation mapping technique. As explained in section D, CAM

identifies parts of the image that contribute most to the target

class. The feature interpretability of a CAM arises from the

fact that it provides a visual representation of the CNN model’s

understanding of the input image features that are important for

the classification decision. The heatmap generated by the CAM

highlights the regions of the image that are most relevant for the

CNNmodel’s prediction and can be used to identify the key features

that distinguish between different classes. This provides valuable

insights into the decision-making process of the CNN model and

can help to identify which image features are most important for

making a diagnosis.

Ensemble-CAM offers a fusion scheme to highlight prominent

sub-regions in the X-ray image. It consolidates activation maps

that have been generated by more than one image classifiers in the

heatmap format. The resultant heatmaps are intersected by high

confidence function. Formally stating:

Definition 4 (Ensemble-CAM). Suppose ensemble learning as

a function g such that it produces a set of n number of heatmaps H

(Equation 9); through modelsM; for a given input image x:

H = g(M(x)) (9)

where:

• g() symbolizes as ensembled function.

• M() refers to set of models; m1,m2, .......,mn that predicts

class c.

• c implies either the user-defined input that explicitly refers to

a class or the maximum occurrence of a predicted class.

• H denotes the set generated heatmaps {hcm1
, hcm2

, ......, hcmn
}.

Then, Ensemble-CAM is defined in Equation 10 as the

intersection of H such that

LcensembleCAM = hcm1
∩ hcm2

∩ . . . ∩ hcmn
(10)

The proposed model is also expressed in Algorithm 1. First,

input radiograph x is classified by all the given image classifiers

m1,m1, .....,mn to predict class values ĉ1, ĉ2, ....., ĉm. The majority

of class predicted value determines final predicted class such that

c ← argmax([ĉ1, ĉ2, ......, ĉm]) . The final class value c along

with original radiograph x are provided to cam function (Grad-

CAM++) as an input. Each classifier generates a heatmap image

as {hcm1
, hcm2

, ......, h, hcmn
}.

The aim of Ensemble-CAM is to increase the probability of true

positive inferences at the pixel level by reducing noise and irrelevant

regions. Hence, it produces more reliable spatial regions within the

X-ray image. This study demonstrates the outcome of Ensemble-

CAM for estimating bounding boxes without being trained on

bounding box annotations (x, y, w, h). As discussed previously,

class of a disorder at the image-level is predicted by three models

independently. The top-ranking class is declared final automatically

by the maximum voting scheme. Any class of interest can also

be selected manually, if needed, for analysis. Next, Grad-CAM++
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Require: Image X ∈ Rd, target class c,

models = [m1,m2,m3], cam=[gradcam]

Ensure: Heatmap H, predicted class c, Bounding box

(x, y, width, height)

1: number_of_models ← count(models)

2: Clist ← []

3: for i ← 1 to number_of_models do

4: mi← models[i]

5: ci← mi.predict_class(X)

6: push(ci, Clist)

7: end for

8: if c = null then

9: c ← argmax (Clist)

10: end if

11: for i ← 1 to number_of_models do

12: mi← models[i]

13: Hmi ← mi.predict_map(X,c)

14: gray ← extract_channel(Hmi, ’red’)

15: ret, thresh = threshold(gray,127,255,0)

16: contours, hierarchy = findContours(thresh)

17: rect = minAreaRect(contours))

18: end for

Algorithm 1. Ensemble-CAM.

generates class-oriented heatmap in the jet-colormap scheme and

the red channel is sliced for corresponding visual semantics.

4 Results and discussion

The aim of Ensemble-CAM is to offer reliable and interpretable

localization details without being explicitly trained on localization

data. It supports the adaptation of the existing state-of-the-art

image classification models and CAM function that require no

alteration in the architecture. In addition to extending image

classifier capabilities for the localization task, the framework

presents the outcome in an explainable layout.

In this study, multiple deep learning models have been trained

on three datasets of X-ray images (see Table 4).

During the testing phase, it was observed that different image

classifiers may not always predict the same class for the same input

X-ray image. This induces the unreliability aspect of employing

the single model for diagnosis task. Such behavior validates the

adaptation of assembling approach to overcome the probability

of false predictions. Subsequently, the classification task with

ensemble learning improved the overall performance.

Alongside classification, the also expect the model to justify the

outcome. In traditional machine learning models such as decision

trees, one could find such justifications in if-then hierarchies. Deep

learning models are considered too opaque for if-then justifications

in the image classification task. One alternative for such reasoning

is supervised learning localization where areas-of-interest are

highlighted either by masking or bounding boxing. This option

is depended on rich annotated data that are difficult to acquire

in higher quantity with adequate quality. Another alternative

is to leverage the classification knowledge for localization as

weakly supervised learning approach. We opted later option with

class activation mapping techniques to achieve two objectives,

i.e., localization and interpretation. Among CAM variants, Grad-

CAM++ was found best suited for its ability to be adapted without

altering the model while extracting finer localization information

in case of multiple instances. Equally, it has also been found

useful visual explainer for interpreting its outcome intuitively when

heatmap images were generated.

As discussed, n numbers of classifiers produce n numbers

of predictions in ensemble models. An aggregating function

is therefore required to draw a single conclusion. Likewise,

localization task also follows the same process, i.e., n classifiers

produce n heatmaps which further require aggregation. We

employed maximum voting function to achieve the confident value

for final localization. This function has been applied at pixel

level where maximum intersection occurs. Finally, minimum area

rectangle has been formed from the qualified pixels’ left-top and

right-bottom coordinates.

This study demonstrates the performance of the proposed

model on three chest X-ray datasets for detecting three different

pneumonia, COVID-19, and cardiomegaly. The RSNA pneumonia

detection dataset has been used for training and validation.

Although the dataset offers ground truth labels, they were not

used to follow a weakly supervised approach. Image classifiers were

trained on images using image-level class labels. Once trained,

images from the test set were asked to classify and localize. The

results were compared with the ground truth values to calculate the

Jaccard index. The same strategy has been followed for detection of

cardiomegaly using the Chest-Xray14 dataset. As both the datasets

possess bounding-box level ground truth labels, the Jaccard index

was calculated. For detecting COVID-19, the model has been

trained only on images with class labels. However, the Jaccard

index has not been computed as bounding box annotations for this

dataset are not available.

Figure 3 shows the generated heatmaps in the BGR color

scheme referring to the intensity of activation from the highest to

lowest. The green color serves as the border between the highest

(blue) and lowest values (red). To form an estimated mask, a

contour is drawn by connecting the green pixels as convex hull.

The resultant polygon is served as the mask when filled with binary

1 while marking the rest as binary 0. Though the mask offers

better localization, we proceeded to generate bounding boxes. The

first reason is the demonstration of model capability for predicting

bounding box. The second reason is to evaluate the localization

performance with available annotation. The example of ground

truth valued BBox is shown in Figure 3 in black color as a reference

while the computed Jaccard index is displayed on the top.

The detection and localization of cardiomegaly are shown in

Figure 4 for few samples. The model consists of three classifiers,

namely DenseNet169, DenseNet121, and InceptionResNet. The

size of BBox among these classifiers can be observed as the

first visual difference. DenseNet121 and DenseNet169 belong to

the same family of architectures and form smaller and medium

BBoxes respectively. InceptionResNet comparatively creates larger

BBoxes with least accuracy in the collection. The consolidation

step aggregates all the three BBoxes into single BBox to form

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366415
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Aasem and Javed Iqbal 10.3389/fdata.2024.1366415

FIGURE 3

Ensemble-CAM generates localization information from image level class labels while making the process interpretable. Reference to labeled data,

IoU has been computed for quantification of the result.

a conclusive outcome. As the dataset is furnished with a small

set of ground truth BBox annotations, quantitative results have

also been computed using the Jaccard index. Table 5 presents the

computed values for the listed sample images. The same values

can also be visualized at the center-top of each image under the

classifier column. The performance varies from image to image

among the classifiers. In the case of cardiomegaly, DenseNet121

constantly outperforms all radiographs while DenseNet169 and

InceptionResNetV2 alternate for second place. This also ensembled

outcomes to form comparatively coarse IoU because it considers

cumulative intersections. For such configuration, a practitioner can

give more value to the best classifier’s predictions. However, there

exist scenarios where single classifier may not always point to the

right locations. Such scenarios have been demonstrated for the

detection of pneumonia in the next model.

Therefore, the next better classifier was employed, which

belongs to the InceptionResNet family architecturally. Ensemble-

CAM is agile enough to replace any of its components when

required without any further alteration in the framework. In this

instance of model, it can be observed that the performance of

pneumonia detection is not good enough compared to the instance

of cardiomegaly. The reason can be traced out by observing the

generated heatmaps on different radiographs. For instance, we

found that Dense-Net169 is consistently highlighting the lower

part of radiographs for its opacity to declare it pneumonia. Once

found the issue with learning, we have options to either fine-

tune it by changing the hyperparameters, perform further training

with filtered data, or combine the bast of both. Nevertheless,

we replaced it with another successor because of its availability

reason. Regarding the model performance, none of the sub-

models show consistency in producing finer localization for all

given radiographs. This can be observed quantitatively via Table 6.

Xception shows the best IoU on input f and h and least for i and j.

likewise, DenseNet121’s best IoU is for j while InceptionResNetV2

ranks first for h. Visual conformance of the stated scenario is

illustrated in Figure 5 where the black outlining box has been

referred as ground truth for the generated boxes. This creates the

need for collecting the proposals from all classifiers and form a one

that honor their mutu-al/intersected arguments. The last use-case

has been demonstrated in Figure 6 for the fact that some datasets

may not have any bounding box information even for test purposes

and still detection task is demanded. This illustrates the application

of proposed model for the detection of COVID-19 symptoms. The

associated dataset does not provide ground truth values; therefore,

quantitative results were not computed on the Jaccard index. For

visual analysis, the model is supposed to highlight ground-glass

opacity in the lungs area. Since pneumonia and COVID-19 share

similar characteristics, we adapted pneumonia detecting classifiers

for COVID-19. The combined results of pneumonia and COVID-

19 show high variance in performance. They are not fully consistent

on mutual agreement and so result in poor performance.

The proposed study differs in localization techniques such as

YOLO, SSD, etc. in terms of supervision, i.e., strong vs. weak.

It induces explainability while extracting interpretable features

for localization task using CAM. To enhance the reliability

on prediction, it offers ensembled strategies for classifiers and

localizers without alteration in the base models. The performance

of IoU can be discussed in two perspectives. In comparison to

strong-supervised approaches, they may not touch the benchmark.

However, they are highly dependent on spatial-annotated data.

To overcome this dependency, weak supervised learning offers

localization as an alternative approach with lower IoU. They

only require image-level labels during training. For Ensemble-

CAM, the cumulative results of Ensemble-CAM for given
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FIGURE 4

Estimation of bounding box annotation for cardiomegaly localization quantified by IoU scores.

TABLE 5 IoU detection score for the detection of cardiomegaly (ref.

Figure 4).

Input
instance

DenseNet
169

DenseNet
121

Inception
ResNetv2

Finalized

a 0.48 0.53 0.37 0.46

b 0.48 0.64 0.38 0.46

c 0.37 0.64 0.44 0.51

d 0.43 0.69 0.46 0.53

e 0.44 0.70 0.50 0.50

datasets show promising results in localizing abnormalities within

chest radiographs. This framework is based on loosely coupled

components that are replaceable and extendable to tune up

the overall performance. Moreover, it offers interpretability for

TABLE 6 IoU detection score for the detection of pneumonia (ref.

Figure 5).

Input
Instance

DenseNet
121

Inception
ResnetV2

Xception Finalized

f 0.21 0.0 0.25 0.34

g 0.14 0.16 0.17 0.17

h 0.23 0.30 0.24 0.27

i 0.22 0.29 0.0 0.31

j 0.46 0.35 0.22 0.32

debugging the training deficiencies as well as justification at the

prediction stage. Leveraging its interpretability features, the model

also exhibits favorable results for estimation of mask and bounding

box annotations by getting trained on only class labels. Taking
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FIGURE 5

Estimation of bounding box annotation for Pneumonia localization quantified by IoU scores.

these capabilities into account, Ensemble-CAM can play a vital

role in assisting reliable diagnosis in clinical practice. Although it

eliminates the need for strong annotation for training, it requires

more computational resource for training and for prediction.

To further advance the capabilities of our Ensemble-CAM

framework, we are committed to addressing the current limitations

and exploring new dimensions in thoracic disease analysis. Future

efforts will include the adoption of additional quantitative metrics,

such as the DICE coefficient and Precision, to enhance the

evaluation of localization and detection accuracy. These metrics

will provide deeper insights into the model’s performance and

its effectiveness in clinical settings. Moreover, we are planning to

improve the system’s architecture by integrating unified classifiers

designed to process a broader spectrum of thoracic diseases. This

development aims to achieve a more comprehensive and efficient

diagnostic tool, capable of providing robust analyses from chest

X-ray images. By pursuing these enhancements, we intend to not

only refine the diagnostic accuracy of our system but also to

broaden the scope of its applicability in medical imaging, ensuring

that our research contributes continuously to the evolving field of

AI in healthcare.

5 Conclusion

The diagnosis of thoracic diseases using chest X-ray images

is a critical and sensitive area. It has many risks for incorrect

conclusions due to workload, skillset, and other subjective errors.

Assisting medical professionals with AI powered computer aided

systems using deep learning face multiple challenges. This study

focuses on the challenges of inadequate data and interpretable
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FIGURE 6

Qualitative illustration of predicting bounding boxes for COVID-19 cases.

inferences for deep learning models and presents Ensemble-

CAM. It has been formulated as a unified model that utilizes

the existing classifiers and class activation mapping to detect and

localize thoracic disease in chest X-ray images. Three independent

experiments on respective chest X-ray datasets have been

conducted. During the training phase, no localization details were

considered to predict bounding boxes. The generated heatmaps

were evaluated both visually and quantitively. In comparison to the

existing standalone models, Ensemble-CAM carries the lowest risk

of incorrect classification errors when it encounters noisy features

in X-ray images. This enhances the overall confidence on deep

learning models for clinical practice. The theoretical contribution

of Ensemble-CAM is envisioned in explainable AI and weak

supervised learning spaces. This further contributes to the elevation

of confidence on deep learning models to be employed in medical

practice. In future studies, we aim to broaden the research scope

by incorporating more image classifiers, exploring different CAM

variants, and refining ensemble strategies. These enhancements are

expected to provide deeper insights and higher accuracy, further

leveraging the potential of AI in medical imaging and continuing

the evolution of reliable, interpretable diagnostic tools for clinical

practice. In future studies, we will enhance Ensemble-CAM by

addingmetrics, such as DICE and Precision, and developing unified

classifiers. These steps aim to improve accuracy and broaden

clinical use, contributing further to medical imaging and AI.
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